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Abstract: 
 
Ohm’s generalized law defines the concept of impedance. This law, and thus the 
definition itself, are only valid if the system fulfills the linearity condition. However, 
electrochemical systems are typically highly nonlinear. Consequently, the linearity 
condition can only be achieved in these systems if a low perturbation amplitude is 
used for performing EIS measurements. Nevertheless, the use of low amplitude 
perturbations leads to low signal-to-noise ratios, which result in high measurement 
errors. The concept of optimum amplitude arises from this tradeoff: the perturbation 
has to have an amplitude big enough in order to minimize the measurement errors 
(i.e. maximize the SNR), but at the same time, the perturbation has to have an 
amplitude small enough to avoid the generation of significant nonlinear effects that 
would distort the measured EIS spectra. In a previous work, a linearity assessment 
quantitative method based on the total harmonic distortion parameter was developed. 
In this work, the aforementioned THD method was applied for the perturbation 
amplitude selection for EIS measurements in a highly nonlinear model system: the 
cathodic electrode of an alkaline water electrolyser. The THD method successfully 
obtained the optimum amplitudes both, for a constant amplitude strategy and for a 
frequency dependent strategy. The THD method also allowed to obtain the noise 
structure and to quantify the nonlinear effects. This method is slightly superior to the 
℘𝑈 method, a method based on the harmonic analysis of the output signal that was 
developed in earlier works.       
 
Keywords: Total harmonic distortion, Electrochemical impedance spectroscopy, 
Frequency dependent perturbation amplitude, Noise structure, Amplitude 
optimization.  
  



2 
 

1. Introduction 
 
Impedance spectroscopy (IS) is a group of non-destructive analytical methods that can 
be divided in two subcategories: dielectric IS, and electrochemical IS (EIS) [1]. On the 
one hand, as its name suggests, dielectric IS involves the study of dielectric materials, 
in which electronic conduction dominates. On the other hand, EIS deals with materials 
in which ionic conductivity dominates over electronic conductivity [2]. To date, this 
technique has been applied in a wide range of applications, such as supercapacitors [3-
5], corrosion [6-11], solar cells [12-14], electrolysers [15-18], electrochemical sensors 
[19-21], batteries [22-25], and fuel cells [26-29], amongst others. Today, it is 
considered as one of the fundamental electrochemical techniques [30]. 
 
This electrochemical method is based on the application of sinusoidal signals (AC 
component) of different frequencies, superimposed to a constant signal (DC 
component); and the analysis of the response of the system under study. In general, 
the frequency spans over a wide range that usually extends from some MHz down to 
few mHz [31]. In the case of potentiostatic EIS, the perturbation is a voltage signal, 
while the output is a current signal; whereas, in galvanostatic EIS, the perturbation is a 
current signal and the output is a voltage signal [32]. EIS measurements can be 
performed both, in 2- or 3- electrode configuration, depending on the presence (3-
electrode configuration) or the absence (2-electrode configuration) of a constant and 
known potential electrode (i.e. reference electrode) in the system [1]. In some 
particular systems (v.g. ion-exchange membrane systems) a 4-electrode configuration 
is used [33]. 
 
This technique requires the system to behave pseudo-linearly, since the definition of 
impedance (i.e. complex Ohm’s law) is only valid for linear systems [34]. 
Electrochemical systems are intrinsically nonlinear systems since they present 
nonlinear effects, as nonlinear kinetics (Butler-Volmer’s kinetics) and saturation [35, 
36]. Consequently, pseudo-linear behavior can only be achieved in electrochemical 
systems if a low perturbation amplitude is applied (i.e. small signal approximation) 
[37]. However, the use of small perturbation amplitudes leads to small signal-to-noise 
ratios (SNR) [38], which has a negative impact on the quality of the measured spectra. 
So, even if theoretically an infinitely small perturbation amplitude (→ 0) is required for 
the electrochemical system to behave pseudo-linearly [39]; in practice, the amplitude 
of the AC signal has to be chosen in order to be small enough to guarantee the pseudo-
linear behavior of the system, but large enough to be able to measure the response of 
the system [1]. In this context, the concept of optimum perturbation amplitude arises: 
the optimum amplitude corresponds with the amplitude that maximizes the SNR 
without violating significantly the linearity condition [40]. At the end of the day, the 
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optimum perturbation amplitude is defined by the trade-off between the 
maximization of the SNR, and the fulfilment of the linearity behavior condition.   
 
Since the selection of the perturbation amplitude is critical for the quality of the 
measured EIS spectra, it is a fundamental part of the experimental design of any 
experiment that involves EIS [41]. The optimum perturbation amplitude depends 
strongly on the studied electrochemical system [30], and can even vary from one 
operation point to another for a given system [40]. However, for potentiostatic EIS, 
there is a well-stablished criterion according to which the applied perturbation 
amplitude should be lower than the thermal voltage (𝑉()*+,-) [32], given by: 
 
 𝑉()*+,- =

𝑘 ∙ 𝑇
𝑒  (1) 

 
Where 𝑘 ≈ 1.38 × 109:;	𝐽 ∙ 𝐾9?  denotes the Boltzmann constant; 𝑒 ≈ 1.60 ×
109?A	𝐶 represents the elementary charge; and 𝑇 is the temperature, expressed in	𝐾. 
At room temperature (298	𝐾), the thermal voltage is around 25 mV. This result leads 
to the generally accepted guideline of using voltage perturbations of a few tenths of 
mVs for performing potentiostatic EIS measurements. Unfortunately, this guideline is 
hardly transposable to galvanostatic EIS. 
 
In their book [30], Orazem and Tribollet, present a method that allows to estimate 
theoretically the maximum perturbation amplitude that guarantees the fulfilment of 
the linearity condition. The main limitation of this method is that it requires a fair 
amount of knowledge of the studied system, such as a model of the system and its 
parameters. However, in general, these data are not available when studying a new 
system; and consequently, the method cannot be used for the amplitude selection in 
the experimental design phase. 
 
A common practice for amplitude selection is to repeat the EIS measurement for 
different perturbation amplitudes, and select the maximum amplitude that does not 
distort significantly the obtained spectra [1]. This strategy was used for example by 
Gode’s team [42], by Yuan and co-workers [43], and by Fernández-Pulido and co-
workers [44]. However, this selection methodology presents several important 
drawbacks. First, the EIS spectra may change due to other causes than the 
perturbation amplitude (v.g. time drift); and therefore, when using this method, a 
suboptimal amplitude may be selected because a variation in the spectra was 
observed, but this variation was not due to the effect of AC amplitude. Second, the 
term “distort significantly” is a fairly fuzzy concept. The criteria to identify a significant 
distortion in EIS spectra are quite indeterminate, and the identification generally 
depends strongly on the subjectivity of the analyst. Finally, this selection method can 
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only be used for the traditional strategy of using a constant perturbation amplitude for 
all the frequencies considered in the frequency sweep; but it is not suitable for a 
variable amplitude strategy, in which a different amplitude is applied at each 
frequency. In order to overcome these limitations, it is advisable to use a systematic 
and subjectivity-free method for selecting the perturbation amplitude.  
 
Since the optimum amplitude is determined by the linearity of the system, linearity 
assessment methods are very good candidates for the selection of the perturbation 
amplitude. A large number of such methods can be found in bibliography [45]. They 
can be grouped in 3 main categories: Experimental linearity assessment methods, 
linearity assessment methods based on Kramers-Kronig Transforms (KKT), and linearity 
assessment methods based on Harmonic Analysis (HA) [31].  
 
First, the experimental linearity assessment methods group encompasses AC plots, 
resolution plots and Lissajous plots. All these plots allow assessing linearity in real time 
during EIS measurements, by monitoring directly the perturbation and output signals 
in the time domain [30]. A great number of today’s commercial softwares for EIS 
measurements display these plots during data acquisition. They present two major 
limitations. On the one hand, these methods are qualitative methods that can detect 
nonlinearities, but that cannot quantify them. On the other hand, unlike severe 
nonlinearities, which are easily identified in these plots; low and moderate ones are 
not so clear, and their identification is sometimes ambiguous [40]. For these reasons, 
the use of experimental linearity assessment methods should be reserved for auxiliary 
experimental validation of EIS measurements, and they should not be used for 
rigorous selection of EIS perturbation amplitudes. 
 
Second, as their name suggests, the KKT based linearity assessment methods are 
linearity assessment methods based on the integral Kramers-Kronig relations which 
have been proven to be very powerful validation tools for EIS spectra [46]. A thorough 
review of the KKT methods available in literature for EIS spectra validation was 
presented by Agarwal and Orazem [47]. Voigt method developed by Boukamp and co-
workers [48, 49], and the measurement model method developed by Orazem’s group 
[47, 50-58] are the main examples of validation methods based on KKT. It has been 
proven that KKT are very highly insensitive to linearity violation [59-61]. This makes 
KKT based linearity assessment methods unsuitable for the selection of perturbation 
amplitudes. 
 
Finally, the HA linearity assessment methods are based on the analysis of the system’s 
output in the frequency domain. These methods take advantage of the well-known 
property of nonlinear systems according to which the response of a nonlinear system 
to a mono-frequency sinusoidal perturbation is a superposition of different sine waves 
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of different frequencies (i.e. fundamental component and non-fundamental 
harmonics) [62]. The generation of non-fundamental harmonics due to nonlinearity 
has been widely demonstrated in literature. Diard’s team work [63-70], Darowicki’s 
team work [71-74], and Van Gheem’s team work [75, 76] are some of the 
aforementioned studies.  The HA methods assess linearity by quantifying the non-
fundamental harmonic content in the output signal. Several examples of HA linearity 
assessment methods are available in bibliography, such as the method presented by 
Pintelon’s team [77, 78], Popkirov and Schindler’s method [79, 80], the total distortion 
based method [81], and the method developed in previous works [39, 40]. The HA 
methods have two great strong points. On the one hand, they are quantitative 
methods that allow quantifying (i.e. in an objective manner) the level of nonlinearity. 
On the other hand, they are highly sensitive to nonlinearities: in fact it has been shown 
that they are more sensitive to nonlinearities than the EIS spectra themselves [18, 39]. 
These advantages make them very good candidates for being used, in the EIS context, 
for the amplitude selection. 
 
This work’s goal is to present a methodology for EIS perturbation amplitude selection, 
and illustrate it by applying it to a highly nonlinear electrochemical system, the 
cathodic electrode of an alkaline hydrogen evolution cell. The presented methodology 
is based on the total harmonic distortion based method described in a previous work 
[81]. The results obtained in this work using the total harmonic distortion based 
method, will be compared with the results obtained in a previous work [40] using 
another HA method. As in the aforementioned work, two strategies were considered 
in the present work: the conventional constant amplitude strategy, and the frequency 
dependent amplitude strategy. 
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2. Total harmonic distortion method 
 
The total harmonic distortion method was presented in detail in a previous work [81]. 
Its basis is the use of a quantitative indicator (i.e. Total Harmonic Distortion, THD) of 
the non-fundamental harmonic content in the output signal. The THD is defined as 
[82]: 
 
 

𝒯ℋ𝒟𝑈 =
1
H𝑈IH

?

∙ JKH𝑈IHL
:

MN

LO:

 (2) 

 
Where H𝑈IH denotes the amplitude of the Fourier transform of the voltage signal (i.e. 
output signal in the frequency domain). Subscript 1 corresponds to the fundamental 
component; whereas subscripts ≥ 2 are associated to non-fundamental harmonics. In 
general, THD values are expressed as a percentage of the fundamental component. 
This parameter has been used in EIS context in several works [83-86]. 
 
Figure 1 of reference [81] outlines the total harmonic distortion method. It consists in 
three main steps. In the first one, the EIS spectrum is measured as usual, storing as 
well the raw signals in the time domain, 𝐼(𝑡) and 𝑈(𝑡), for each excited frequency. In 
the second step, the time domain signals are transformed to the frequency domain, 
𝐼S(𝜗) and 𝑈I(𝜗), using a Fast Fourier Transform (FFT) algorithm. In the third step, the 
THD is calculated using expression (2), for each excited frequency. In this way, the THD 
value (i.e. non-fundamental harmonic content) is obtained for each excited frequency 
(i.e. frequency at which the impedance was measured). On the one hand, the THD plot 
is obtained by representing 𝒯ℋ𝒟𝑈 versus the excited frequency. On the other hand, 
the critical parameter, 𝒯ℋ𝒟𝑈U, is calculated using the following expression: 
 
 𝒯ℋ𝒟𝑈U = max

Y∈[?;	⋯	;	^_`
𝒯ℋ𝒟𝑈Y (3) 

 
Where 𝑁b  stands for the number of frequencies at which the impedance was 
measured, and 𝒯ℋ𝒟𝑈Y  denotes the 𝒯ℋ𝒟𝑈  for the 𝑘 -th excited frequency. The 
excited frequency at which the non-fundamental harmonic content is maximum (i.e. 
frequency at which	𝒯ℋ𝒟𝑈Y = 𝒯ℋ𝒟𝑈U) is defined as the critical frequency, 𝑓U . 
 
In this work, the total harmonic distortion method was implemented in Labview®. The 
program takes as input the NOVA®’s output, which is a .txt file that contains the 
current and voltage signals in the time domain and in the frequency domain.  
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The aforementioned analysis was repeated for different perturbation amplitudes. As it 
was thoroughly explained in reference [81], the trend of parameter 𝒯ℋ𝒟𝑈 with the 
perturbation amplitude, Δ𝐼, allows to distinguish the linear behavior zone from the 
nonlinear behavior zone. For low amplitudes, an increase in Δ𝐼 causes a decrease 
in	𝒯ℋ𝒟𝑈. In this zone, the improvement of the SNR dominates over the nonlinear 
effects: the system behaves pseudo-linearly (i.e. linear behavior zone). On the 
contrary, for high amplitudes, an increase in Δ𝐼 causes an increase in	𝒯ℋ𝒟𝑈. In this 
zone, the nonlinear effects dominate over the improvement of the SNR: the system 
behaves clearly as a nonlinear system (i.e. nonlinear behavior zone). Moreover, 
parameter 𝒯ℋ𝒟𝑈 can be decomposed in two contributions: the first one associated 
to the noise, and the second one associated to nonlinear effects [81]. Thus, for the 𝑘-
th excited frequency: 
 
 𝒯ℋ𝒟𝑈Y(Δ𝐼) = 𝒯ℋ𝒟𝑈YefLg)(Δ𝐼) + 𝒯ℋ𝒟𝑈Yefe-Le),*(Δ𝐼) (4) 

 
Where 𝒯ℋ𝒟𝑈YefLg) stands for the noise related component of parameter 𝒯ℋ𝒟𝑈 for 
the 𝑘-th excited frequency; and 𝒯ℋ𝒟𝑈Yefe-Le),*  denotes the component of parameter 
𝒯ℋ𝒟𝑈 related to nonlinear effects, for the 𝑘-th excited frequency. The noise related 
component decreases with the perturbation amplitude according to the following 
expression [81]: 
 
 𝒯ℋ𝒟𝑈YefLg)(Δ𝐼) =

𝜆Y
Δ𝐼 

(5) 

 
Where 𝜆Y stands for the effective noise parameter for the 𝑘-th excited frequency. This 
parameter has current dimensions, and can be obtained from fitting the linear 
behavior zone of the experimental 𝒯ℋ𝒟𝑈 curve. Parameter 𝜆Y is defined as: 
 
 𝜆Y =

𝜒Y
|Z|Y

 (6) 

 
Where |Z|Y denotes the impedance modulus for the 𝑘-th excited frequency; and 𝜒Y  
stands for the total noise parameter for the 𝑘-th excited frequency. It has voltage 
dimensions, and is defined as: 
 
 

𝜒Y = JKmΔ𝑈Y,LefLg)o
:

MN

LO:

 (7) 
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In the above expression, Δ𝑈Y,LefLg)  is the 𝑖-th component of the output signal associated 
to noise, for the 𝑘-th excited frequency. Parameter 𝜒Y  quantifies the total noise level 
for the 𝑘-th frequency measurement; whereas 𝜆Y quantifies the effective noise level 
for the 𝑘-th frequency measurement. 
 
Once  𝒯ℋ𝒟𝑈YefLg) is known, using equation 4, the component of 𝒯ℋ𝒟𝑈 related to 
nonlinear effects can be obtained by subtraction:  
 
 𝒯ℋ𝒟𝑈Yefe-Le),*(Δ𝐼) = 𝒯ℋ𝒟𝑈Y(Δ𝐼) − 𝒯ℋ𝒟𝑈YefLg)(Δ𝐼) (8) 

 
The great advantage of the total harmonic distortion method, over the ℘𝑈 method 
[39, 40], is that THD contains simultaneously information on noise and nonlinearity; 
while parameter ℘𝑈 only contains information on noise in the linear behavior zone, 
and information on nonlinearity in the nonlinear behavior zone. 
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3. Amplitude selection methodology 
 
In this work, two different EIS measurement strategies were considered: On one side, 
the traditional constant amplitude strategy; and on the other side, a frequency 
dependent amplitude strategy. As explained in section 1, from a practical point of 
view, the optimum perturbation amplitude is the maximum amplitude for which 
nonlinear effects are negligible in comparison with the noise. This argument can be 
applied for the most unfavorable excited frequency, defining a single amplitude for all 
the frequencies (i.e. constant amplitude strategy); or it can be applied separately to 
each excited frequency, selecting a perturbation amplitude for each one of them (i.e. 
frequency dependent amplitude strategy). 
 
In order to fulfill this work’s aim, the galvanostatic EIS spectrum of the system was 
measured using different perturbation amplitudes. Then, the total harmonic distortion 
method described in section 2, was applied to each one of the experimental EIS 
spectra, obtaining the THD plot and the critical parameter for each perturbation 
amplitude.  
 
On the one hand, for the constant amplitude strategy, the critical parameter curve was 
used for selecting the perturbation amplitude. This curve is built by representing the 
critical parameter, 𝒯ℋ𝒟𝑈U, versus Δ𝐼. The optimum amplitude corresponds with the 
perturbation amplitude that minimizes the critical parameter (i.e. the abscissa of the 
minimum of the critical parameter curve) [40]. 
 
On the other hand, for the frequency dependent amplitude strategy, the individual 
frequency THD plots were used for selecting the perturbation amplitude for each 
excited frequency. These plots are obtained by representing parameter 𝒯ℋ𝒟𝑈 versus 
Δ𝐼, for each excited frequency. The optimum amplitude for a given excited frequency 
corresponds with the perturbation amplitude that minimizes the 𝒯ℋ𝒟𝑈 parameter 
for that excited frequency (i.e. the abscissa of the minimum of its individual frequency 
THD plot) [40]. 
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4. Experimental work 
 
A highly nonlinear electrochemical system was selected in this work in order to 
illustrate the perturbation amplitude selection methodology presented in this work: 
the cathodic electrode of an alkaline water electrolyser. The experimental setup used 
here has been thoroughly described in previous works [40, 81]. Figure 2 of reference 
[81] shows a detailed diagram. Its main element is a patented [87] 3-electrode 
electrochemical thermostatted cell. The working electrode (WE), placed horizontally in 
order to minimize the effects of the generated bubbles, was a 0.5 cm2 (geometric area) 
nickel electrode produced at very high current densities using the procedure described 
in reference [88]. The counter-electrode (CE) was a nickel foam with very high surface 
area (Incofoam® 0.17 cm thick and 50 pores per linear inch). A commercial Ag/AgCl 
(3M KCl) electrode was used as reference electrode (RE), and an oxygen-free 30 wt.% 
KOH solution was used as electrolyte. Before each experiment, a 30 minutes 
potentiostatic pre-treatment was done, at -1.6V vs. Ag/AgCl, in order to ensure the 
reproducibility of the results [39]. 
 
As described in section 3, in this study, the EIS spectrum of the system was measured 
using different perturbation amplitudes. In this case, 12 peak to peak amplitudes were 
considered: 0.1 mA; 0.5 mA; 1 mA; 2 mA; …; 10 mA. All the experiments were done in 
galvanostatic mode, at the same operation point: an operation temperature of 30℃, 
and a DC current of -10 mA. The maximum amplitude was selected in order to 
guarantee that, even for the maximum amplitude, the WE has a cathodic behavior 
during the whole measurement.  
 
An Autolab® 302N potentiostat/galvanostat with FRA module, controlled using 
NOVA® software, was used here to measure the EIS spectra from 10 kHz to 5 mHz, 
with 10 frequencies per decade. The same measurement parameters were used in all 
the EIS measurements done in this work. They were selected using the methodology 
presented in a previous work [89], and are listed in table 1 of reference [81]. 
 
Reproducibility was assessed by measuring each EIS spectrum in triplicate, using a 
random order strategy. This strategy consists in performing the different 
measurements in a random order, instead of using the traditional sequential order. 
Using this random order strategy, the factors amplitude and time were orthogonalized, 
allowing to distinguish if the observed trends are due to the effect of the amplitude, or 
to a time drift [40]. 
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5. Experimental results 
 

5.1. THD curves 
 
Figure 1, reproduced from a previous work [81], presents the THD curves of the output 
signal, for the different perturbation amplitudes. The first observation that can be 
extracted from this figure, is that the overall shape of the THD curve changes 
completely from low perturbation amplitudes (Figure 1.a) to high perturbation 
amplitudes (Figure 1.b). On the one side, in the low amplitude case, the THD curves 
present very low values for high and low frequencies, and significantly higher values 
for the midrange frequencies (1 − 100	𝐻𝑧). On the other side, in the high amplitude 
case, the THD curves display 3 well defined zones: for low frequencies, 𝒯ℋ𝒟𝑈 is 
approximately constant with frequency; for intermediate frequencies, the THD curves 
are monotonically decreasing curves with an inflexion point; and finally, for high 
frequencies, 𝒯ℋ𝒟𝑈 is a very low constant, except for some peaks at characteristic 
frequencies (50 and 25	𝐻𝑧).   
 
As it was explained in a previous work [81], the evolution of 𝒯ℋ𝒟𝑈  with the 
perturbation amplitude is an indicator of whether the system behaves pseudo-linearly 
or not. As it can be observed in figure 1.a, for low perturbation amplitudes, an increase 
in Δ𝐼  causes a decrease of the 𝒯ℋ𝒟𝑈  value for all the excited frequencies. This 
observation is an evidence that for low perturbation amplitudes, the nonlinear effects 
are negligible compared to the improvement of the SNR. In other words, in the low 
perturbation amplitude range, the system behaves pseudo-linearly for every excited 
frequency. On the contrary, as it can be seen in figure 1.b, for high perturbation 
amplitudes, an increase in Δ𝐼 causes an increase of the 𝒯ℋ𝒟𝑈 value. This observation 
shows that for high perturbation amplitudes, the nonlinear effects are no longer 
negligible compared to the improvement of the SNR: the system does not behave 
pseudo-linearly anymore. However, a closer look to figure 1.b, shows that for high 
excited frequencies the trend of 𝒯ℋ𝒟𝑈 with Δ𝐼 is the same as the low-amplitude-
trend. Thus, two different trends can be identified for high perturbation amplitudes: 
for low excited frequencies, an increase in  Δ𝐼 causes a shift of 𝒯ℋ𝒟𝑈  to higher 
values; whereas, for high frequencies, an increase in Δ𝐼 causes a shift of 𝒯ℋ𝒟𝑈 to 
lower values: for high perturbation amplitudes, the system behaves pseudo-linearly for 
high excited frequencies, and behaves nonlinearly for low excited frequencies. This 
observation indicates that the generation of nonlinear effects is frequency dependent: 
a given system, can behave pseudo-linearly in a frequency range and nonlinearly in 
another frequency range, for a given perturbation amplitude. This fact justifies the 
consideration of a frequency dependent amplitude strategy: in order to maximize the 
improvement of the SNR, large amplitudes may be applied in the frequency range in 
which the system behaves pseudo-linearly even for very high amplitudes; and low 
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amplitudes must be applied in the frequency range in which the system presents 
significant nonlinear effects. 
 
As presented in section 2, the THD curves contain information on both, noise and 
nonlinear effects. In the following sections, this information is going to be extracted 
from the THD curves presented in this section (figure 1). 

 
5.2. Noise structure 

 
Noise plays a very important role in perturbation amplitude selection, since it is one of 
the two involved relevant factors (i.e. noise and nonlinear effects). For this reason, 
noise characterization and quantification is a good start for amplitude selection. As 
discussed in section 2, two of the outputs of the total harmonic distortion method are 
noise quantifiers: the effective noise parameter, 𝜆; and the total noise parameter, 𝜒. 
The later quantifies the total noise level at a given excited frequency. The effective 
effects of this total noise level on the measurement are modulated by the impedance 
of the system at that excited frequency [81]. Parameter 𝜆 arises from this fact: it 
quantifies the noise effective effect on the measurement at a given excited frequency. 
As explained in section 2, the value of parameter 𝜆 for the 𝑘-th excited frequency can 
be obtained by fitting the pseudo-linear behavior zone of the individual frequency THD 
plot related to frequency	𝑘, to the linear behavior model given by expression (5) [81]. 
This methodology was used in this work in order to calculate the effective noise 
parameter for each frequency. The obtained results are shown in figure 2 (black dots). 
 
The first observation that can be extracted from figure 2 is that the effective noise 
parameter is clearly frequency dependent: not all frequencies present the same level 
of effective noise. Three zones can be identified on the aforementioned figure. First, in 
zone C (i.e. high frequencies), parameter 𝜆  is nearly frequency-independent and 
presents very low values. This implies that noise has very little effective effect on the 
measurements at high frequencies in this system. Second, in zone A (i.e. low 
frequencies), the effective noise parameter is slightly higher than in zone C, but it is 
still reasonably low. Moreover, in zone A, 𝜆 is frequency-dependent, since it presents a 
decreasing trend with frequency. Finally, in zone B (i.e. intermediate frequencies), 
parameter 𝜆  presents substantially higher values than in the other two zones. 
Furthermore, the curve presents peaks at certain characteristic frequencies, which 
correspond to the frequency of the electric grid and its subharmonics (i.e.  1 𝑛⁄  times 
the fundamental frequency): 50 Hz (𝑛 = 1), 25 Hz (𝑛 = 2), 12.5 Hz (𝑛 = 4), 5 Hz (𝑛 =
10) and 2.5 Hz (𝑛 = 20). For these frequencies, the effective noise parameter presents 
a markedly higher value, which implies that the effective noise level is significantly 
higher for these frequencies. Higher amplitudes will be needed in order to make 
nonlinear effects overcome the noise for these frequencies. These peaks are 
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associated with the electric coupling of the measurement system with the electric grid. 
Electric coupling has already been identified as a major noise source in EIS 
measurements [41]. In this system, the 𝜆 curve presents its highest peak at 25 Hz: this 
is the frequency at which the effective noise is maximum. 
 
According to equation (6), the total noise parameter can be calculated by multiplying 
frequency-by-frequency the effective noise parameter by the impedance modulus at 
that frequency. The impedance modulus graph (i.e. red triangles) is superimposed to 
the effective noise parameter graph in figure 2. Combining (i.e. multiplying point-by-
point) both curves represented in figure 2, figure 3 was obtained. It plots the total 
noise parameter at each excited frequency. This curve presents the same 3 zones that 
were identified on the effective noise parameter. On the one hand, in zone C (i.e. high 
frequencies), parameter 𝜒  is nearly frequency-independent and presents very low 
values. Thus, the total noise level is very low in zone C. Therefore, at high frequencies, 
the effective noise level is low because so is the total noise level. On the other hand, in 
zone A (i.e. low frequencies), the total noise parameter presents a clear decreasing 
trend with the excited frequency. For very low frequencies (i.e. under 10 mHz), the 
total noise levels are significant, and exceed 5 mV (i.e. more than 25% of the 
maximum 	𝜒 ). However, in this zone, the impedance modulus is maximum; and 
therefore, the effective noise level is substantially lower: the impedance modulus of 
the system, which is high in this frequency zone, dampens the high total noise levels, 
and leads to lower effective noise levels. Finally, in zone B (i.e. intermediate 
frequencies), parameter 𝜒  presents the same peak pattern that was observed for 
parameter 	𝜆 , with the difference that in 	𝜒 ’s case the height of the peaks is 
approximately constant: the total noise parameter is equal for the excited frequencies 
associated to the 𝑛 = 2, 4, 10, 20  subharmonics of the grid’s frequency. These 
frequencies present the maximum total noise level, 19.5	𝑚𝑉. The 𝜆 peaks present 
different heights since the impedance modulus differs from one peak frequency to 
another. These observations imply that the electric coupling with the grid introduces 
the same level of total noise in every frequency at which it occurs (i.e. grid 
subharmonics); and that the impedance modulus of the system modulates this total 
noise level, leading to different effective noise levels.    
 
The total noise parameter definition (i.e. expression (7)) can be rewritten by breaking 
down the sum: 
 
 

𝜒Y = JmΔ𝑈Y,+,z
efLg) o: + K mΔ𝑈Y,LefLg)o

:
MN

LO:
L{+,z

 (9) 
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Where Δ𝑈Y,+,zefLg)  denotes the amplitude of the noise-related non-fundamental 
harmonic with the highest amplitude, for the 𝑘-th excited frequency. This parameter 
can be obtained using the ℘𝑈 method [39]. The following parameter can be defined: 
 
 

ΓY = K mΔ𝑈Y,LefLg)o
:

MN

LO:
L{+,z

= 𝜒Y: − mΔ𝑈Y,+,zefLg) o: (10) 

 
Parameter ΓY clusters, for the 𝑘-th excited frequency, the information of all the noise-
related non-fundamental harmonics except the one with the highest amplitude. The 
relative comparison of parameter ΓY (i.e. all the noise components, except the most 
important one) and parameter Δ𝑈Y,+,zefLg)  (i.e. the most important noise component) is 
useful since it quantifies the relative importance of the most important noise 
component with respect to the rest of noise components. In this work, the following 
noise homogeneity coefficient was defined for the 𝑘-th excited frequency: 
 
 

𝜙Y =
mΔ𝑈Y,+,zefLg) o:

ΓY
=

mΔ𝑈Y,+,zefLg) o:

𝜒Y: − mΔ𝑈Y,+,zefLg) o:
 (11) 

 
The noise homogeneity coefficient, 𝜙 , defined in this way quantifies the relative 
weight of the most important noise component with respect to the sum of the rest of 
the noise-related-components. A large value of  𝜙Y  suggests that for the 𝑘-th excited 
frequency, the most important noise-related-component has a big weight with respect 
to the rest of the noise-related-components (i.e. most important component 
domination); whereas, a small value of 𝜙Y  suggests that for the 𝑘 -th excited 
frequency, the most important noise-related-component has a low weight with 
respect to the rest of the noise-related-components (i.e. rest of components 
domination).  
 
In this work, the value of Δ𝑈Y,+,zefLg)  for each excited frequency was obtained using the 
℘𝑈  method [39]. Then, using equation (11) with the corresponding 𝜒  values, 
parameter 𝜙Y  was calculated for each excited frequency. Figure 4 shows the obtained 
results. For most excited frequencies, the noise homogeneity coefficient has roughly 
the same value, of around 0.05. This observation implies that for most of the excited 
frequencies, the most important noise-related-component represents approximately 
the same fraction of the noise-related-components. Since 0.05 is significantly lower 
than 1, it can be concluded that for most excited frequencies there is a domination of 
the rest of noise-related components over the most important noise-related-
component. This means that a large amount of noise-related information is lost if the 
most important component is considered instead of the whole set of components. 
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Four excited frequencies present significantly higher values of the noise homogeneity 
coefficient: 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. This implies that for these 4 excited 
frequencies, the most important noise-related component represents a greater 
fraction of the noise-related components. For example, for an excited frequency of 
1000 Hz, 𝜙Y ≈ 5 : for this excited frequency, the most important noise-related-
component is far more significant than the sum of all the other components (i.e. most 
important component domination). However, this change of dominance only happens 
at two excited frequencies: 500 Hz, and 1000 Hz. These are the only 2 excited 
frequencies in this system, in which the most important component can be considered 
instead of the whole set of components without an appreciable loss of noise-related 
information. 
 
With the analysis presented in this section, the noise structure of the system has been 
fully determined. From a qualitative analysis of the noise structure, the main noise 
source can be elucidated: in this case, the main noise source is the electric coupling of 
the system with the electric grid. From a quantitative analysis of the noise structure, 
the effective noise level for each excited frequency can be obtained. From this 
information, the frequencies that are more affected by noise (i.e. require higher 
perturbation amplitudes in order to overcome it) can be identified. Moreover, the 
noise structure allows to determine for which excited frequencies, the most important 
noise-related component can be considered alone, neglecting the rest of components; 
and for which excited frequencies, all the component have to be considered in order to 
avoid an appreciable loss of noise-related information. 
 

5.3. Nonlinear effects 
 
Since the optimum perturbation amplitude is defined by the tradeoff between SNR 
improvement and nonlinear effects, the next step after characterizing the noise 
structure is the quantification of the nonlinear effects displayed at each excited 
frequency for each perturbation amplitude. As stated in section 2, the great advantage 
of the THD method is that it allows the simultaneous quantification of noise and 
nonlinear effects. Expression (8) was used here in order to quantify the nonlinear 
effects. The obtained results are shown in figure 5.  
 
On the one hand, for low perturbation amplitudes (i.e. lower than 2 mA), the nonlinear 
effects are roughly zero for all the excited frequencies. It can be deduced, that for 
these low amplitudes, the nonlinear effect generation is negligible at every excited 
frequency. On the other hand, for high perturbation amplitudes (i.e. higher or equal to 
2 mA), two clear zones can be identified on the 𝒯ℋ𝒟𝑈efe-Le),*  curves. For high 
frequencies, 𝒯ℋ𝒟𝑈efe-Le),*  is frequency independent and negligible for every 
perturbation amplitude; thus, for high frequencies, no significant nonlinear effects are 
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generated even for very high perturbation amplitudes. On the contrary, for low 
frequencies, 𝒯ℋ𝒟𝑈efe-Le),*  is clearly frequency dependent: 𝒯ℋ𝒟𝑈efe-Le),*  
increases when the excited frequency decreases. It can be deduced that, for a given 
perturbation amplitude, the highest nonlinear effects are generated for the minimum 
frequency at which the EIS spectrum was measured.  Furthermore, for a given excited 
frequency, 𝒯ℋ𝒟𝑈efe-Le),*  increases with an increase of the perturbation amplitude. 
This implies that higher nonlinear effects are generated at higher perturbation 
amplitudes.   
 
The threshold frequency concept arises from the fact that there is a difference of 
nonlinear effect generation between high and low frequencies: for frequencies above 
the threshold frequency, no significant nonlinear effects are generated, even for very 
high perturbation amplitudes. For this system, the threshold frequency is a bit above 
10 Hz. In EIS context, the concept of threshold frequency was introduced by Agarwal 
and co-workers [47]. This threshold frequency has been observed in several systems 
[60]. For systems that exhibit this threshold frequency, very high amplitudes can be 
applied at high frequencies (i.e. higher than the threshold frequency) without worrying 
about the generation of nonlinear effects. 
 

5.4. Constant amplitude strategy 
 
As presented in section 3, the selection of the perturbation amplitude for the constant 
amplitude strategy was done using the critical parameter curve, which consists in the 
representation of	𝒯ℋ𝒟𝑈U versus	Δ𝐼. The experimental critical curve obtained in this 
case is shown in figure 6. In the aforementioned figure, for each perturbation 
amplitude, the critical frequency is indicated next to the corresponding point of the 
critical curve. The critical curve displays a two trend shape, already reported in 
previous works [39, 40, 81]. In these works, a thorough discussion of the origin of the 
two trends has been presented. In short, the 2 trends arise from the change of 
domination of the phenomena that happen when the perturbation amplitude is 
increased: for low perturbation amplitudes, the SNR improvement dominates, and 
therefore the critical parameter decreases with the perturbation amplitude (i.e. linear 
behavior zone); whereas, for high perturbation amplitudes, the generation of 
nonlinear effects dominates, resulting in a critical parameter increase with the 
perturbation amplitude (i.e. nonlinear behavior zone). The point at which the trend 
reverses, marks the limit between the pseudo-linear behavior zone and the nonlinear 
behavior zone. These zones are identified on figure 6: the first one is colored with a 
green background, whereas the second one is colored with a blue background.  
 
Moreover, a critical frequency shift is observed in the transition from the linear 
behavior zone to the nonlinear behavior zone. In the first zone, the critical frequency is 
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25 Hz for every perturbation amplitude. As it was deduced from the analysis of the 
noise structure in section 5.2, 25 Hz is the excitation frequency that presents higher 
levels of effective noise in this system. And since the linear behavior zone is associated 
to SNR improvement domination, it is natural that the critical frequency in this zone 
corresponds with the frequency at which the effective noise level is maximum. In the 
second zone, the critical frequency is 5 mHz (i.e. the minimum frequency at which the 
EIS spectra were measured) for every perturbation amplitude. As it was deduced from 
the analysis of the nonlinear effects in section 5.3, 5 mHz is the excitation frequency 
that presents higher levels of nonlinear effects in this system. And since the nonlinear 
behavior zone is associated to the domination of nonlinear effect generation, it is 
natural that the critical frequency in this zone corresponds with the frequency at which 
the nonlinear effects are maximum. This critical frequency shift is an indicator of the 
domination switch from noise to nonlinear effects [40]; and therefore, it marks as well 
the frontier between the pseudo-linear and the nonlinear behavior zones. 
 
As stated in section 3, the optimum perturbation amplitude for a constant amplitude 
strategy, corresponds with the perturbation amplitude that separates the pseudo-
linear behavior zone from the nonlinear behavior zone; since this is the perturbation 
amplitude that maximizes the SNR, while maintaining the generation of nonlinear 
effects under a non-significant level. In practice, this is the same to say that the 
optimum perturbation amplitude is given by the horizontal coordinate of the minimum 
point of the critical parameter curve. Applying this argument to figure 6, the optimum 
perturbation amplitude for a constant amplitude strategy for this system was 
obtained: it belongs to the range 1 to 3 mA. Restricting the options to the perturbation 
amplitudes applied in this work, the best perturbation for EIS measurements in this 
system, using a constant amplitude strategy, is a 2 mA amplitude perturbation. 
 
The optimum perturbation for a constant amplitude strategy obtained here, using the 
THD method, is exactly the same that the one that was obtained applying the ℘𝑈 
method to this system in a previous work [40]. This arises from the fact that in the 
constant amplitude strategy, the optimum amplitude is defined by the critical 
frequencies (i.e. the critical frequency of the linear behavior zone, and the one of the 
nonlinear behavior zone). For these frequencies, the information contained in the ℘𝑈 
parameter is equivalent to the information contained in THD. Thus, for the constant 
amplitude strategy, both methods give equivalent results.  
 

5.5. Frequency dependent amplitude strategy 
 
As presented in section 3, the selection of the perturbation amplitudes for the 
frequency dependent amplitude strategy was done using the individual frequency THD 
plots, which consists in the representation of 	𝒯ℋ𝒟𝑈  versus 	Δ𝐼  for each excited 
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frequency. Figure shows the individual frequency THD plot of four excited frequencies: 
10 kHz, 25 Hz (i.e. critical frequency of the linear behavior zone), 5 Hz and 5 mHz (i.e. 
critical frequency of the nonlinear behavior zone). For 10 kHz and 25 Hz, the individual 
frequency THD plots are one-trend-plots: for these frequencies, 𝒯ℋ𝒟𝑈 decreases 
with	Δ𝐼 for all the perturbation amplitudes. This implies that these frequencies only 
exhibit a linear behavior zone, and do not present a nonlinear behavior zone. In other 
words, for these excited frequencies, the system behaves pseudo-linearly for every 
perturbation amplitude. This observation is consistent with the results presented in 
section 5.3: both, 10 kHz and 25 Hz, are above the threshold frequency of the system, 
and therefore, no significant nonlinear effects are generated at these frequencies, 
even for very high perturbation amplitudes. This implies that the maximum 
perturbation amplitude (i.e. 10 mA) can be used for these frequencies so that the SNR 
is maximized. On the contrary, for 5 Hz and 5 mHz, the individual frequency THD plots 
are two-trend-plots: for these frequencies, the individual frequency THD plots present 
the two trends that were already reported from the critical parameter curve in section 
5.4. There, the origin of the 2 trends was discussed in detail. As stated in section 3, the 
optimum amplitude for a given excited frequency can be obtained from the frontier 
between the linear behavior zone (i.e. green zone) and the nonlinear behavior zone 
(i.e. blue zone) of the individual frequency THD plot for that excited frequency: that is, 
from the minimum of the individual frequency THD plot. According to this argument, 
the optimum perturbation amplitudes for the 4 presented frequencies are: 10 mA for 
10 kHz and 25 Hz, 3 mA for 5 Hz, and 1 mA for 5 mHz.  
 
For the sake of succinctness, in this work the individual frequency THD plots of only 4 
excited frequencies were presented. However, there is one for each frequency at 
which the EIS spectra were measured. Using the method described above with each 
one of the individual frequency THD plots, the optimum amplitude for each excited 
frequency was obtained. Figure 8.a shows the obtained results. The first observation 
that can be extracted from this figure is that the optimum perturbation amplitude is 
strongly frequency dependent in this system. Three zones can be identified. On the 
one hand, in zone III (i.e. high frequencies), the maximum perturbation amplitude (i.e. 
10 mA) should be used. In this frequency zone, frequencies are above the threshold 
frequency of the system; and as explained when the optimum amplitudes for 10 kHz 
and 25 Hz were presented, for frequencies above the threshold frequency, the 
maximum amplitude should be used in order to maximize the SNR since no nonlinear 
effects are generated for these frequencies. On the other hand, in zone I (i.e. low 
frequencies), low perturbation amplitudes should be used. As it was observed in 
section 5.3, the frequencies in this zone are the frequencies that present higher 
nonlinear effects. So, even if some of these frequencies (especially the very low 
frequencies) present significant effective noise levels (see section 5.2), the high 
nonlinear effects generated at these frequencies cause the nonlinear effects to 
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overcome the noise even for low perturbation amplitudes. Therefore, the optimum 
perturbation amplitude for these frequencies is low. Finally, zone II (i.e. intermediate 
frequencies) is a transition zone between zone I, where low perturbation amplitudes 
are required; and zone III, in which high perturbation amplitudes have to be used. This 
zone corresponds to zone B identified on the noise structure in section 5.2: 
frequencies in this zone display higher effective noise levels. Moreover, for these 
frequencies, the generation of nonlinear effects increases when frequency decreases: 
for the highest frequency in zone II it is relatively low, while that for the lowest 
frequency in zone II it is relatively high. The combination of these two facts leads to the 
pattern observed in zone II of figure 8.a. Moreover, in zone II, two peaks can be 
identified: 25 Hz and 12.5 Hz.  As observed in section 5.2, these frequencies are the 
frequencies that present the highest levels of effective noise: for these excited 
frequencies, the effective noise level is so high that it masks the nonlinear effects even 
when the maximum perturbation amplitude is used. The result is that the optimum 
perturbation amplitude for these frequencies corresponds with the maximum 
amplitude (i.e. 10 mA).  
 
Additionally, the red horizontal line of figure 8.a indicates the optimum amplitude for 
the constant amplitude strategy, obtained in the previous subsection. On the one 
hand, in zone I, the constant-amplitude-strategy amplitude is slightly higher than the 
frequency-dependent-amplitude-strategy amplitudes. Thus, for the frequencies in 
zone I, the constant amplitude strategy may generate some nonlinear effects. On the 
other hand, in zone III, the constant-amplitude-strategy amplitude is significantly lower 
(i.e. 1/5) than the frequency-dependent-amplitude-strategy amplitudes. This implies 
that for the frequencies in zone III, the constant amplitude strategy leads to a non-
maximum SNR. As it is natural, the optimum constant-amplitude-strategy amplitude is 
in between of the different frequency-dependent-amplitude-strategy amplitudes. 
However, it can be observed that it is much closer to the lower amplitudes (i.e. low 
frequencies) than to the higher amplitudes (i.e. high frequencies). This is positive, since 
nonlinear effects present more harmful effects on EIS measurement than non-
optimum SNR [18]. 
 
Figure 8.b shows the perturbation amplitude profile for a frequency dependent 
amplitude strategy, obtained using the 𝜌𝑈 method in a previous work [40]. Comparing 
both subfigures of figure 8, it can be observed that both, the THD method and the ℘𝑈 
method, give very similar results. This is quite natural, since they are both methods 
based on the analysis of the output signal in the frequency domain. However, in the 
℘𝑈 method, the transition zone (i.e. zone II) is greater at the expense of zone III. This 
is due to the fact that the THD method takes into account all the non-fundamental 
harmonics, whereas the 𝜌𝑈  method only considers the most important non-
fundamental harmonic. As it was observed in subsection 5.3, in this system, a great 
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amount of noise-related information is lost if the complete set of non-fundamental 
harmonics is replaced by the most important non-fundamental harmonic, except for 
two excited frequencies (i.e. 500 Hz and 1000 Hz). It can be concluded that the results 
obtained using the 𝜌𝑈 method are slightly biased due to the loss of noise-related 
information. For this reason, the THD method is somewhat superior to the 𝜌𝑈 method.   
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6. Conclusions 
 
In conclusion, in this work the THD method has been successfully applied in order to 
select the optimum perturbation amplitude for EIS measurements in a particular 
model system, considering both, a constant amplitude strategy and a frequency 
dependent strategy. In addition to the optimum perturbation amplitude, the THD 
method also allows to obtain the noise structure. On the one hand, from a qualitative 
analysis of the noise structure, the main noise source can be elucidated. On the other 
hand, from a quantitative analysis of the noise structure, the effective noise level for 
each excited frequency can be obtained. Finally, the THD method also allows to 
quantify the generation of nonlinear effects at the different excited frequencies. From 
this information, the threshold frequency of the system can be obtained, in the case 
that the system presents one. All these arguments make the THD method a perfect 
method for the rigorous selection of the perturbation amplitude in EIS measurements.  
 
The THD method is slightly superior to the ℘𝑈 method (i.e. a method developed in 
earlier works, also based on the analysis of the output signal in the frequency domain), 
since it takes into account the information contained in all the non-fundamental 
components, whereas the ℘𝑈  method only considers the most important non-
fundamental component. Moreover, the THD method is easier to implement in 
practice, since there are already some EIS measurement commercial softwares 
available in the market (v.g. Zhaner®’s Thales® ) that are able to determine the total 
distortion values automatically during the measurement; while to the best of our 
knowledge, there is no commercial software able to calculate automatically parameter 
℘𝑈. 
 
The amplitude optimization study presented in this work requires a morning of work to 
be done (its exact duration depends on the selected frequency range, number of 
frequencies and measurement parameters). It should be noted that this study has to 
be done only once for each new system, and not in each EIS measurement. Therefore, 
authors recommend to perform this amplitude optimization study as a preliminary 
study when starting to study a new system or when a modification is introduced in an 
already studied system (v.g. reference electrode change). And then, use the obtained 
optimum amplitude for all the subsequent EIS measurements performed for that 
system. 
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7. Nomenclature 
 
Normal letters 
 
𝑓   Frequency (𝐻𝑧) 
𝑓U    Critical frequency (𝐻𝑧) 
𝐼   Current in the time domain (𝐴) 
𝐼S   Current in the frequency domain (𝐴) 
𝐼��    Polarization current (𝐴) 
𝑁b   Number of measured frequencies 
𝑡  Time domain independent variable (𝑠) 
𝒯ℋ𝒟𝑋  Total harmonic distortion of signal 𝑋 (%) 
𝒯ℋ𝒟𝑋efLg) Noise related component of parameter 𝒯ℋ𝒟𝑋 (%) 
𝒯ℋ𝒟𝑋efe-Le),*     Component of parameter 𝒯ℋ𝒟𝑋 related to nonlinear effects (%) 
𝒯ℋ𝒟𝑋U Critical total harmonic distortion of signal 𝑋 (%) 
𝑈   Potential in the time domain (𝑉) 
𝑈I   Potential in the frequency domain (𝑉) 
𝑍  Complex impedance (𝛺)  
|Z|   Impedance modulus (𝛺)   
𝑍′  Real part of complex impedance (𝛺) 
𝑍′′  Imaginary part of complex impedance (𝛺) 
 
Greek letters 
 
Δ𝐼  Galvanostatic perturbation amplitude (𝐴) 
Δ𝑈LefLg)   𝑖-th component of the output signal associated to noise (𝑉) 
Δ𝑈Y,+,zefLg)   Amplitude of the maximum noise-related non-fundamental harmonic, 

for the 𝑘-th excited frequency (𝑉) 
𝜆  Effective noise parameter (𝐴) 
𝜗  Frequency domain independent variable (𝐻𝑧) 
𝜙   Noise homogeneity coefficient 
𝜒   Total noise parameter (𝑉) 
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a.) Low perturbation amplitudes 

 
b.) High perturbation amplitudes 

Figure 1. Output signal THD curves [81] 
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Figure 2. Effective noise parameter (black dots) and impedance modulus (red triangles) 

for each excited frequency 
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Figure 3. Total noise parameter for each excited frequency 
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Figure 4. Noise homogeneity coefficient for each excited frequency 
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Figure 5. 𝒯ℋ𝒟U component related to nonlinear effects, for each excited frequency 
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Figure 6. Critical parameter curve of the output signal 
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a.) 𝑓 = 10	𝑘𝐻𝑧 

 
b.) 𝑓 = 25	𝐻𝑧 

 
c.) 𝑓 = 5	𝐻𝑧 

 
d.) 𝑓 = 5	𝑚𝐻𝑧 

Figure 7. Individual frequency THD plots for different excitation frequencies 
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a.) Total harmonic distortion method (This work) 

 
b.) ℘𝑈 method ([40]) 

Figure 8. Optimum frequency dependent perturbation amplitude 
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