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Optimization of the) Factor in Photonic
Crystal Microcavities

Jelena Viékovic, Marko Lortar, Hideo Mabuchi, and Axel Scherer

Abstract—We express the quality factor of amode interms of the ¥t -
Fourier transforms of its field components and prove that the re- 1 g
duction in radiation loss can be achieved by suppressing the mode’s [ p ,____--;:F"" LR
wavevector components within the light cone. Although this is in- R i
tuitively clear, our analytical proof gives us insight into how to i Lo o
achieve theQ factor optimization, without the mode delocalization. T - ol

We focus on the dipole defect mode in free-standing membranes
and achieve@ > 10%, while preserving the mode volume of the Sl
order of one half of the cubic wavelength of light in the material. hTy g
The derived expressions and conclusions can be used in the opti-

mization of the @ factor for any type of defect in planar photonic

crystals.

Index Terms—FDTD methods, Fourier transforms, integrated Fig. 1. Estimating the radiation field at the observation pd@hfrom the
optics, optical resonators, optics, optoelectronic device€) factor. ~ known near field at the surface.

|. INTRODUCTION for which the theoretically predicted? was around 4000

NE OF th hall . h , 8]. In our earlier work [2], we have only briefly addressed
t. e greatest C. a enges_ n p otomg_ crys_t e mechanism behind the reduction of radiation loss in our
research is the construction of optical microcavities wit

I d | d ity f ; tici ructures: the suppression of wavevector components of the
ismal_ mode \?olgnr:esBan_d arge %uac;ty a?_tors_, or ef |(;]|e efect mode that are positioned within the light cone. In this
ocalization of light. Beside standard applications of the per, we discuss this phenomenon in detail and derive the

structures (sgch as lasers or filters), they can potentially ﬁalytical expression relating th@ factor of a mode to the
used for cavity QED experiments, or as building blocks f ourier transform of the mode pattern. We also show how to

guantum networks. Although three-dimensional (3-D) phomn&%ppress the wavevector components within the light cone,

CTySta'S. offe_r the opportunity to manipulate light in all thre ithout delocalizing a mode. Although our study focuses only
dimensions in space, many research groups have focused their,

. X . . fi'"the dipole mode, the derived relations are universal and
efforts on planar photonic crystals (i.e., two-dimensional (2- nclusions can be used in the optimization oféhéactor for
photonic crystals of finite depth) in recent years [1]_[13]any type of mode and defect in planar photonic crystals.

The fabrication procedures of planar photonic crystals are

much simpler than those of their 3-D counterparts, but their

light confinement is only “quasi-3D” and resulting from the [l. RELATION BETWEEN THE ¢} FACTOR AND THE
combined action of the 2-D photonic crystal and internal FOURIER TRANSFORM OF AMODE

reflection. The imperfect confinement in the third dimension 1.4 3.p finite difference time-domain (FDTD) analysis can
produces some unwanted out-of-plane loss (radiation 10S5),ide ys with the near-field distribution of the analyzed mi-
which is usually a limiting factor in the performance of thesg, ity FDTD analysis of the far field would require large
structures. The prqblem o_f_tr(e factor optimization in planar ,\ounts of computer memory and would be computationally
photonic crystal microcavities has been addressed recently;Dyticient. However, we can compute the far field starting from
several groups [2], [14]-{17]. The 4caV|t|es that we proposgfle ynown near-field distribution. Any wavefront can be consid-
have a potential for achieving > 10" together with the mode o0 5 3 source of secondary waves that add to produce distant
volume of the order of one half of the cubic wavelength of lighy,a efronts, according to Huygens principle. Let us assume that

in the mgterial [2], [16]. We have "_"ISO _recently demonstrategh «now the field distribution across the surfagepositioned
an experimentat) factor of 2800 in this type of SUCWUe, iy yhe near field and above the free-standing membrane, as in

Fig. 1. Our goal is to estimate the far field at the observation

. . . , m})?(int O. The far fields can be considered as arising from the
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the planeS can be represented in terms of the surface electric
(Js) and magneticX/;) currents

J.=hx H=—3H, +jH, 1) "

M, =-ax E=3E, — §E, @) h|

R o N [

where# is a normal to the surfac€, andE andH = B/ug 4

are the electric and magnetic fields, respectively. In a homoge-"*##
neous, isotropic medium abovg a retarded potentiall and hepi2
a second retarded potentifllcan be estimated from the previ- .

ously introduced surface currents "_
h
. Tk 4
Ao [ 20— as @
s dnr al
. MS e—ikr 1
F=¢ [ ———dS 4)
s Amr

L : - _ ; _ Fig. 2. Microcavity structure consisting of a single defect (produced by
wheref is defmed. ask. . 27r/)\ — w./c (A is the mode Wave_ reducing the radius of the central holeita.; /a = 0.2 from r/a = 0.275)
length measured in air) andis the distance between the pointng a fractional edge dislocation of orger= 4 along ther axis. The applied
where the potentials are evaluated and the surface eleiffentdiscretization is 20 pixels per periodicity

(i.e., between the points and P).
From Fig. 1, it follows that = ro — 7’ cos(¢)). Let us now components of radiation vectors can, therefore, be expressed in

introduce the radiation vectorsand N terms of the Fourier transforms of the field components at the
- - ) surfaceS
N = / JSezkr cos(¢) ds
o N, = —FTy(Hy)lg, (13)
L= [ My* ) dg, 6
/S ¢ ) Ny = FTy(H,)|g, (14)
Then we have L. = FI:(Ey)l;, (15)
R —ikrg R - _ .
A= (34 iy 7 L, FTQ(EW)|,€H (16)
TTo
‘ - T Yy . o
R —ikro ky=k <—, —) = ksin 6(cos ¢pZ + sin ¢3). a7)
Foe® . @© I o' e ( )
d7rq
F Fia. 1 Iso h It is important to note that, for any observation paintthe
romrig. 1, we also have previously introduced wavevectéy; lies within the light cone
k (i.e., |ky| < k, wherek = 27 /X). Therefore, radiation vectors
' cos(i) = — (v2’ + ) ©) ” | - thi
reos\w) =\ Yy are purely determined by Fourier components located within the

light cone.

where(z’, i, 0) are the coordinates of the poiftin the plane  Far fields can be expressed in terms of retarded potentials as
S, and(z, y, z) are the coordinates of the observation p@mt

_ From (5) and (6), it follqws that radiation vectoré and B e —iwA — w (V- A) - 1 VxF (18)
L represent the 2-D Fourier transforms of the surface cur- k? €0

rents J., and M,, evaluated at the value of the wavevector . - dw N 1 N

ky = k(z/r.& + y/r.4) (in rectangular coordinates), i.e., H=—iwl 5 V(V - F) - . Vx A (19)
k) = ksiné(cos ¢ + sin ¢f) in circular polar coordinates

Under the assumption that all terms in fields decaying faster

N = FI(JL)|. (10) thanl/r, can be neglected, the electric field components at an
ky=k(z/ro,y/ro) arbitrary pointO are
L= FTy(M,)|. (11) ik
ky=k(z/ro,y/r0) Ey=nHy = —i Ty (nNe + Ly) (20)
To
FT. — dac d iEH~(ac,y) ] e—ik?‘o
Q(f(xv y)) // yf(xv y)@ Eqb — _77H0 =1 o (_77]\7(;5 + LO) (21)

_ // do dy f(z, y)ei®==thn) (12) = \/Z (22)
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Fig. 3. Field components of the-dipole mode at the surfacg positioned at approximately/4 from the surface of the membrane. The analyzed structure is
shown in Fig. 2.

where (r,,, 8, ¢) represent the coordinates of the pointin  forms of the tangential field components at the plaheve can

the spherical polar coordinate system. The radiation intenséyaluate the total averaged power radiated and the far-field dis-
(power per unit solid angle) is then equal to [19] tribution. Furthermore, the radiated power depends only on the
wavevector components located within the light cone. There-

2 2
I e o . .
n ‘N¢ _ 7@ ) 23) fore, the reduction in radiation loss and the improvement in the

8’2 @ factor can be achieved by suppressing the Fourier components
within the light cone or by redistributing them outside the light

and the total averaged power radiated into the half-spae® cgone.

K@@—”QM+%

is given by In the case when most of the radiated power is collected at
x/2 p2m vertical incidence (i.e., at smaf), (24) can be simplified as
P = / de dysin(0)K (6, ¢). (24) follows:
0 0
The radiation vectors in spherical polar coordinates can be po__ gl L, 2 N L, ?
expressed from their components in rectangular coordinates 2722 @z 7 Ve 7
Iy 1<k
No = (N, cos ¢+ N, sin ¢) cos 0 (25) : ) ,
__n i
Ny =—N,sing + Ny cos ¢ (26) T /N2)2 // dk <‘FTQ(Hy)+ EFTQ(EJ})
[k |<K

whereN,, N,, L., andL, were previously given as the 2-D
Fourier transforms of the appropriate field components tangen- + ‘FTQ(HT) 1 FTy(E,)
tial to the surfaces. Hence, just by knowing the Fourier trans- b g

2
) . 27)
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The integral of the cross terms in (27) gives approximately ol IFLIE }
half of the radiated power. This can be proved easily by startii 0.1
from the expansion of fields in terms of the Fourier compc

853

TE

nents and the expression for the radiated power as the inte¢ %2%
of thez component of the Poynting vectBrover the surfacé. a -f' 41__
This leads to the following expression for the averaged radiat "a'._ _“
power: .06
P2l [[ dF(IFnr 4 e L Y
|EH|§k R LT R

ER|

1 1
+5 [FL(E)]P + = |FT2(Ey)|2> . (28)
n n .08

It is important to note that, if some field componen

a1

nas

i

a

N
w(z, y) is odd with respect to ther coordinate [i.e., T
u(z,y) = —u(—=z, y)], then its Fourier transform must -pns
be equal to zero for any point in the Fourier space Wwith= 0.
Similarly, any field component which is odd with respect tc -2 | o 0.1 035 )
they coordinate has a Fourier transform which is zero for ar.,

point Wlth_ky = 0. L . i . Fig.4. Fourier components of thedipole mode in the structure from Fig. 2. A
Let us introduce the radiation factdtf’ which is directly fractional edge dislocation is of the order= 0 in this case. The light cone can

proportional to the radiated powét be represented as a disk with the radius approximately equal to 0.015 located in
the center of each square. The horizontal and vertical axes correspont2to
P, andk, /2w, respectively.

=7 i=1,2,3,... (29)
wherel¥ represents the total energy of a mode in the half-spatgee thickness of the slab, and the refractive index of the semi-

above the middle of the membrane. The radiatipfactor of conductor material, respectively. The choice of photonic crystal

amode (which is a measure of the radiation, out-of-plane lo rameters is discussed in more detail in our previous work [2],
' % ]. Briefly, we limit ther/a ratio to rather modest values of
can be expressed as

around 0.3, in order to minimize the out-of-plane losses pro-
duced by the vertical scattering at the edges of holes. Since the
reduction inr/a leads to a decrease in the size of the bandgap, it
is important not to reduce the hole radius too much, in order to
preserve the lateral confinement and small mode volume (e.g.,
we do not use /a below 0.275). Thel/a ratio of our structures
is usually between 0.65 and 0.75, and we were able to design mi-
crocavities with very highfy factors at both ends of this range,
We have recently proposed the design and fabrication of apithout a significant change in the mode volume [2], [20]. The
tical microcavities in free-standing membranes with> 10* reasons for choosing this thickness range are the following: if
for the dipole mode, and mode volumes of the order of ortlee slab is too thin, the mode is not confined well within it ver-
half of the cubic wavelength of light (measured in the mateically, and it interacts more strongly with the substrate (posi-
rial) [2], [16]. The dramatic improvement iy factors over tioned at aroundh/2 underneath the bottom membrane surface
single defect microcavities (without a significant increase im our structures [2]), which reduces ifsfactor. Furthermore,
the mode volume) was obtained by introducing a novel type tife fabrication of thin suspended membranes is difficult, and
photonic crystal lattice defect, consisting of the elongation tliese structures are not robust. On the other hand/dfis
holes along the symmetry axes. We call this type of defectt@o large, the structure is multimode in the vertical direction,
fractional edge dislocationby analogy with edge dislocationswhich is also undesirable. In the FDTD method, we apply the
in solid state physics. Edge dislocations are formed by intrdiscretization of 20 pixels per periodicity Therefore, a frac-
ducing extra atomic planes into the crystal lattice. On the othigonal edge dislocation of order= 1 corresponds to the inser-
hand, we insert here only fractions of the atomic planes alotign of extra material whose thickness is equal f@0a. In the
the symmetry axes of the photonic crystal, as shown in Fig. Ricrocavity of our interest, the central hole radius is decreased
Hole-to-hole distances are preserved under this deformatitmy.;/¢ = 0.2 and a fractional edge dislocation of ordeis
and the half-spaces> p/2 andy < —p/2 maintain the unper- applied along the axis, as shown in Fig. 2. The dipole mode’s
turbed photonic crystal geometry. frequency decreases as a function of the elongation parameter
We consider again some of the microcavities that we prp-[2], [20], and it is desirable to start in the elongation process
posed in [2]. The unperturbed photonic crystal parameters avith a mode whose frequency is close to the edge of the air
r/a = 0.275, d/a = 0.75, andn = 3.4, wherer, a, d, andn  band, allowing enough space to achieve the optiniunwithin
represent the hole radius, the periodicity of the triangular latticde bandgap when the structure is tuned. In that case, the lateral

0,05

RE;

W
Q=v—5 =75 (30)

lll. EFFECT OFFRACTIONAL EDGE DISLOCATIONS
ON THE ¢ FACTOR OF THE DIPOLE MODE
IN FREE-STANDING MEMBRANES
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Fig. 5. The 2-D Fourier transforms of the even field components afttgole mode in the structure shown in Fig. 2, as a function of the elongation parameter
p. The light cone can be represented as a disk inscribed into the square. Clearly, the intensities of the Fourier transforms within the light conieeatéanin
p = 2, where the) factor reaches its maximum.

confinementis preserved anyj can be improved by increasingwe also tune the sizes of the central (negative) lobés,imnd
the number of photonic crystal layers around the defect. Thisig,;, as well as the intensity distribution between the positive and
one of the reasons for reducing the defect hole radius to omiggative lobes. Therefore, the tuningpiis expected to lead to
0.2a. The other reason is our long-term goal, a photonic crystaining in the Fourier transforms of the even field components,
cavity QED with neutral atoms [2], for which we need a strongnd subsequently to tuning in radiated powers.
field intensity within an air hole large enough to place a neutral The Fourier components of thedipole mode in the struc-
atom, without significant surface effects. Field components afre withp = 0 are shown in Fig. 4. When the elongation pa-
thez-dipole mode in the analyzed structure are shown in Fig. @ymeterp changes in the analyzed range from 0 to 4, peaks in
as a function of the elongation parameger~or thez-dipole the Fourier space preserve their position, but their intensities are
mode, theE, and B, components are even, while tli#& and tuned. This can be observed in Fig. 5. Clearly, Fourier compo-
B, components are odd with respect to both symmetry axesients within the light cone are minimized for= 2, where the)
andy. Therefore, it is expected thdt, and B, (i.e., L, and factor reaches its maximum. Therefore, the optimization of the
N,) do not contribute significantly to the radiated power in thig§) factor of the dipole mode (after the application of fractional
case, since their Fourier transforms are equal to zero along betlye dislocations) is a result of suppression of the wavevector
the &, andk, axes. This is also illustrated in Fig. 4. Thereforegcomponents within the light cone. This suppression is a product
in the case of the analyzeddipole mode we can approximateof balancing between the energies of the positive and negative
the expression (28) even further as field lobes of the even field components. The balancing is ob-
tained by tuning the sizes of the negative lobes with insertion
n of extra material along the symmetry axis. Téefactor op-
P =2 YT / dy, dr, - <|FT2(1LLU)|2 timization is achieved in this case without a significant mode
Ik |<k delocalization. _ _
In our FDTD calculations [2], the tot#) factor is separated

+i2 |FT2(Ew)|2>. (31) into the lateral Q”_) gnd vertical _Ql) quality factors.(Q, is
Uj a measure of radiation loss, whifg, corresponds to the loss
through the mirrors in the lateral directions, which can be re-
In order to minimize the radiated power, it is necessary to miduced by adding more layers of photonic crystal. The boundary
imize (within the light cone) the Fourier transforms of the evefor separation of vertical from lateral loss (i.€, from Q) is
field componentd”, andB,. In the general case, these Fouriepositioned approximately at/2 from the surface of the mem-
transforms are nonzero at small values*fl}znﬂ (i.e., in the light brane, as suggested in our early work [21]. We have discussed in
cone). However, they can be minimized by balancing the iour recent publication [2] that this choice of boundary excludes
tensities of positive and negative field lobes. Indeed, we canme small portion of radiation loss fro, , and the totat?
observe in Fig. 3 that, by varying the elongation paramgter factor of the analyzed dipole mode achievable by increasing the
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diation (out-of-plane) loss, whil@ , includes only the radiation
loss above\/2 from the surface of the membrane. In Fig. 6(b),
both the planes and the boundary for separation®@f from Q)

are positioned ak/2 from the membrane surface, and a better
agreement with), from the FDTD simulations is observed.
However, @, is somewhat smaller, due to numerical inaccu-
racy. Radiation factor&F5, RF3, andRFE, are estimated under
the assumption that most of the radiation is collected at vertical
incidence. This is not really true in the case of #hdipole, for
which reason there is an offset betweendhéactors evaluated
from RF;,i =2, 3, 4, andQ estimated fromR F;, which does
not make any assumptions regarding the direction of radiation.

IV. CONCLUSION

We have presented a method for estimatingdhtactor of
a mode and its radiation loss from the known Fourier trans-
form of the near-field distribution. By applying this approach to
high @ structures that we have proposed recently [2], we have
proven that the optimization of the factor of the dipole defect
mode (after the application of fractional edge dislocations) re-
sults from the suppression of the wavevector components within
the light cone. This suppression is a result of balancing between
the positive and negative lobes in the even field components.
The balancing is obtained by tuning the sizes of the negative
lobes with insertion of extra material along the symmetry axis.
Although our analysis focuses on the dipole mode only, a sim-
ilar approach can be applied to any type of microcavity formed
in planar photonic crystals.
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Fig. 6. (@ factors estimated from the FDTD, or from the Fourier transforms of

the tangential field components. The plahés positioned (a) directly above the

surface of the membrane, at a distance equd/) #ofrom it, and (b) at a distance
equal tox/2 from the surface of the membrane.

number of the PC layers around the defect (also referred to as

the limit of total @ factor) is somewhat smaller thap, . For
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