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Abstract 

This paper develops a bi-level programming model to optimize the issuance of 
evacuation orders with explicit consideration of (i) the highly uncertain evolution of the 
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storm, and (ii) the complexity of the behavioral reaction to evolving storm conditions.  A 
solution procedure based on progressive hedging is developed. A realistic case study 
for the eastern portion of the state of North Carolina is presented. Through the case 
study we demonstrate (1) the value of developing an evacuation order policy based on 
the evolution of the storm in contrast to a static policy; (2) the richness in the insights 
that can be provided by linking the behavioral models for evacuation decision-making 
with dynamic traffic assignment-based network flow models in a hurricane context; and 
(3) the computational promise of a progressive hedging-based solution procedure to 
solve large instances of the model. 
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1.0 Introduction 

Hurricanes cause powerful winds, storm surge, and inland streamflow flooding that can 
put many lives at risk.  Forecasters use a collection of atmospheric models to estimate 
how a hurricane will evolve over time, and a suite of storm surge and hydrological 
models to determine water levels. However, these forecasts are subject to substantial 
uncertainty, especially more than a day or two in advance.  Hence the task of deciding 
who should receive an evacuation order and when is very difficult. If the decision is 
postponed too long, evacuees may encounter hazardous conditions as they evacuate.  
For example, during Hurricane Sandy (2012), New York City issued evacuation orders 
about 8 hours before the Subway System was shut down (Wall Street Journal October 
28, 2012) and the NYU Medical Center was evacuated after the power failed.  
Conversely, if the decision is made prematurely, many people will leave needlessly and 
may encounter more risk in the evacuation than had they remained in their homes. This 
occurred in Hurricane Floyd (1999), in which more than 2.5 million people from Florida 
to Virginia evacuated, many unnecessarily and at great expense (Dow and Cutter, 
2002). 

Further, people do not necessarily comply with evacuation orders. In Hurricane Irene 
(2011) about 60% of those ordered to evacuate Zone A in NYC actually did evacuate 
(Saul, 2012). For Hurricane Sandy, in areas that received an evacuation order across 
New York and New Jersey, about 70% of people did not evacuate (Worrall, 2014). It is 
also true that individuals may evacuate when no evacuation order is issued. This 
shadow evacuation can cause substantial congestion, making it difficult for those that 
need to evacuate to get out of harm’s way. 

This paper proposes a multistage stochastic programming model to optimize the 
issuance of evacuation orders that explicitly incorporates the uncertainty in hurricane 
evolution and optimizes the trade-off between waiting too long to issue evacuation 
orders and issuing them too early. It generates a tree of evacuation order 
recommendations contingent on how the hurricane evolves, rather than a single, static 
evacuation plan. Further, rather than assume that individuals will comply with an order 
or that individuals will not evacuate if no order is issued, the proposed model relies on 
discrete choice models to estimate who will evacuate at what time, and for those that do 
evacuate, where they will evacuate to. Finally, it is important to notice that this 
formulation only focuses on the issuance of mandatory evacuation orders and does not 
include other types of orders.   

The model structure is a bi-level programming problem or a Stackelberg leader-follower 
game in game theory, where the leader (upper-level decision maker) is the government 
emergency management agency deciding when and where to issue orders and the 
followers (lower-level decision makers) are the residents in the study area. The 
decisions made by the residents are if and when to evacuate; and if they are to 
evacuate, where to go, as well as what route to choose. In this paper, we assume that 
the traffic flow that is generated by the residents can be described by dynamic user 
equilibrium model. That is, each resident chooses the route that dynamically minimizes 
their travel time.  
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This paper makes three key contributions. First and to the best or our knowledge, this is 
the first paper that uses multistage stochastic programming to optimize the issuance of 
evacuation orders. Second, this paper integrates discrete choice models with a 
stochastic program to more accurately represent the link between the human dimension 
and the performance of the transportation system. Hence this paper attempts to bridge 
the literature focused on the “demand” side of evacuation and the “supply” side of 
evacuation where the demand side is the human dimension and the supply side is the 
forecasted use of the transportation infrastructure. Third, a realistic case study is 
presented to illustrate the types of insights which can be gained through this type of 
detailed modeling.  The large-scale real-world case study is focused on the eastern half 
of North Carolina. The problem contains 50,000 origin-destinations pairs, 10,000 
directed network links, 22 hurricane scenarios and 22 decision times yielding 226,000 
binary variables representing opportunities to issue evacuation orders. 

The remainder of this paper is organized into six sections. Section 2 provides an 
overview of the related literature. Sections 3 and 4 present the model formulation and 
solution procedure, respectively. A case study is described in Section 5, and the paper 
concludes with summary insights and opportunities for further research. 

 

2.0 Literature Review 

The literature on hurricane evacuation behavior has seen a great increase in activity 
since Hurricanes Katrina and Rita in 2005.  Those evacuations illustrated the failure and 
tragic consequence of under-evacuation and over-evacuation, respectively.  This led to 
renewed research activity focused on understanding evacuation behavior and 
forecasting evacuation demand accordingly. Extensive reviews can be found in Dash 
and Gladwin (2007), Lindell (2013), Murray-Tuite and Wolshon (2013), and Yazici and 
Ozbay (2008). The recent literature provides quantitative characterization of evacuation 
behavior, mostly by fitting statistical models based on survey data, assuming random 
utility maximization (e.g., Hasan et al., 2012, 2011; Huang et al., 2012; Lazo et al., 2010; 
Mesa-arango et al., 2013; Murray-Tuite et al., 2012; Ng et al., 2015; Petrolia and 
Bhattacharjee, 2010; Sadri et al., 2014; Whitehead, 2005). A majority of these models 
were developed to identify the main factors that influence people’s evacuation decision, 
but most formulations are not readily integrated with a network traffic model due to the 
lack of supporting data for the explanatory variables. Wilmot and colleagues conducted 
few of the studies that explicitly aim at predicting evacuation demand over time (e.g., 
Cheng et al., 2008; Fu and Wilmot, 2006, 2004; Gudishala and Wilmot, 2013, 2012; 
Wilmot and Mei, 2004). More recently, Xu et al., (2016) proposed a promising 
alternative forecasting model with a focus on use for prediction. 

There is a vast array of literature focused on the development of optimization and 
simulation models to support evacuation related decision making. For example 
contraflow and lane-based routing is explored in Cova and Johnson(2003), Dixit et al. 
(2008), Lim and Wolshon (2005); Meng and Khoo (2008), Meng et al.(2008), Shekhar 
and Min (2008), Theodoulou and Wolshon (2004), Tuydes and Ziliaskopoulos (2006), 
Williams et al. (2007), Xie and Turnquist (2011). Public transit is explored in He et al. 
(2009), Naghawi and Wolshon (2010, 2011), Sayyady and Eksioglu (2010), Song et al. 
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(2009), Udenta et al. (2013), and location of shelters and other resources in Bayram et 
al. (2015), Kongsomsaksakul et al. (2005), Kulshrestha et al. (2011), Zhen et al. (2015), 
Li et al. (2011, 2012), Ng et al. (2010), Sherali et al. (1991), Sheu and Pan (2014), 
Ukkusuri and Ouyang (2015) and Yazici and Ozbay (2007).  

Chen and Zhan (2004) is among the earliest studies that explored staged evacuation by 
encoding and enumerating alternative strategies as sequences of zones to evacuate. 
They assume everyone will receive an order and they will evacuate when that order is 
received; hence the driver behavior element is the focus of the behavioral modeling. 
Sbayti and Mahmassani (2006) extend elements of Chen and Zhan (2004) to larger 
areas and look at optimizing when people should leave, where they should go and what 
path to take so as to minimize the total system evacuation time. It is important to notice 
that everyone is assumed to evacuate and the sole decision is how to spread that 
evacuation demand over time so as to minimize network clearance time. Bish and 
Sherali (2013) develop a modeling framework that includes high level decisions of when 
to initiate evacuation of a zone and uses a loading curve (departure curve) to spread the 
evacuation from a zone over time. They use a cell transmission model (Daganzo, 1995, 
1994) to represent the traffic flow. 

Apivatanagul et al. (2011) integrates the decision of who should leave and who should 
shelter in place to optimize the trade-off between total risk, total travel time and total 
time away from home from a societal perspective. Using a bi-level two-stage stochastic 
programming model, they also explicitly include uncertainty in the hurricane evolution 
but require all of the decisions to be made prior to any resolution of the uncertainly 
associated with the hurricane evolution.  

This paper also draws as inspiration from Zhang et al. (2014) and Wolshon et al. (2015), 
both of which use TRANSIMS to evaluate an evacuation plan under different threat 
conditions along the Gulf Coast. They explicitly use a discrete choice model to describe 
the behavior of individuals and test the implications of different decisions as to which 
geographic areas to give orders and when. Empirical evidence that adaptive plans can 
perform better than a static plan is given in Montz et al. (2013). They compare 
evacuation performance measured in travel time (average and total) under four different 
storms when decisions as to which evacuation routes (including contraflow) should be 
opened or closed are storm specific to a single base plan applied to all four storms.   
They use expert opinion rather than a model to develop the evacuation plans. 

As stated previously, we focus on the issuance of aggregate orders (as in Bish and 
Sherali, 2013, Chen and Zhan, 2004, Wolshon et al., 2015 and Zhang et al., 2014) and 
the explicit incorporation of the rich behavioral modeling developed in a number of 
papers so as to represent compliance and noncompliance with evacuation orders 
including shadow evacuation. We also integrate the concept of optimizing the issuance 
of orders to achieve region-wide risk reduction and to control congestion as developed 
in Apivatanagul et al. (2011). Further, we explicitly include a probabilistic representation 
of the evolution of the hurricane yielding a multi-stage stochastic program (MSP).  
Finally, we assume dynamic user equilibrium (DUE) as the governing principle for route 
selection on the highway system. The assumption of user equilibrium is often used; 
however, it is not without substantial shortcomings. In practice, it is unlikely that 
evacuees have perfect knowledge of evolving traffic conditions and make their route 
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selection decisions solely based on travel time. Research focused on route selection for 
evacuation is beginning to emerge. For example, Akbarzadeh and Wilmot (2015) 
develop a discrete choice model for route selection using stated-choice data on 
hypothetical storms and validate the model against the Katrina evacuation.  Their model 
does not include travel time but rather focuses on distance, road type, accessibility, and 
service availabilities (gas stations and hotels). Alternatively, Pel et al. (2009, 2010, and 
2011) propose a more generic hybrid route choice model where travelers select their 
routes before departure but can deviate from their pre-trip choice based on perceived 
traffic conditions enroute. In their model, dynamic user equilibrium can be used to 
generate the pre-trip route choices. Fu et al. (2105) extended the work of Pel et al. 
(2009, 2010, and 2011) using fuzzy logic to incorporate the impacts of uncertainty in 
perceptions of route attributes. 

The remainder of this literature review focuses on stochastic programming and 
progressive hedging as a viable solution strategy. 

Birge and Louveaux (2011) provide a detailed introduction to MSP. As a special case, 
two-stage stochastic programming (TSP) assumes all decisions are made in the first 
stage before any uncertainty is realized. Complexity explodes in the number of stages 
when this single-shot assumption is relaxed. Some examples of TSP applied to disaster 
management are  An et al. (2015), Apivatanagul et al. (2011), Li et al. (2011), Li et al. 
(2012), and Prentiss (2014). Faturechi and Miller-Hooks (2014) develops a three stage 
stochastic programming formulation that includes mitigation, preparedness and 
response stages, where evacuation, corresponding to preparedness, is treated as a 
single stage. To the best of our knowledge, multistage formulation has never been 
attempted in the modeling of hurricane evacuation. Under a MSP framework, we use 
sequences of binary integers to represent the sequential evacuation order decisions in 
the evacuation demand models integrated with a dynamic traffic assignment (DTA) 
model. This gives rise to a multistage stochastic integer program (MSIP). 

The progressive hedging (PH) framework developed in Rockafellar and Wets (1991) is 
adapted to construct our solution procedure to MSIP. The PH framework was originally 
devised for problems with continuous variables such as, Mulvey and Vladimirou, (1991a, 
1991b, 1989), but has been extended to problems with integer variables in numerous 
cases such as Haugen et al. (2001), Lokketangen (1996) and Watson and Woodruff 
(2010). The key feature of PH that accommodates this flexibility is decomposition by 
scenario, where the solution procedure for the scenario sub-problem can be tailored to 
characteristics of the specific problem. Given some sub-problem procedure, the PH 
procedure has been shown to produce at least a local optimal solution as long as it 
does converge (Rockafellar and Wets, 1991), even if the problem is nonconvex, as is 
the case with the model developed in this paper.  

 

3.0 Model Formulation 

The structure of the evacuation planning problem is shown in Figure 1. The upper-level 
multistage stochastic program optimizes the timing of the issuance of evacuation orders 
and the locations of those orders across an ensemble of hurricane scenarios.  The 
results of that model produce a contingent evacuation policy. The lower-level model 
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evaluates the costs and risks of such a policy through (1) an evacuee behavioral model 
that forecasts dynamic origin-destination (OD) tables for each scenario given the 
evacuation order policy, assuming random utility maximization on the part of the 
residents, and (2) user equilibrium-based dynamic traffic assignment (DTA) that solves 
for the paths and travel times of each household. The solution is then modified to 
generate a new contingent evacuation policy, and the process is repeated until 
convergence or until a stopping criterion is reached (number of iterations, for example). 

 

 

 

 

Suppose the planning horizon is divided into a finite number of time periods, �=1,…,�. 

Those periods are assumed to coincide with the time periods for which the emergency 
management authorities make decisions of whether to issue evacuation orders and for 
which the uncertainty associated with the hurricane progression is resolved. The region 
of interest for potential evacuation is divided into a finite number of geographic zones, 

�=1,…,�, which also delineate the traffic analysis zones where evacuation trips 

originate for the lower-level DTA. In particular, we consider a network representation 

given by the graph �=(�,�), where � is the set of directed links and � is the set of 

nodes. The links are roadway links and the nodes are origins and destinations of 
evacuation trips and road intersections. 

In the remainder of Section 3, the representation of the underlying uncertainties is first 
presented (Section 3.1). This is followed by the definition of the decision variables in the 
upper level model (Section 3.2) and the key constraints of nonanticipativity, also in the 
upper level model (Section 3.3). Since the lower level model (DTA) is used to evaluate 

Figure 1 Schematic of the formulation of evacuation planning problem 

Multistage stochastic program (MSP) 

Evacuee 
behavioral 

model 

Dynamic traffic assignment (DTA) 

Evacuation policy 

Costs and risks of 
evacuation policy 

Dynamic OD 
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the performance of a solution policy against all four criteria to assess the objective 
function value, we give the DTA model in the context of the computations needed to 
assess the policy performance against each of the criteria (Section 3.4).   

3.1 Uncertainty representation 

The uncertainties in the evolution of a hurricane are represented by a finite number of 

scenarios s, each of which is associated with a probability of occurrence, 	
. A hurricane 

scenario s is defined as a track with along-track properties (e.g., central pressure, wind 

velocity). At each time period �, the set of all scenarios are partitioned by grouping the 

scenarios that are “observationally indistinguishable” (Rockafellar and Wets, 1991) from 

one another into disjoint sets. This yields the partition, for each time period �, 

 

 

 

��={��|
 and 
′ are indistinguishable at � 

if and only if 
∈�� and 
′∈��}. 
( 1 ) 

We assume that scenarios always become more or at least no less distinguishable from 
an earlier time period to a later time period, which reflects that we expect to gain more 
or at least no less information about a hurricane as it evolves. We further assert, by 
borrowing the argument in Rockafellar and Wets (1991), that for most purposes it would 

be reasonable to suppose that at each time period � (1) the partition �� is more or at 

least no less refined than ��−1, and (2) that each disjoint set is a union of one or more 

disjoint sets at the subsequent time period, which can be expressed as 

 

 
If ��−1∈��−1 then ∃��∈�� such that ��⊂��−1. ( 2 ) 

The latter assertion gives rise to a tree-like structure if we think of each set of 
indistinguishable scenarios as a node that branches into one or more disjoint sets in the 
subsequent time period as they become more distinguishable.   

3.2 Decision variables 

We assume the decision-maker has the ability to issue (or not) an evacuation order for 
each individual geographic zone at a collection of different time periods. The decision 
on the contingent evacuation policy, when and to where to issue evacuation orders as 
the uncertainty about hurricane scenarios resolves, is represented by a 3-dimensional 

matrix � with the components �1,…,�, where for each scenario 
=1,…,,  �
 is a 

binary 2-dimensional matrix that represents the evacuation plan under scenario 
 and is 

composed of entries 

�
,�,�=1,  &If an order is given for the first time in zone � in time period � under 

scenario 
0,  &Otherwise  

for time period �=1,…,� and zone �=1,…,�. 
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We also define the variable �
,�,� to indicate whether zone � under scenario 
 at time 

period � is under an evacuation order. More formally, �
,�,� is defined as follows: 

�
,�,�=1,  &If an order is or has been given in zone � in time period � under scenario 
0,  

&Otherwise  

for time period �=1,…,�, zone �=1,…,�, and scenario 
=1,…,. Let � denote the 3-

dimensional matrix composed of  components, each of which is the binary 2-

dimensional matrix �
 that represents the evacuation plan under scenario 
 and is 

composed of entries �
,�,�. 

Constraint ( 3 ) maintains the relationships between the variables  �
,�,� and �
,�,�. 

Notice that Constraint (3) implies that once an order is given in a zone, that order 
remains in effect for the remainder of the time periods. 

 

 
�
,�,�=�≤��
,�,�    ∀�. ( 3 ) 

3.3 Nonancticipativity constraint 

For all time periods, t, for which any two scenarios are indistinguishable (i.e., belong to 

the same set ��) the evacuation decisions, �
,�,� must be the same. Equation ( 4 ) 

imposes this restriction. 

 �
,�,�=�
′,�,�  ∀
, 
′∈��, ∀�,∀�. ( 4 ) 

3.4 Objectives 

The objective function of the upper-level multistage stochastic program (MSP) is 

 min���. ( 5 ) 

Let 	
 be the probability of hurricane scenario 
. The overall objective function �� is the 

weighted sum of the objective functions of the scenario sub-problems 

 ��=
=1	
�
�
. ( 6 ) 

The objective function �
�
 for each scenario 
 sub-problem is the weighted sum of four 

criteria 

 �
�
=�=14ℎ��
,��
 ∀
, ( 7 )  
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where ℎ� is the relative importance of criterion �. The four criteria, ���
, are: (1) total 

travel time, (2) total time away from home, (3) total travel risk, and (4) total risk of 
sheltering-at-home. We include the second term, total time away from home, to penalize 
unnecessarily long duration of displacement due to evacuation. Further, an evacuation 
period that is longer than needed to balance risk and congestion is likely to be contrary 
to social welfare. These are the same criteria considered in Apivatanagul et al. (2011). 
Their formulation is described in Sections 3.4.1 through 3.4.3. 

3.4.1 Evacuee behavior 

Given an evacuation policy, we can obtain a contingent dynamic OD matrix by utilizing 
the discrete choice models for predicting household-level decisions of the time (Fu et al., 
2006) and destination (Mesa-arango et al., 2013) of evacuation. Appendix A describes 
an implementation of the two aforementioned references with some modifications. 

Using those models, we define  ��,�,�
,� to be the evacuation travel demand (individuals) 

from origin zone � to destination � at time period � if an evacuation order is issued at 

time period � to zone � under scenario 
 where we allow � to equal zero if no order is 

issued. It is important to notice that conceptually, this input data to this model (values of 

��,�,�
,�) can be pre-computed for all possible choices for time of evacuation order for 

each scenario.  

Once a hurricane is within 24 hours of landfall, we assume no new orders will be issued 
because there will not be enough time for everyone to reach safe locations. At this point 
the evacuation focus shifts to rescue. In reality, some people will still choose to leave. 
We do represent this continued evacuation but assume that they do not leave at this 
point under an evacuation order.  Notice that since we know who is evacuating, we can 
also compute the number of people that stay home in each time period based on if and 
when an order is issued. 

 

3.4.2 Dynamic traffic assignment 

We adopt the formulation given in Li et al. (2013) for the lower level DTA, which is 

largely the same as given in Janson (1991). Let ��,�,�
 be the number of trips from 

origin � to destination � at time period � under scenario 
 obtained from input data 

��,�,�
,� and evacuation plan �
. The paths and travel times of evacuees are obtained 

by employing the solution procedure also in Li et al. (2013) for the lower-level DTA, 

given the dynamic OD table ��,�,�
. Generally, the time periods in the upper-level 

model are substantially longer than in the lower-level model. Hence, we uniformly 
assign the entries in the origin-destination table to the more refined time periods for 
using the DTA algorithm. In practice, the time periods in the upper-level model t, when 
the evacuation order decisions are made, are on the order of several hours whereas the 
time periods in the DTA algorithm, k, are on the order of a few minutes. 

Let � denote the lower-level time period, where �=1,…,�, ��,�,�
 is the number of trips 

from origin � to destination � assigned to time period � under scenario s, and ��,�,�
 is 
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the travel time of the trip that leaves from origin � for destination � at time period � under 

scenario 
. The criterion �1∙, total travel time, is then defined as 

 �
,1�
=�=1��=1��=1���,�,�
��,�,�
 ∀
. ( 8 ) 

And criterion �2∙, the total time away from home, is defined as 

 �
,2�
=�=1��=1��=1��−���,�,�
 ∀
. ( 9 )  

 

3.4.3 Risk evaluation 

The risk exposure of evacuees and people sheltering-at-home is evaluated using the 
definition of risk and the risk functions in Apivatanagul et al. (2011). Specifically, we 
define risk to be the probability that a person is in danger, where being in danger means 
the possibility of being killed, injured, or having an experience that is negative or 

traumatic enough that the person should have evacuated. Let ��,�,�
 denote the risk of 

the trip that leaves from origin � for destination � at the lower-level time period � under 

scenario 
 and ��
 the risk of sheltering at home at zone � under scenario 
. The 

criterion �3∙, total travel risk, is defined as 

 �
,3�
=�=1��=1��=1���,�,�
��,�,�
 ∀
, ( 10 )  

Finally, the criterion �4∙, the total risk of sheltering at home, is defined as 

 �
,4�
=�=1���
��−�=1��=1���,�,�
 ∀
. ( 11 )  

where �� is the population of zone �. 

 

4.0 Solution procedure 

The problem given by ( 3 )-( 11 ) (upper level MSP) is solved by a heuristic procedure 
that leverages the concept of progressive hedging (PH) (Rockafellar and Wets, 1991), 
which is in turn based on Lagrangian relaxation through decomposition by scenario and 

solution policy aggregation. Let � denote a penalty parameter, where �>0. The 

augmented Lagrangian form of our optimization problem ( 5 ) is defined as 
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 min�1,…,� 
=1	
�
�
+�=1��=1� 
,�,��
,�,�+12��
,�,�−�
,�,�2, ( 12 ) 

where �
,�,� denotes the entries of the aggregated solution policy defined as 

 �
,�,�=
∈��	
�
,�,�
∈��	
        ∀�,�, ∀
∈��,∀��∈��, and ∀��, ( 13 )  

and  
,�,� is the multiplier such that 

 
∈��	
 
,�,�
∈��	
=0        ∀�,�, ∀
∈��,∀��∈��, and ∀��. ( 14 )  

Note that �
,�,� satisfies the non-anticipativity constraint ( 4 ) while  
,�,� satisfies the 

complementarity condition  
,�,��
,�,�=0 ∀
,�,�.  In each iteration of the PH algorithm, 

problem ( 12 ) decomposes into the following sub-problem for each scenario 
: 

 min�
 �
�
+�=1��=1� 
,�,��
,�,�+12��=1��=1��
,�,�−�
,�,�2. ( 15 )  

Problem ( 15 ) is solved separately for each scenario 
 by a search procedure through 

decomposition across zone � and then enumeration across time period � for each zone. 

Let �
� denote the evacuation plan solution for scenario 
 at iteration � of PH, where 

�=0,1,…. Let �
,�,�� denote the entries of �
� for zone � at time period �, and  
,�,�� 

the Lagrangian multiplier. The solution procedure is described below in two parts as 
Master Procedure and Subproblem Procedure.  

It is important to notice that both the Master procedure and the Subproblem Procedure 
are focused on the MSP model (upper level model). However, the DTA model (lower 
level model), as explained in Section 3.4.1 through 3.4.3, is used to compute the criteria 
values for a given solution to each scenario (scenario sub-problem). These criteria 
values are then used to update the given scenario solution in the Subproblem 
Procedure. At each iteration in solving the upper level MSP, the Master Procedure 
aggregates scenario solutions and updates the multipliers after solving all scenario 
subproblems; the Subproblem Procedure then takes the aggregated solution policy and 
the multipliers from the Master Procedure and separately updates the solution for each 
scenario sub-problem. Underlying the MSP solution procedure is the process of 
progressive hedging, which iteratively produces scenario solutions that comply more 
and more with the nonanticipativity constraint while approaching (local) optimality. 
Interested readers are referred to Rockafellar and Wets (1991) for an elaborate analysis 
of Progressive Hedging. A numerical implementation of our solution procedure is 
presented in the next section. 
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Master Procedure: Progressive hedging algorithm 

Step 1. Initialize: �=0,  
,�,�0=0, and �
,�,�0=0, ∀
,�,�. 

Step 2. Increment iteration number: �=�+1. 

Step 3. Calculate the aggregated solution policy from �
,�,��−1 by 

�
,�,��−1=
∈��	
�
,�,��−1
∈��	
  ∀�,�, ∀
∈��,∀��∈��, and ∀��, 

and update Lagrangian multipliers from  
,�,��−1 to  
,�,�� by 

 
,�,��= 
,�,��−1+��
,�,��−1−�
,�,��−1  ∀ 
,�,�. 

Step 4. Obtain the new solution �
� by solving the following sub-problem for each 

scenario 
 using Subproblem Procedure: 

�
�=argmin�
�
�
+�=1��=1� 
,�,���
,�,�+12��=1��=1��
,�,�−�
,�,��−12. 

 Step 5. Go to Step 2 unless one of following termination criteria is met: 

a. �=!, where ! is the predetermined maximum number of iterations. 

b. 
=1	
�=1��=1��
,�,��−�
,�,��−12<", where " is a predetermined error 

threshold. 

c. �=1�#��<$, where #�� is defined as 

#��=1,  &If ∃
,� such that �
,�,��≠�
,�,��0,  &Otherwise. 

Then  �=1�#�� is the total number of zones which are assigned evacuation policy 

that violates the non-anticipativity constraint ( 4 ), and $ is a predetermined integer 

threshold. 

Subproblem Procedure: Search procedure for scenario sub-problem 

At iteration � for scenario 
 in Step 4 of Master Procedure: 

Step 1. Calculate the dynamic OD table ��,�,�
,�−1 for scenario 
 given the evacuation 

plan �
�−1using evacuee behavioral models. 

Step 2. Solve the lower-level DTA problem given by � and ��,�,�
,�−1 and obtain 

%&,�
,�−1, the travel time of link & in the lower-level time period �. 

Step 3. Solve the static shortest path problem given by � and %&,�
,�−1 for each 

�=1,…,� and for each OD pair to obtain the path travel time '�,�,�
,�−1 and the risk of 

the path (�,�,�
,�−1. 
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Step 4. Let ��,�,�
,� denote the number of trips assigned to the lower-level time period 

� if an evacuation order is given at time period � to zone � under scenario 
, where we 

allow � to equal �+1 if no order is issued.  

a. For each �=1,…,�+1, the contribution to the objective function of the scenario 

sub-problem from each zone � is calculated as 

�
,���
,�=�=1��=1�ℎ1'�,�,�
,���,�,�
,�+ℎ2��,�,�
,���,�,�
,�+ℎ3�−���,�,�
,�+ℎ4��

��−�=1��=1���,�,�
,�, 

and the contribution to the augmented Lagrangian is then calculated as  

)
,���
,�=�
,���
,�+�=1� 
,�,���
,�,�+12��=1��
,�,�−�
,�,��−12, 

where �
,� denotes the evacuation order representation for zone � if an 

evacuation order is given at time period � such that �
,�=�
,1,�,…,�
,�,� and 

�=�+1−�=1��
,�,�. 

b. Solve min�
,�)
,���
,� by enumerating over time period �=1,…,�+1 and assign 

the solution vector as the new evacuation order solution for zone �=1,…,�, as 

follows: 

�
,��=argmin�
,�)
,���
,� ∀�, 

which collectively forms the new evacuation plan solution for scenario 
 as 

�
�=�
,1�,…, �
,��. 

Step 5. Go to Step 5 of Master Procedure after obtaining �
� for all 
=1,…,. 
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5.0 Case study 

We demonstrate the MSP model formulation and solution procedure on a case study of 
eastern North Carolina (Figure 2). There are about 470 zones in the study area 
(extending to Raleigh/Durham, NC), encompassing about 3 million residents.  Census 
data from the year 2000 were used to populate the discrete choice models that are used 
to estimate who will evacuate, to where, and when. 

Figure 2 illustrates the highway network, shelter locations, and exits from the study area. 
It has about 3,600 nodes and about 10,000 directed links. Evacuees either make use of 
one of the 100 Red Cross shelters located in the study area or simply evacuate the 
region via one of the exits at the boundary. While not illustrated, all 100 shelters are 
directly connected to a different dummy destination which serves as the ultimate 
destination for those evacuating to a Red Cross shelter; the trips evacuating to exits are 
assumed to be evenly distributed among the six. This last assumption is made for 
convenience and likely produces destinations that are more geographically 
concentrated than would be observed in practice.  In contrast, Cheng et al. (2011), 
using survey data from Hurricane Floyd (1999) collected in South Carolina, estimates 
time-dependent OD tables for which there are substantially more destinations that are 
not shelters, and which are consistent with the empirical evidence of trip length 

Figure 2 Zones, shelter Locations, highway network and exits 

Atlanti

c 

Ocean

North 

Pamlico Sound 
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distributions.  Similar data could be obtained for this study area for storms with hazard 
characteristics comparable to those storm scenarios used in this case study, and then 
parallel dynamic origin-destination tables could be estimated.  

The planning horizon spans 156 hours (6.5 days). The storm watch begins at Midnight 
on Day 0-1 with an anticipated landfall of tropical force winds or dissipation of the storm 
at Noon on Day 7. Decision makers can issue evacuation orders during the first five and 
a half days. No orders can be issued during the last 24 hours. This 156-hour planning 
horizon is divided into 26 six-hour time periods. At the beginning of each time period, 
the decision-makers obtain additional information about the hurricane and can issue 
additional evacuation orders. To more accurately represent traffic dynamics, the lower-
level DTA uses time increments of 15 minutes and the modeled time horizon extends to 
the network clearance time. The link travel time is estimated by the Bureau of Public 

Roads (BPR) formula %&�=%&01+*+&�Χ&' with parameter *=0.15 and '=4. 

 
To represent the underlying uncertainty, an ensemble of 22 hypothetical hurricane 

scenarios, illustrated in Figure 3, was generated for Hurricane Isabel starting at 12 Sep 

2003 at 00UTC using the Weather and Research Forecasting model (WRF) 

(Skamarock et al., 2005).  This WRF ensemble was constructed by using 11 different 

members from the Global Ensemble System Reforecast (Hamill et al. 2013), and then 

two sets were run using different model physical schemes associated with the cloud 

processes and boundary layer. Each scenario is assumed to have an equal probability 

of occurrence, 	=1/22. The scenarios are grouped into disjoint sets at each time period 

using the clustering algorithm given in Yang et al.( 2016). The attributes used for the 

clustering are perpendicular and parallel distance between the storms at each decision 

point (beginning of each time period), intensity, and maximum wind speed and flood 

depths at each geographic location over the time horizon. This provides the scenario 

tree that characterizes the progression of the storm, and therefore, the resolution of 

hurricane uncertainty (Figure 4). 
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Figure 3 Tracks of the ensemble of 22 scenarios 

Figure 4 Scenario tree 
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For each hurricane scenario, gust wind speed and flood depth in each zone over the 
DTA time horizon are computed from the output of WRF using the hydrological model 
Coupled Routing and Excess Storage (CREST) (Wang et al., 2011) in combination with 
the storm surge, tidal, and wind-wave model ADvanced CIRCulation (ADCIRC) 
( Westerink et al., 2008; Dietrich et al., 2011). The functions that map the wind and flood 
hazard to risk (Figure 5) were taken from Apivatanagul et al. (2011). Zones where the 
risk of sheltering at home is zero over the entire planning horizon across all scenarios 
are not considered for potential evacuation orders. Hence the population for which an 
order is considered is about 700,000 people in 175 zones in the study region. 

 

5.1 Computation 

The MSP model and solution procedure is implemented in Java SE 7 and run on a 
Linux cluster made up of computing nodes built with 10-core 2.45GHz Intel E5-2670 v2 
processors and with 64 GB RAM per node. Using one core for a single scenario, the 
sub-problem procedure, which is the most computationally expensive step, requires 
around 100 seconds per iteration. Specifically, Step 2 of the Subproblem Procedure (i.e., 
DTA over 641 lower-level time periods) takes about 60 seconds and Step 4 (i.e., 
enumeration across 26 time periods for each zone) takes about 40 seconds.  

For this analysis, the weights of objectives ℎ1, ℎ2,ℎ3, ℎ4 and the penalty parameter � 

were chosen such that in Step 4 of the Subproblem Procedure, each of the weighted 
criteria values and the penalty terms are about the same order of magnitude. Hence, 

the values are set to ℎ1=0.001 traveler·hour−1,ℎ2=4×10−5 traveler·hour−1 , 

ℎ3=0.02 person in danger−1,  ℎ4=0.03 person in danger−1 and �=0.5. Of course 

the weights could be modified to reflect different assessments of the relative importance 
of the criteria, which will lead to differences in the model recommendations.  

(a) (b) 

Figure 5 Risk functions for (a) flood depth and (b) wind speed 
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The solution procedure exhibits fast convergence. In Figure 6, the following two 
quantities—Distance (16) and Non-anticipativity violation count (17)—are plotted as 

measures of convergence versus the number of iterations �: 


=1	
�=1��=1��
,�,��−�
,�,��−12    (16) 

and 

�=1�#��,      (17) 

where 

#��=1,  &If ∃
,� such that �
,�,��≠�
,�,��0,  &Otherwise. 

The distance measure (16), is the expected Euclidean distance between a solution and 
its aggregation; the count of non-anticipativity violations (17) is the total number of 
zones which are assigned evacuation solution that violates the non-anticipativity 
constraint. 

Due to the heuristic nature of the solution procedure, full convergence to 

nonanticipativity, i.e.  �=1�#��=0 or 
=1	
�=1��=1��
,�,��−�
,�,��−12=0, is not 

guaranteed, though both convergence measures decrease by more than 95% within 20 

iterations (~33 minutes). If they do not reach zero, the aggregated solution �
,�,�� ∀
,�,� 

can be rounded to the nearest feasible solution that also satisfies nonanticipativity 

constraint. Note that this is only necessary for the few remaining zones where #��=1.  

 

INSERT FIGURE 6 

 

 

5.2 Solution policy 

The solution to the MSP problem forms a contingency policy (Figure 7) indicating to 
whom and when to give evacuation orders as the hurricane evolves (Figure 3 and 
Figure 4). The behavior of the evacuees under such an evacuation order policy, 
modeled by the discrete choice models, is also illustrated in Figure 7 and in the 
departure curves in Figure 8.  Notice that Figure 7 gives the number of zones and 
people under an order in each time period based on the remaining uncertainties in the 
hurricane. For example, by Noon on Day 5, based on current information which narrows 
the hurricane down to either hurricane Scenario 10, or 17, twelve evacuation orders 
have been issued to a total of 103,000 people and about 217,000 people have chosen 
to evacuate. Some people who have left are not currently under an order.  Notice also 
that no orders are issued after 6 pm at night because the discrete choice model reflects 
the behavior of individuals who strongly prefer not to leave at night. Finally, notice that 
individuals continue to evacuate after 12 pm on Day 6 even though the storm is within 
24 hours of landfall. As mentioned previously, these decisions have been made under 

Figure 6 Convergence performance in terms of (a) distance measure and (b) 
nonanticipativity violation count 
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no order because we assume all orders are automatically rescinded when the storm is 
within 24 hours of landfall. 

It is also useful to notice how the number of evacuation orders varies across the 22 
hurricane tracks. The tracks for hurricanes 2, 3, 10, 17, 20 and 22, as illustrated Figure 
2, dissipate off the coast.  The tracks for hurricanes 4, 6, 7, 9 and 11 reach the coast but 
to the north of the state.  Hurricanes 18, 19 and 21 impact the Northern tip of the state 
most. In contrast, the tracks for hurricanes 1, 5, 8, 12, 13, 14, 15 and 16 strike large 
parts of the state.  The largest number of evacuation orders are associated with these 
last 8 hurricanes.  For example, the model suggests that for Scenario 5, which is the 
fastest moving hurricane and is a direct hit on the state, 107 zones should receive 
evacuation orders. 
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(a
)

(b
)

Figure 7 Solution 
tree to the MSP 
problem given as 
the cumulative 
number of zones 
receiving 
evacuation orders 
under each group 
of 
indistinguishable 
scenarios in each 
of  the time 
periods (a) 1 
through 11 and 
(b) 12 through 26, 
with each node 
labeled by, on the 
top,  the 
cumulative 
number of zones 
receiving orders, 
in the middle,  the 
cumulative 
number of people 
receiving orders 
(i.e. population of 
the zones given 
orders), and, at 
the bottom, the 
cumulative
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To illustrate the elements of the solution, let us focus on Scenario 1.  Suppose we do 
not know initially that the hurricane is actually as is described by Scenario 1, but during 
the course of the planning horizon, consistent with the tree illustrated in Figure 4, we 
learn that it is the case. As one of the stronger hurricanes among the ensemble, 
Scenario 1 stays a Category 2* for a substantial duration along its track, weakens to 
Category 1 only shortly before it makes landfall in the Southern shores, and brings 
floods and winds that are most hazardous in the South of the Pamlico Sound area 
(Figure 9).  

                                                
* Saffir-Simpson hurricane wind scale 

Figure 8 Evacuee departure curves over the planning horizon for Scenario 1 through 22 
in terms of, shown on the left axis, cumulative number of people evacuating and, shown 
on the right axis, cumulative percentage of people evacuating out  of the population 
residing in the zones considered for potential evacuation orders 
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Figure 9 Maps for Hurricane Scenario 1: (a) track of the hurricane center and hurricane 
category from the start of Time Period 12 or Midnight on Day 3-4, (b) maximum 3-
second gust wind speed, and (c) maximum flood depth 

Under Scenario 1, the recommended course of action follows the path that starts from 
the root of the solution tree in Figure 87 at Time Period 1, or Midnight on Day 0-1, and 
arrives at the node that represents the scenario set containing Scenario 1 at Time 
Period 22, or Noon on Day 6. Such a path of implementation, or the corresponding 
subgraph of the solution tree, is shown in Figure 10 (a) for Time Period 12 through 26, 
or Midnight on Day 3-4 through the end of the planning horizon. Over the span of two 
and a half days, a total of 70 zones and 238,000 people receive evacuation orders in 6 
out of a total of 10 six-hour time periods, in addition to the 11 zones and 78,000 people 
that are already given orders during Time Periods 1 through 12, or Days 1 through Day 
3. As shown in the sequence of maps in Figure 10 (b), among the first to receive 
evacuation orders are the zones near the location of landfall, the Southern shores, and 
the zones where the most hazardous floods and winds occur, the South of the Pamlico 
Sound. The zones under an order subsequently expand to the Southern outer banks as 
well as most of the Southern shores, and then extend further northward to include more 
of the flooded areas in the North of the sound, along with a few inland areas on the 
banks of estuaries. By the Noon on Day 6, or five and a half days into the planning 
horizon, a total of 81 zones and 316,000 people receive evacuation orders with 348,000 
choosing to evacuate. An additional 54,000 people, though not under an order, 
evacuated within the final 24 hours, which amounts to a total of 402,000 evacuees over 
the entire planning horizon or almost 60% of the population residing in the zones 
considered for evacuation orders.  

(c) (b) (a) 

Max 3s-gust Wind Speed (m/s) 
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Day 4 12 am 

Time Period 

Day 4 6 am 

Time Period 

Day 4 12 pm 

Time Period 

Day 5 6 am 

Time Period 

Day 5 12 pm 

Time Period 

Day 6 6 am 

Time Period 

Day 6 12 pm 

Time Period 

12 13 15 17 18 22 21 

Time period with new orders issued (except for Time 
P i d 12)

(a) 

(b) 

Figure 10 Implementation of the MSP solution policy following the progression of Scenario 1: 
(a) cumulative number of zones receiving orders, cumulative number of people receiving orders, and 
cumulative number of people actually evacuating in each of the Time Period 12 through 26 
(b) maps of zones given evacuation orders for Time Period 12, 13, 15, 17, 18, 21, and 22 in which new 
orders are issued, indicating, in black,  the zones where new orders are issued, in diagonal line pattern, 
where orders have been issued in a previous time period, and, in gray, where potential evacuation 
orders are considered
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The map of evacuation orders for Time Period 22 includes three arrows. These three 
arrows identify three locations where orders were not issued.  For example, the model 
does not recommend evacuation orders for a piece of the northern section of the Outer 
Banks.  For this hurricane, the input data suggests relatively less hurricane surge and 
lower wind speeds for this section as illustrated in Figure 9 (because the hurricane 
strikes in the southern part of the state). The second and third arrows point to locations 
with small populations.  The middle arrow points to the Piney Island Bombing Range (9 
people) and the lower area is the eastern portion of the Croatan National Forest (65 
people).   

For the Piney Island Bombing Range Zone (with 9 people) at the current solution for all 
other zones, no evacuation is locally optimal for the augmented Lagrangian.  However, 
is not locally optimal with respect to the four original objectives only (for all scenarios 
except scenario 3). However, the difference measured in contribution to the objective is 
very modest. The total objective for the augmented Lagrangian across all scenarios and 
zones is 79,544. For this zone, across all scenarios for the augmented Lagrangian the 
contribution is 3.5. Since this zone honors nonanticipativity, this is also the contribution 
of this zone to all four original terms in the objective. If an evacuation was ordered at the 
beginning of the planning horizon the contribution to the objective would be 2.96, a 
savings of about 0.54. The small population and therefore the modest impact on the 
four original terms is not sufficient to overcome the Lagrangian and distance terms in 
the objective associated with the inherent nonanticipitivity in the initial solution. 

For the zone that includes the Croatan National Forest (with a population of 65) 
considering scenarios 1, 12, and 15 and the original four terms in the objective, it is 
better not to issue an order (given the current solution) than to issue it in periods 18-22. 
Similarly, it is better not to issue an order than to issue it in periods 15 through 17 
considering scenarios 1, 12, 13, 14, 15 and 16. As a final point of comparison, it is 
better to not issue an order than to issue it in time periods 1 or 12. Hence, given the 
decisions made in the remainder of the zones the decision not to issue the order is 
locally optimal. 
 

5.3 Model efficacy 

Central to the goal of the MSP model for hurricane evacuation are: (1) to strike a 
balance among the competing objectives associated with the costs and risks of 
evacuation; (2) to attain a well-hedged solution that is robust under a wide range of 
scenarios; and (3) to leverage the value of the increasing amount information, or, the 
decreasing degree of uncertainty over time. We therefore assess the efficacy of the 
MSP model from these three perspectives through comparisons with: (1) the “No-Order” 
(NO) case where no evacuation orders are issued at all and (2) a two-stage stochastic 
programming model (TSP) which assumes no information is gained over time until all 
uncertainty is resolved.  

The formulation and solution procedure presented in the previous sections can be 
readily configured for the NO case and the TSP model. In particular, we solve the TSP 
using the aforementioned solution procedure but with a scenario tree for which all 
scenarios are bundled together as indistinguishable across the entire planning horizon. 
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Figure 11  illustrates the phased evacuation plan obtained from solving the TSP model. 
Note that by the end of the planning horizon, a total of 45 zones are given evacuation 
orders.  This is between the two extreme cases of 12 vs. 107 zones in Scenario 10 and 
17 vs. Scenario 5 under the MSP, respectively.  

Figure 12 presents the evacuee departure curves for the NO case and the TSP solution 
as well as for each path along the MSP solution tree. The effect of evacuation orders is 
evident from the gap between the curves for NO and TSP.  

 

 

 

 

Figure 11 Solution to the TSP model in terms of cumulative number of zones and 
people receiving orders and cumulative number of people actually evacuating in each of 
the time periods (a) 1 through 13 and (b) 14 through 26 

(a) 

(b) 
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Figure 12 Evacuee departure curves of the NO case and the TSP solution in the 
foreground, with departure curves of MSP in the background 

The percent changes in the four criteria values across all scenarios are summarized in 
Table 1. Compared with NO, the MSP solution policy reduces the risk of sheltering at 
home by 15%-36%. The total travel time and total time away from home inevitably 
increase as a result of more people evacuating, by 3%-14% and 6%-15%, respectively. 
However, it is worth noticing that the risk of traveling decreases in most scenarios under 
the MSP solution policy even though more people choose to evacuate.  This means 
more people are potentially exposed to risks en route under the NO. While this seems 
counterintuitive initially, the reason can be identified in Figure 12 that is, without the 
influence of orders, evacuees tend to leave relatively later when strong winds and heavy 
rainfalls often occur. Overall, the MSP solution policy attains significant reduction in 
risks relative to the NO case, at an only moderate cost of the increased travel time and 
longer duration of displacement. This is true across all scenarios and in turn suggests 
the robustness of the MSP solution policy. 

The changes in the objective values from TSP to MSP are smaller than the changes 
from NO, ranging from less than 0.5% to 15% in the absolute value. Nevertheless, the 
trade-off in the costs and risks associated with evacuating versus the risks of sheltering 
at home is still evident, as decreases in the former always accompany increases in the 
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latter, and vice versa. With the scenarios sorted in the ascending order of hurricane 
impact, it is immediately noticeable that, compared with TSP, the MSP solution policy 
reduces the total risks of sheltering at home for the stronger hurricanes, yet increases 
the same criterion value for the weaker ones. Such a pattern could be traced back to 
the differences in the number of evacuation orders. As illustrated in the MSP solution 
policy in Figure 7 in contrast with the TSP solution in Figure 11, more evacuation orders 
are given over time as the scenarios are narrowed down to the strong hurricanes under 
the MSP solution policy, while fewer or no orders are issued as the scenarios evolve 
toward the weak ones. In another words, the TSP solution tends to “over-evacuate” in 
the wrong places for the weaker hurricanes and “under-evacuate” in the strong 
hurricanes. This, in turn, suggests the advantage of leveraging the information gained 
over time with the contingency evacuation policy from MSP. Again, it is important to 
remember that these results are sensitive to the weights that are selected to reflect the 
relative importance of each criterion. 
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Table 1 Percent increase4 in criteria values of the MSP solution from that of the NO case and the TSP solution, with 
scenarios arranged in the order of increasing hurricane impacts3 
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6.0 Conclusions  

This paper introduces a bi-level optimization model that identifies an optimal policy for 
where and when to issue evacuation orders based on evolving hurricane conditions. 
The model identifies the optimal trade-off between risk, total travel time, and total time 
away from home. It also explicitly takes into account how residents will incorporate 
evacuation orders into their own personal decisions of if, when, and where to evacuate. 
A dynamic user equilibrium model is used to describe evacuee’s route choice behavior. 
A heuristic method based on progressive hedging was constructed to solve the problem. 
To illustrate the applicability of the model, a large scale case study was constructed in 
Eastern North Carolina using an ensemble of 22 possible futures for a specific hurricane. 
The results indicated the benefit of constructing a contingent policy instead of 
constructing a single time line of what orders to issue and when as a compromise 
across the 22 scenarios. 

This paper makes three key contributions to the literature. First, this paper develops an 
evacuation model using multi-stage stochastic programming and illustrates the value in 
doing so.  For example, when a simpler two-stage model is used, the compromise 
policy leads to over-evacuation in smaller hurricanes (often in the wrong locations) and 
under-evacuation in large hurricanes.  Finally, this paper links a “dynamic supply side” 
model with a “demand side” behavioral model for optimization of evacuation orders for 
hurricane events.  Linking the behavioral and supply side is natural to the urban 
transportation planning context but it has not reached fruition in the hurricane context 
where issues like shadow evacuations arise. The modeling framework in this paper is 
easily integrated with new behavioral models as they become available. 

Opportunities for future research exist in at least the following six areas. First, this paper 
assumed that there was only one type of order. In practice there is often at least two: 
mandatory and voluntary.  The two statistical models used to estimate the origin-
destination table (Gudishala and Wilmot (2012) and Mesa-arango et al. (2013)) did not 
distinguish between different types of orders. However, Xu et al. (2016), for example, 
does distinguish between mandatory and voluntary.  Second, this model solely focuses 
on evacuation in private vehicles. There are those without access to private vehicles. As 
Hurricane Katrina demonstrated, it would be useful to integrate other forms of 
transportation into the modeling. Third, this model focused on private residences. 
Evacuation decisions must also be made for special facilities like hospitals, nursing 
homes and prisons; hence, addressing the special needs populations is important. 
Fourth, this model assumed that the shelters were available and there was adequate 
capacity to handle all evacuees that appeared; hence integrating capacity constraints 
associated with the shelters is useful. Fifth, this model assumed dynamic user 
equilibrium as the routing behavior. Under hurricane threat, it is unlikely that people 
have perfect information as to evolving traffic conditions; hence relaxing the assumption 
of perfect travel time information is valuable and extending the basis on which they 
make those decisions from strictly travel time to other considerations is important. Sixth, 
for zones with very small populations, it is important to extend the algorithm to better 
balance the solution consistency term with the other four terms in the objective in the 
solution procedure.  
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Appendix A Discrete choice models for calculating contingent dynamic OD tables 

Assume public shelters and exits out of the study area are the only two types of 

destinations for evacuees. Under a certain hurricane scenario, let Pevac denote the 

probability of the household choosing to evacuate at time period � and Pshelter∣evac the 

conditional probability of evacuating to a shelter given that the household chooses to 

evacuate. Then the probability of a household evacuating from origin z to a shelter at 

time period � is  

Pshelter,evac=Pshelter∣evacPevac. 

The probability of the household evacuating to an exit at time period � is 

Pexit,evac=1−Pshelter∣evacPevac. 

We obtained Pevac by implementing the time-dependent sequential logit model (TDSLM) 

of (Fu and Wilmot, 2004) and then Pshelter∣evac the nested logit model (NLM) of 

(Mesa-arango et al., 2013), with the modifications described below. 

1. Modifications to TDSLM 

For the case study of Eastern North Carolina in this paper, we use the same set of 
explanatory variables and the coefficient estimates as Gudishala and Wilmot (2012). 
The constant is calibrated by trial-and-error until the output roughly matches the 
evacuation participation rate under actual evacuation orders. Both the evacuation 
participation rate and the record of the actual evacuation orders are reported by PBS&J 
(2005). 

2. Modifications to NLM 

In Mesa-arango et al. (2013) the model is estimated to predict choices among four types 
of destinations: (1) public shelters and churches, (2) hotels, (3) friends and relatives, 
and (4) other. In our case study, we merge the latter three types of destinations into one 
and define it as exits out of the study area. In addition, a subset of explanatory variables 
is used in the implementation because of the lack of supporting data for the other 
variables. The variables used are as follows: 

1. Indicator variable for evacuation order 
2. Natural logarithm of the average distance between the hurricane and the centroid 

of the ZIP code where the household is located measured at the evacuation time 
3. Indicator variable for low income 
4. Indicator variable for work during evacuation 
5. Indicator variable for white race 
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Appendix B Glossary of notation 
 

1. Formulation notation 

Decision variables 

� 

A matrix with  components, �1,…,�, where for each 
=1,…,,  �
 is a 

binary matrix with entries 

�
,�,�=1If under scenario 
, an evacuation orderis issued for the first time at 

time period � to zone �.0Otherwise. 

for �=1,…,�, and �=1,…,�. 

� 

A matrix with  components, �1,…,�, where for each 
=1,…,,  �
 is a 

binary matrix with entries 

�
,�,�=1If under scenario 
, an evacuation orderis or has been issued at time 

period � to zone �.0Otherwise. 

for �=1,…,�, and �=1,…,�. 

Sets and indices 

 Number of scenarios 


 A scenario, 
=1,…, 

� Number of evacuation zones 

� An evacuation zone, �=1,…,� 

� Number of destinations 

� A destination, �=1,…,� 

� Number of time periods of the upper-level multistage stochastic program 

� A time period of the upper-level multistage stochastic program, �=1,…, � 

�� A set of scenarios that are indistinguishable at time period � 

�� 
A partition of all scenarios into disjoint sets of scenarios that are 

indistinguishable at time period � 

� Number of time periods of the lower-level DTA 

� A time period of the lower-level DTA, �=1,…,� 

� 

An objective, �=1,…,4, including 

1. Total travel time 
2. Total travel risk 
3. Total time away from home 
4. Total risk of sheltering-at-home 

  

Parameters and intermediate variables 

	
 A weight assigned to scenario 
 that represents the relative importance of 
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among all scenarios 

ℎ� Weight of objective function �� 

��,�,�
,� 
Evacuation travel demand from origin zone � to destination � at time period � if 

an evacuation order is at time period � to zone � under scenario 
 

��,�,�
 Number of trips from origin � to destination � at time � under scenario 
 

��,�,�
 Number of trips from origin � to destination � at time period � under scenario 
 

��,�,�
 
Travel time of the trip that leaves from origin � for destination � at time period 

� under scenario 
 

Functions 

�∙ Overall objective function of the multistage stochastic program 

�
∙ Objective function of the scenario sub-problem for scenario 
 

��∙ Criteria � 

 

2. Solution procedure notation 

Parameters 

� Iteration counter of progressive hedging algorithm 

� 
Penalty parameter of the modified scenario sub-problem, or, the augmented 
Lagrangian 

 
,�,� Lagrangian multiplier for time period �, zone �, scenario 
 

Variables 

�
,�,� 

Entry of the aggregated solution policy for time period �, zone �, scenario 
, 

which is computed as the conditional expectation of the decision variable 

values over the set of indistinguishable scenarios for time period �, zone � 

#�� 

Components of a convergence measure for counting the total number of 
zones which are assigned evacuation solution that violates the 
nonanticipativity constraint, defined as 

#��=1,  &If ∃
,� such that �
,�,��≠�
,�,��0,  &Otherwise. 

�
,���
,� 
Contribution of the solution � to the objective function of the scenario sub-

problem 
 from zone � 

)
,���
,� 
Contribution of the solution � to the augmented Lagragian of the scenario 

sub-problem 
 from zone � 

 

 


