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Optimization of theQ Factor in Photonic
Crystal Microcavities

Jelena Vǔcković, Marko Loňcar, Hideo Mabuchi, and Axel Scherer

Abstract—We express the quality factor of a mode in terms of the
Fourier transforms of its field components and prove that the re-
duction in radiation loss can be achieved by suppressing the mode’s
wavevector components within the light cone. Although this is in-
tuitively clear, our analytical proof gives us insight into how to
achieve the factor optimization, without the mode delocalization.
We focus on the dipole defect mode in free-standing membranes
and achieve 10

4, while preserving the mode volume of the
order of one half of the cubic wavelength of light in the material.
The derived expressions and conclusions can be used in the opti-
mization of the factor for any type of defect in planar photonic
crystals.

Index Terms—FDTD methods, Fourier transforms, integrated
optics, optical resonators, optics, optoelectronic devices, factor.

I. INTRODUCTION

ONE OF the greatest challenges in photonic crystal
research is the construction of optical microcavities with

small mode volumes and large quality factors, for efficient
localization of light. Beside standard applications of these
structures (such as lasers or filters), they can potentially be
used for cavity QED experiments, or as building blocks for
quantum networks. Although three-dimensional (3-D) photonic
crystals offer the opportunity to manipulate light in all three
dimensions in space, many research groups have focused their
efforts on planar photonic crystals (i.e., two-dimensional (2-D)
photonic crystals of finite depth) in recent years [1]–[13].
The fabrication procedures of planar photonic crystals are
much simpler than those of their 3-D counterparts, but their
light confinement is only “quasi-3D” and resulting from the
combined action of the 2-D photonic crystal and internal
reflection. The imperfect confinement in the third dimension
produces some unwanted out-of-plane loss (radiation loss),
which is usually a limiting factor in the performance of these
structures. The problem of the factor optimization in planar
photonic crystal microcavities has been addressed recently by
several groups [2], [14]–[17]. The cavities that we proposed
have a potential for achieving together with the mode
volume of the order of one half of the cubic wavelength of light
in the material [2], [16]. We have also recently demonstrated
an experimental factor of 2800 in this type of structure,
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Fig. 1. Estimating the radiation field at the observation pointO from the
known near field at the surfaceS.

for which the theoretically predicted was around 4000
[18]. In our earlier work [2], we have only briefly addressed
the mechanism behind the reduction of radiation loss in our
structures: the suppression of wavevector components of the
defect mode that are positioned within the light cone. In this
paper, we discuss this phenomenon in detail and derive the
analytical expression relating the factor of a mode to the
Fourier transform of the mode pattern. We also show how to
suppress the wavevector components within the light cone,
without delocalizing a mode. Although our study focuses only
on the dipole mode, the derived relations are universal and
conclusions can be used in the optimization of thefactor for
any type of mode and defect in planar photonic crystals.

II. RELATION BETWEEN THE FACTOR AND THE

FOURIER TRANSFORM OF AMODE

The 3-D finite difference time-domain (FDTD) analysis can
provide us with the near-field distribution of the analyzed mi-
crocavity. FDTD analysis of the far field would require large
amounts of computer memory and would be computationally
inefficient. However, we can compute the far field starting from
the known near-field distribution. Any wavefront can be consid-
ered as a source of secondary waves that add to produce distant
wavefronts, according to Huygens principle. Let us assume that
we know the field distribution across the surface, positioned
in the near field and above the free-standing membrane, as in
Fig. 1. Our goal is to estimate the far field at the observation
point . The far fields can be considered as arising from the
equivalent current sheets at the surface[19]. For example, let

be the plane positioned at , parallel to the surface of the
membrane, and at a small distance from it. This choice of
surface will allow us to relate the factor of a mode to the
Fourier transform of its field pattern. The equivalent sources in
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the plane can be represented in terms of the surface electric
( ) and magnetic ( ) currents

(1)

(2)

where is a normal to the surface, and and
are the electric and magnetic fields, respectively. In a homoge-
neous, isotropic medium above, a retarded potential and
a second retarded potentialcan be estimated from the previ-
ously introduced surface currents

(3)

(4)

where is defined as ( is the mode wave-
length measured in air) andis the distance between the point
where the potentials are evaluated and the surface element
(i.e., between the points and ).

From Fig. 1, it follows that . Let us now
introduce the radiation vectorsand

(5)

(6)

Then we have

(7)

(8)

From Fig. 1, we also have

(9)

where are the coordinates of the pointin the plane
, and are the coordinates of the observation point.
From (5) and (6), it follows that radiation vectors and
represent the 2-D Fourier transforms of the surface cur-

rents and , evaluated at the value of the wavevector
(in rectangular coordinates), i.e.,

in circular polar coordinates

(10)

(11)

(12)

Fig. 2. Microcavity structure consisting of a single defect (produced by
reducing the radius of the central hole tor =a = 0:2 from r=a = 0:275)
and a fractional edge dislocation of orderp = 4 along thex axis. The applied
discretization is 20 pixels per periodicitya.

Components of radiation vectors can, therefore, be expressed in
terms of the Fourier transforms of the field components at the
surface

(13)

(14)

(15)

(16)

(17)

It is important to note that, for any observation point, the
previously introduced wavevector lies within the light cone
(i.e., , where ). Therefore, radiation vectors
are purely determined by Fourier components located within the
light cone.

Far fields can be expressed in terms of retarded potentials as

(18)

(19)

Under the assumption that all terms in fields decaying faster
than can be neglected, the electric field components at an
arbitrary point are

(20)

(21)

(22)
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Fig. 3. Field components of thex-dipole mode at the surfaceS positioned at approximatelyd=4 from the surface of the membrane. The analyzed structure is
shown in Fig. 2.

where represent the coordinates of the pointin
the spherical polar coordinate system. The radiation intensity
(power per unit solid angle) is then equal to [19]

(23)

and the total averaged power radiated into the half-space
is given by

(24)

The radiation vectors in spherical polar coordinates can be
expressed from their components in rectangular coordinates

(25)

(26)

where , , , and were previously given as the 2-D
Fourier transforms of the appropriate field components tangen-
tial to the surface . Hence, just by knowing the Fourier trans-

forms of the tangential field components at the plane, we can
evaluate the total averaged power radiated and the far-field dis-
tribution. Furthermore, the radiated power depends only on the
wavevector components located within the light cone. There-
fore, the reduction in radiation loss and the improvement in the

factor can be achieved by suppressing the Fourier components
within the light cone or by redistributing them outside the light
cone.

In the case when most of the radiated power is collected at
vertical incidence (i.e., at small), (24) can be simplified as
follows:

(27)



VUČKOVIĆ et al.: OPTIMIZATION OF THE FACTOR IN MICROCAVITIES 853

The integral of the cross terms in (27) gives approximately one
half of the radiated power. This can be proved easily by starting
from the expansion of fields in terms of the Fourier compo-
nents and the expression for the radiated power as the integral
of the component of the Poynting vectorover the surface .
This leads to the following expression for the averaged radiated
power:

(28)

It is important to note that, if some field component
is odd with respect to the coordinate [i.e.,

], then its Fourier transform must
be equal to zero for any point in the Fourier space with .
Similarly, any field component which is odd with respect to
the coordinate has a Fourier transform which is zero for any
point with .

Let us introduce the radiation factor which is directly
proportional to the radiated power

(29)

where represents the total energy of a mode in the half-space
above the middle of the membrane. The radiationfactor of
a mode (which is a measure of the radiation, out-of-plane loss)
can be expressed as

(30)

III. EFFECT OFFRACTIONAL EDGE DISLOCATIONS

ON THE FACTOR OF THE DIPOLE MODE

IN FREE-STANDING MEMBRANES

We have recently proposed the design and fabrication of op-
tical microcavities in free-standing membranes with
for the dipole mode, and mode volumes of the order of one
half of the cubic wavelength of light (measured in the mate-
rial) [2], [16]. The dramatic improvement in factors over
single defect microcavities (without a significant increase in
the mode volume) was obtained by introducing a novel type of
photonic crystal lattice defect, consisting of the elongation of
holes along the symmetry axes. We call this type of defect a
fractional edge dislocation, by analogy with edge dislocations
in solid state physics. Edge dislocations are formed by intro-
ducing extra atomic planes into the crystal lattice. On the other
hand, we insert here only fractions of the atomic planes along
the symmetry axes of the photonic crystal, as shown in Fig. 2.
Hole-to-hole distances are preserved under this deformation,
and the half-spaces and maintain the unper-
turbed photonic crystal geometry.

We consider again some of the microcavities that we pro-
posed in [2]. The unperturbed photonic crystal parameters are

, , and , where , , , and
represent the hole radius, the periodicity of the triangular lattice,

Fig. 4. Fourier components of thex-dipole mode in the structure from Fig. 2. A
fractional edge dislocation is of the orderp = 0 in this case. The light cone can
be represented as a disk with the radius approximately equal to 0.015 located in
the center of each square. The horizontal and vertical axes correspond tok =2�
andk =2�, respectively.

the thickness of the slab, and the refractive index of the semi-
conductor material, respectively. The choice of photonic crystal
parameters is discussed in more detail in our previous work [2],
[20]. Briefly, we limit the ratio to rather modest values of
around 0.3, in order to minimize the out-of-plane losses pro-
duced by the vertical scattering at the edges of holes. Since the
reduction in leads to a decrease in the size of the bandgap, it
is important not to reduce the hole radius too much, in order to
preserve the lateral confinement and small mode volume (e.g.,
we do not use below 0.275). The ratio of our structures
is usually between 0.65 and 0.75, and we were able to design mi-
crocavities with very high factors at both ends of this range,
without a significant change in the mode volume [2], [20]. The
reasons for choosing this thickness range are the following: if
the slab is too thin, the mode is not confined well within it ver-
tically, and it interacts more strongly with the substrate (posi-
tioned at around underneath the bottom membrane surface
in our structures [2]), which reduces itsfactor. Furthermore,
the fabrication of thin suspended membranes is difficult, and
these structures are not robust. On the other hand, if is
too large, the structure is multimode in the vertical direction,
which is also undesirable. In the FDTD method, we apply the
discretization of 20 pixels per periodicity. Therefore, a frac-
tional edge dislocation of order corresponds to the inser-
tion of extra material whose thickness is equal to . In the
microcavity of our interest, the central hole radius is decreased
to and a fractional edge dislocation of orderis
applied along the axis, as shown in Fig. 2. The dipole mode’s
frequency decreases as a function of the elongation parameter

[2], [20], and it is desirable to start in the elongation process
with a mode whose frequency is close to the edge of the air
band, allowing enough space to achieve the optimumwithin
the bandgap when the structure is tuned. In that case, the lateral
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Fig. 5. The 2-D Fourier transforms of the even field components of thex-dipole mode in the structure shown in Fig. 2, as a function of the elongation parameter
p. The light cone can be represented as a disk inscribed into the square. Clearly, the intensities of the Fourier transforms within the light cone are minimized for
p = 2, where theQ factor reaches its maximum.

confinement is preserved and can be improved by increasing
the number of photonic crystal layers around the defect. This is
one of the reasons for reducing the defect hole radius to only

. The other reason is our long-term goal, a photonic crystal
cavity QED with neutral atoms [2], for which we need a strong
field intensity within an air hole large enough to place a neutral
atom, without significant surface effects. Field components of
the -dipole mode in the analyzed structure are shown in Fig. 3,
as a function of the elongation parameter. For the -dipole
mode, the and components are even, while the and

components are odd with respect to both symmetry axes
and . Therefore, it is expected that and (i.e., and

) do not contribute significantly to the radiated power in this
case, since their Fourier transforms are equal to zero along both
the and axes. This is also illustrated in Fig. 4. Therefore,
in the case of the analyzed-dipole mode we can approximate
the expression (28) even further as

(31)

In order to minimize the radiated power, it is necessary to min-
imize (within the light cone) the Fourier transforms of the even
field components and . In the general case, these Fourier
transforms are nonzero at small values of (i.e., in the light
cone). However, they can be minimized by balancing the in-
tensities of positive and negative field lobes. Indeed, we can
observe in Fig. 3 that, by varying the elongation parameter,

we also tune the sizes of the central (negative) lobes inand
, as well as the intensity distribution between the positive and

negative lobes. Therefore, the tuning inis expected to lead to
tuning in the Fourier transforms of the even field components,
and subsequently to tuning in radiated powers.

The Fourier components of the-dipole mode in the struc-
ture with are shown in Fig. 4. When the elongation pa-
rameter changes in the analyzed range from 0 to 4, peaks in
the Fourier space preserve their position, but their intensities are
tuned. This can be observed in Fig. 5. Clearly, Fourier compo-
nents within the light cone are minimized for , where the
factor reaches its maximum. Therefore, the optimization of the

factor of the dipole mode (after the application of fractional
edge dislocations) is a result of suppression of the wavevector
components within the light cone. This suppression is a product
of balancing between the energies of the positive and negative
field lobes of the even field components. The balancing is ob-
tained by tuning the sizes of the negative lobes with insertion
of extra material along the symmetry axis. Thefactor op-
timization is achieved in this case without a significant mode
delocalization.

In our FDTD calculations [2], the total factor is separated
into the lateral ( ) and vertical ( ) quality factors. is
a measure of radiation loss, while corresponds to the loss
through the mirrors in the lateral directions, which can be re-
duced by adding more layers of photonic crystal. The boundary
for separation of vertical from lateral loss (i.e., from ) is
positioned approximately at from the surface of the mem-
brane, as suggested in our early work [21]. We have discussed in
our recent publication [2] that this choice of boundary excludes
some small portion of radiation loss from , and the total
factor of the analyzed dipole mode achievable by increasing the
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(a)

(b)

Fig. 6. Q factors estimated from the FDTD, or from the Fourier transforms of
the tangential field components. The planeS is positioned (a) directly above the
surface of the membrane, at a distance equal tod=4 from it, and (b) at a distance
equal to�=2 from the surface of the membrane.

number of the PC layers around the defect (also referred to as
the limit of total factor) is somewhat smaller than . For
this reason, we now believe that a better choice of boundary for
separation of from would be the one positioned directly
above the surface of the membrane. However, for the purpose
of comparing our new results [2] with our earlier work [21], we
preserve this boundary positioned at from the surface of the
membrane.

The radiation factors are evaluated using the method pre-
sented in this paper, and results are shown in Fig. 6. The plane

(above which we integrate the radiated power) is positioned
directly above and at above the surface of the membrane,
in Fig. 6(a) and (b), respectively. Therefore, in the latter case,
we expect a better agreement between the radiationfactors
( ) estimated using our new method and estimated
from the FDTD calculations, but in the former case the newly
calculated factors are a better approximation of the limit of the
total factors. In Fig. 6(a), factors are larger than factors
calculated as , because includes practically all ra-

diation (out-of-plane) loss, while includes only the radiation
loss above from the surface of the membrane. In Fig. 6(b),
both the plane and the boundary for separation of from
are positioned at from the membrane surface, and a better
agreement with from the FDTD simulations is observed.
However, is somewhat smaller, due to numerical inaccu-
racy. Radiation factors , , and are estimated under
the assumption that most of the radiation is collected at vertical
incidence. This is not really true in the case of the-dipole, for
which reason there is an offset between thefactors evaluated
from , , and estimated from , which does
not make any assumptions regarding the direction of radiation.

IV. CONCLUSION

We have presented a method for estimating thefactor of
a mode and its radiation loss from the known Fourier trans-
form of the near-field distribution. By applying this approach to
high structures that we have proposed recently [2], we have
proven that the optimization of the factor of the dipole defect
mode (after the application of fractional edge dislocations) re-
sults from the suppression of the wavevector components within
the light cone. This suppression is a result of balancing between
the positive and negative lobes in the even field components.
The balancing is obtained by tuning the sizes of the negative
lobes with insertion of extra material along the symmetry axis.
Although our analysis focuses on the dipole mode only, a sim-
ilar approach can be applied to any type of microcavity formed
in planar photonic crystals.
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