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Abstract—We studied the efficiency of different implementa-
tions of the split-step Fourier method for solving the nonlinear
Schrödinger equation that employ different step-size selection cri-
teria. We compared the performance of the different implementa-
tions for a variety of pulse formats and systems, including higher
order solitons, collisions of soliton pulses, a single-channel period-
ically stationary dispersion-managed soliton system, and chirped
return to zero systems with single and multiple channels. We in-
troduce a globally third-order accurate split-step scheme, in which
a bound on the local error is used to select the step size. In many
cases, this method is the most efficient when compared with com-
monly used step-size selection criteria, and it is robust for a wide
range of systems providing a system-independent rule for choosing
the step sizes. We find that a step-size selection method based on
limiting the nonlinear phase rotation of each step is not efficient for
many optical-fiber transmission systems, although it works well for
solitons. We also tested a method that uses a logarithmic step-size
distribution to bound the amount of spurious four-wave mixing.
This method is as efficient as other second-order schemes in the
single-channel dispersion-managed soliton system, while it is not
efficient in other cases including multichannel simulations. We find
that in most cases, the simple approach in which the step size is
held constant is the least efficient of all the methods. Finally, we
implemented a method in which the step size is inversely propor-
tional to the largest group velocity difference between channels.
This scheme performs best in multichannel optical communica-
tions systems for the values of accuracy typically required in most
transmission simulations.

Index Terms—Adaptive algorithms, numerical analysis, optical
fiber communication simulation, optical propagation, optical
solitons, software peformance, split-step Fourier method (SSFM),
time-frequency analysis.

I. INTRODUCTION

T HE NONLINEAR Schrödinger equation, which can be
written as

(1)

has been shown to govern the propagation of light in a lossless
optical fiber with second-order dispersion [1]. In (1),is the
complex field envelope, is distance, is the second-order
dispersion, and is the nonlinear coefficient. The quantity
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is the retarded time, whereis physical time and is
the group velocity. Even though (1) does not provide a complete
physical description of a system, it is the basis for modeling op-
tical-fiber communications systems. Indeed, one can modify the
nonlinear Schrödinger equation (1) to incorporate the effects of
fiber loss, third-order dispersion, amplification, amplified spon-
taneous emission noise, and polarization mode dispersion to ob-
tain a more realistic model of optical-fiber transmission [2]–[4].
Equation (1) with has a well-known analytical soliton
solution with a set of remarkable properties, which gives deep
insight into the nature of the dispersive and nonlinear effects [5].
However, in almost all cases, (1) and its modifications cannot
be solved analytically and one has to use numerical approaches.
The most commonly used numerical scheme for solving (1) is
the split-step Fourier method, which is convenient for its sim-
plicity and flexibility in dealing with higher order dispersion,
the Raman effect, and filtering [2].

In this paper, we focus on the split-step Fourier method. The
efficiency of the split-step method depends on both the time-do-
main (or frequency-domain) resolution and on the distribution of
stepsizesalong the fiber. Insimulationsofoptical-fiber transmis-
sion systems, the time and frequency resolutions are determined
by thebandwidthof thesignaland thenumberofbits thatare tobe
propagated through the system, respectively. Consequently, the
properties of the signal determine the minimum required number
of Fourier modes. Although the number of Fourier modes affects
the accuracy of the numerical solution, as we will discuss later, it
does not change the qualitative behavior of the spatial step-size
selection algorithm. In this paper, we focus on the accuracy and
efficiency of different spatial step-size selection criteria.

A variety of step-size selection criteria, most based on phys-
ical intuition, have been proposed for optimizing the split-step
method. The figure of merit for each criterion is the computa-
tional cost for a given resulting global accuracy. Historically, in
numerical methods used to solve (1), the step-size distribution
was optimized for simulating soliton propagation. However, this
optimization is not necessarily appropriate for modeling modern
transmission systems, which often feature both high and low
dispersion and relatively small nonlinearity, by which we mean
that the nonlinear length scale is long compared to typical dis-
persion length scales.

The purpose of this paper is to implement an efficient system-
independent step-size selection criterion for solving the non-
linear Schrödinger equation that is based on bounding the local
error, and to compare its performance to four commonly used
step-size selection methods that are based on physical intuition.
In the first of these four methods, called thenonlinear phase-ro-
tation method, the step size is chosen so that the phase change
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due to nonlinearity does not exceed a certain limit. This method
was designed with soliton propagation in mind. The second, the
logarithmic step-size method, is designed to efficiently suppress
spurious FWM, by employing a logarithmic distribution of the
step sizes [6]. In the third method, thewalk-off method, the step
size is chosen to be inversely proportional to the product of the
absolute value of dispersion and the spectral bandwidth of the
signal. The idea behind this criterion is to resolve the collisions
between pulses in different channels or at least to have a mea-
sure for the violation of this criterion. This method was designed
for low power, multichannel systems. In the fourth,the con-
stant step-size method, the step sizes are kept constant along the
whole transmission path.

Finally, we implement a method we call thelocal-error
method, in which the step size is selected by bounding the
relative local error of the step. In addition, in this method,
we obtain a higher order solution that is globally third-order
accurate. The method is inspired by and closely related to
widely used algorithms for adaptively controlling the step size
in ordinary differential equation solvers [7]. In particular, we
have adopted the well-known techniques of step-doubling to
estimate the local error and linear extrapolation to obtain the
higher order solution. To the best of our knowledge, although
they are widely used in other fields, techniques such as these
have not been previously used in simulations of optical-fiber
transmission systems or even seriously investigated. As is
typically the case for higher order schemes, our scheme has the
advantage that it is much more computationally efficient than a
second-order scheme when the global accuracy is high [7], [8].
On the other hand, it can be less efficient at low accuracy. This
behavior is consistent with the results of Fornberg and Driscoll
[9], who compared split-step methods of order 2, 4, and 6 with
several higher order linear multistep methods. For a two-soliton
collision, Fornberg and Driscoll showed that for the global
error range of 10 –10 , the second-order split-step scheme
is more efficient than the fourth- and sixth-order schemes.
However, for global errors smaller than 10, the higher order
schemes become more efficient. We found similar qualita-
tive behavior for the second-order schemes and third-order
local-error method that we study here.

For typical realistic optical-fiber transmission systems, we
will demonstrate that the walk-off method is the most efficient
of the four methods in the range of accuracy of commercial in-
terest. Nevertheless, the local-error method is still competitive
in this accuracy range, and moreover, it is robust for a wide range
of systems.

The remainder of the paper is organized as follows. First, we
reviewthesplit-stepmethodand theerrorassociatedwith it.Then
we describe the five implementations of the split-step method.
Next, we discuss simulation results comparing the performance
of these implementations. Finally, the conclusion follows.

II. THEORY

A. Origin of the Split-Step Error

To estimate the local and global errors in the split-step Fourier
method it is convenient to represent (1) in the form

(2)

where is the dispersion operator and
is the nonlinear operator. Although the following

discussion is for the nonlinear Schrödinger equation (1), the ar-
guments and conclusions also apply to the modified versions of
(1) that model realistic optical-fiber transmission systems and to
general reaction-diffusion equations. In the symmetric split-step
scheme, the solution to (2) is approximated by

(3)
Since the dispersion and nonlinear operators do not commute in
general, the solution (3) is only an approximation to the exact so-
lution. An argument based on the Baker–Campbell–Hausdorff
formula shows that thelocal error, which is the error incurred in
a single step of the symmetric split-step scheme, has a leading-
order term that is of third order in the step size, i.e, the error
is [10]. When we state that an error is , we mean
that it is bounded by for some constant . Since the total
number of steps in a fiber span is inversely proportional to the
average step size, theglobal erroraccumulated over a fiber span
is second order in the step size .

Finding an optimal step-size distribution depends on the par-
ticular optical transmission system. We will review several cri-
teria for choosing the step size in the split-step Fourier method
and we will introduce a new criterion based on a measure of the
local error.

B. Nonlinear Phase-Rotation Method

The nonlinear phase-rotation method is a variable step-size
method that is designed for systems in which nonlinearity plays
a major role. For a step of size, the effect of the nonlinear
operator is to increment the phase ofby an amount

. If we impose an upper limit on the nonlinear phase
increment , we obtain the bound on the step size

(4)

This criterion for selecting the step size was originally applied to
simulate soliton propagation and is widely used in optical-fiber
transmission simulators. However, as we will show later, this
approach is far from optimal for many modern communications
systems.

C. Spurious Four-Wave Mixing and Logarithmic Step-Size
Distribution

An improper distribution of the step sizes may lead not only
to a general reduction of accuracy but also to numerical artifacts.
Forghieri [11] demonstrates that the power of the four-wave
mixing (FWM) products can be greatly overestimated by a con-
stant step-size method, since FWM is a resonance effect. To ef-
ficiently suppress this numerical artifact, Boscoet al. [6] used a
logarithmic distribution of the step sizes to keep the spurious
FWM components below a certain level. For a fiber span of
length and loss coefficient , the step size of theth step is
given by

(5)
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where and is the number of steps
per fiber span. We will call this implementation of the split-step
method thelogarithmic step-size method.

D. Walk-Off Method

In many optical-fiber communications systems, chromatic
dispersion is the dominant effect and nonlinearity only plays a
secondary role, particularly in multichannel systems in which
the wavelength channels cover a broad spectrum. In this case,
it can be reasonable to use thewalk-off method, in which the
step size is determined by the largest group velocity difference
between channels. The basic idea is to choose the step size to be
smaller than a characteristic walk-off length. In a multichannel
system with large local dispersion, pulses in different channels
move through each other very rapidly. To resolve the collisions
between pulses in different channels, the step size in the walk-
off method is chosen so that in a single step, two pulses in the
two edge channels shift with respect to each other by a time
that is a specified fraction of the pulse width. Consequently, the
step size is given by

(6)

where is the largest group velocity difference between
channels and is a constant that can vary from system to
system. In any system, , where
and are the dispersions corresponding to the smallest and
largest wavelengths and . Since is constant in any
particular kind of fiber, in a given type of fiber, the step size is
constant. The walk-off method can be applied to single-channel
as well as multichannel systems by choosingand at the
two edges of the signal spectrum.

E. Constant Step-Size Method

The simplest way to implement the split-step Fourier method
is to use a constant step size along the whole transmission path.
The global accuracy can be improved only by increasing the
total number of steps. Note that the walk-off and constant step-
size methods are identical in systems with only one type of fiber.

F. Local-Error Method

In practice, it is desirable to have a general criterion for
choosing the step-size distribution that is close to optimal for an
arbitrary system. Adaptive methods for controlling the step size
using a measure of the local error are widely used in ordinary
differential equation solvers [7]. We have implemented a scheme
based on bounding the error in each step using the technique
of step-doubling and local extrapolation. Given the fieldat a
distance , our aim is to compute the field at . Suppose that
we perform one step of size in a symmetric split-step scheme.
We will refer to the solution obtained at as the coarse
solution . Since the local error in the symmetric split-step
scheme is third order, there is a constantso that

(7)

where the true solution is the exact solution at obtained
from the given solution at. When we write that
for some functions and , we mean that for

some constant . Next, we return to and compute the fine
solution at the same distance using two steps of size

. As done previously, the fine solution is related to the true
solution by

(8)

By taking an appropriate linear combination of the fine and
coarse solutions we can obtain an approximate solution at
for which the leading order error term is of fourth order in the
step size [7]. From (7) and (8), it follows that this higher order
solution is given by

(9)

which we take as the input to the next step of size.
In the local-error method, the step size is adaptively chosen so

that the local error incurred fromto is bounded within
a specified range. Now the relative local errorof the higher
order solution is defined by

(10)

where the norm is defined as .
However, since we cannot compute the true solutionin prac-
tice, we cannot compute the local error using (10). Instead, we
define therelative local errorof a step to be the local error in
the coarse solution relative to the fine solution

(11)

Notice that is a measure of the true local errorsince can
be obtained from by replacing by . The step size is
chosen by keeping the relative local errorwithin a specified
range , where is the goal local error. If ,
the solution is discarded and the step size is halved. Ifis in the
range , the step size is divided by a factor of 2 for
the next step. If , the step size is multiplied by a
factor of for the next step.

Rather than simply computing the fine solution, our method
computes both the fine and coarse solutions. Although it
requires 50% more Fourier transforms than does the standard
symmetric split-step method, the method yields both a higher
order solution, which is globally third-order accurate, and a
measure of the relative local error that is used to control the
step size. However, it is important to understand that the higher
order solution is not always more accurate than the fine
solution , especially when the step size is large, since we are
bounding the local error of the coarse solution relative to the
fine solution, rather than the true local errorof the scheme.

Since we do not make any assumptions about the physical
properties of the system, such as the amount of nonlinearity or
dispersion, we expect the local-error method to work well in an
arbitrary system. In order to simulate a system with optimal ef-
ficiency, one first needs to investigate it to ascertain the major
sources of the split-step error. Assuming that the system is dom-
inated by one source of error, one can select an appropriate cri-
terion for choosing the step sizes. The local-error method al-
lows us to deal with general systems when the major source of
error is unknown or may even change during the propagation,
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Fig. 1. Plot of the total number of FFTs versus global relative error" for
(a) second-order and (b) fifth-order solitons.

or when performing a series of simulations in which the system
parameters are varied. The method can be applied to a variety of
systems without sacrificing too much computational efficiency.

III. N UMERICAL RESULTS

In this section, we compare the efficiency of the five im-
plementations of the split-step method described in Section II.
Since most of the computational time is consumed by evaluating
fast Fourier transforms (FFTs), we use the number of FFTs per
simulation as a measure of the total computational cost [9]. We
used the following scheme to compare the different methods.
First, we compute a solution that is accurate to machine pre-
cision using the standard symmetric split-step method (with step
sizes on the order of 5 cm). Next, we compute the numerical so-
lution for each of the different split-step implementations,
and calculate theglobal relative error defined by

(12)

where we use the norm defined in Section II-F. We compare the
performance of the different methods by plotting the number of
FFTs versus the global relative error.

A. Higher Order Solitons

We start with the propagation of second-order and fifth-order
solitons. These systems are both highly nonlinear. In addition,
higher order solitons are very sensitive to numerical errors, thus
requiring an efficient adaptive algorithm. The exact functional
form of the N-soliton solution can be found in [3], [5]. We
use an anomalous-dispersion fiber with ps km.
The initial pulse is a hyperbolic secant of the form

, where the nonlinear coefficient is
W km , the inverse pulse duration is ps , and

where and for the second-order and fifth-order
solitons, respectively. The corresponding FWHM pulse dura-
tion is 4 ps, and the peak powers are 35 and 220 mW for the

Fig. 2. Plot of the total number of FFTs versus global relative error" for a
collision of two first-order solitons.

second-order and fifth-order solitons, respectively. The number
of Fourier modes is 1024 and the simulation time window is
50 ps. We show the performance of the different implementa-
tions of the split-step method applied to the second-order soliton
in Fig. 1(a) and to the fifth-order soliton in Fig. 1(b). In Fig. 1,
we have plotted the number of FFTs versus the global rela-
tive error for the different step-size criteria. Although the per-
formance of the local-error method is not significantly better
in the range of low accuracy values 10–10 at high accu-
racy, the computational cost of the local-error method is one
or two orders of magnitude less than for other methods. Notice
that the nonlinear phase method performs better than the con-
stant step-size method, consistent with the system’s large non-
linearity. The slope of the local-error method curve is less than
those of the other two methods since the constant step size and
nonlinear phase methods are globally second-order accurate,
while the local-error method is globally third-order accurate.
The walk-off and constant step-size methods are identical since
this system includes only one type of fiber. The logarithmic
step-size method reduces to the constant step-size method be-
cause the fiber is lossless and (5) leads to a constant step-size
distribution.

B. Soliton Collisions

Soliton collisions can be a good test for numerical methods
because the subtle effect of FWM cancellation after the colli-
sion is very sensitive to numerical errors [3]. The fiber type and
the initial pulse shape are the same as in Section III-A, except
that . The pulse duration is 4 ps and the peak power is
8.8 mW. We launch two soliton pulses separated in time by
100 ps and with a central-frequency difference of 800 GHz.
The number of Fourier modes is 3072 and the simulation time
window is 400 ps. We show the performance of the different
methods in Fig. 2. The local error, constant step size, and non-
linear phase-rotation methods perform equally well at low ac-
curacy when the global error is in the range 10–10 , while
the local-error method is much more efficient when the global
error is less than 10 . Global errors less than 10 are required
to estimate the FWM terms correctly and to have them cancel
out after the collision. The nonlinear phase method still works
better than the constant step-size method because the nonlinear
interactions are critical in the propagation. As in Section III-A,
the logarithmic step size and walk-off methods reduce to the
constant step-size method.
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Fig. 3. Step sizeh as a function of distance for the local-error method applied
to a collision of two first-order solitons.

Using the example of a soliton collision, we illustrate the
adaptive behavior of the local-error algorithm. Fig. 3 shows the
step size as a function of propagation distance for the soliton col-
lision when the targeted range for the local error is (0.510 ,
10 ), and the initial guess for the step size is 1000 m. Since
the local error for this initial step is much less than the targeted
range of values, at each step, the step sizes are increased until
the local error is within the targeted range. The pulse collision
occurs at a distance of 200 km. At this point, we observe a sig-
nificant decrease in the step size, which is necessary to accu-
rately resolve the collision. After the collision, the step size is
increased to the same value as before the collision. The last step
is smaller than the previous step simply because the remaining
section of the fiber is shorter than the step size chosen by the
algorithm.

C. Single-Channel Systems

In this section, we study periodically stationary dispersion-
managed soliton (DMS) and chirped-return-to-zero (CRZ)
systems that resemble experimental systems [12], [13]. The
DMS system is highly nonlinear, meaning that both dispersion
and nonlinearity determine the signal evolution, while the CRZ
system is quasilinear and the evolution is mostly determined by
dispersion [14], [15]. Thus we are studying the four split-step
implementations using two different types of systems. We
include fiber attenuation and gain, but we do not consider am-
plifier noise. We use random bit strings of length 64 that repeat
periodically. We stress that our goal is to test the performance
of the numerical methods for realistic systems rather than to
achieve optimal propagation. Consequently, it is important that
we have pulse streams rather than single pulses, that we use
dispersion management, and that we include the effects of fiber
loss and amplifier gain.

The DMS system is based on a 107-km dispersion map, which
consists of four dispersion-shifted fiber spans, each of 25 km,
with normal dispersion equal to1.10 ps/nmkm, followed by
7 km of standard single-mode fiber with anomalous dispersion
of 16.6 ps/nmkm at 1551 nm [12]. The loss in both fibers is 0.21
dB/km, and the amplifier spacing is 25 km with an additional
amplifier after the standard single-mode fiber. We use Gaussian
pulses with a FWHM duration of 9 ps, as is appropriate for a 10
Gb/s bit rate. The peak power is 8 mW. The signal is launched
in the middle of a span of anomalous fiber to ensure the peri-

Fig. 4. Plot of the total number of FFTs versus global relative error" for the
single-channel (a) DMS and (b) CRZ systems.

odicity of the pulse shape as it propagates along the fiber. The
propagation distance is 1280 km. The simulation time window
is 6400 ps and the number of Fourier modes is 6144. We have
not included a dispersion slope in this system since there is only
a single channel and previous work indicates that higher order
dispersion plays no role [12].

The CRZ system is based on a 180 km dispersion map
consisting of 160 km of dispersion-shifted fiber with disper-
sion 2.44 ps/nmkm followed by 20 km of standard fiber
with dispersion 16.55 ps/nmkm [13]. The dispersion slope
is 0.075 ps nm km and the fiber loss is 0.21 dB/km for
both fibers, while the amplifier spacing is 45 km. Symmetric
dispersion pre- and postcompensation is performed using fiber
spans of length 2.0 km, where the dispersion is 93.5 ps/nmkm,
the slope is 0.2 ps nm km and the loss is 0.5 dB/km. The
initial pulses are phase-modulated, raised-cosine pulses with
1-mW peak power and a chirp parameter equal to0.6 [14].
The bit rate is 10 Gb/s and the propagation distance is 1800
km. The simulation time window is 6400 ps and the number of
Fourier modes is 4096.

The performance of the four split-step implementations for
the single-channel DMS and CRZ systems is shown in Fig. 4(a)
and (b), respectively. In both systems, the local-error method
performs best over the entire range. Due to its higher order of
accuracy, the data points for the local-error method lie on a line
with a smaller absolute slope than those of the other methods,
as expected. However, all methods become comparable in the
range of global errors 10 –10 , the region of most interest in
simulating fiber-optic links. We note however, that in the CRZ
system the performance of the logarithmic step-size method is
somewhat poorer than that of the nonlinear phase and walk-off
methods.
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Fig. 5. Plot of the total number of FFTs versus global relative error" for the
multichannel CRZ system.

D. Multichannel CRZ System

In order to compare the split-step implementations for mod-
eling multichannel communications systems, we used the same
CRZ system as described in Section III-C. In Fig. 5, we show the
performance of the split-step selection criteria on a five-channel
CRZ system with a 50-GHz channel spacing. As in the single-
channel case, the local-error method is much more efficient at
high accuracy. However, at low accuracy, with the global error
in the range 10 –10 , which is typical for most practical sys-
tems, the walk-off method performs best. At low accuracy, the
local-error method does not perform as well as the walk-off
method for the following reasons. First, in the multichannel
CRZ system, the step size within each fiber in the local-error
method varies approximately within a factor of two, and the
average value is comparable to the step size in the walk-off
method for a given global error. However, each pair of steps
in the local-error method is 50% more expensive than in the
walk-off method. In addition, when the step size is large and
the global accuracy is low, the higher order solutionmay not
be as accurate as the fine solution. Indeed, we have observed
that the local-error method performs slightly better at low global
accuracy if we keep the fine solution instead of the higher
order solution at each step.

Next, we observe that the nonlinear phase-rotation method
does not perform as well as the walk-off method in the mul-
tichannel CRZ system, although the performance of the two
methods is comparable in the single-channel DMS and CRZ
systems. There are two major reasons for this behavior. First,
in contrast to the single-channel case, the walk-off criterion
becomes more physically relevant in a WDM system, in which
pulses in different channels collide. Second, the step size in
the nonlinear phase-rotation method is determined by the peak
power in the time domain. In the single-channel CRZ system,
the power function contains spikes due to the overlap between
neighboring pulses. However, between amplifiers the peak
power decreases monotonically with distance due to fiber atten-
uation. By contrast, the peak power of the multichannel system
does not decrease monotonically with distance but contains
irregular spikes because pulses from different channels rapidly
pass through each other. As a consequence, there is a significant
proportion of step sizes in the nonlinear phase-rotation method
that are much smaller than they need to be for a given global

Fig. 6. Step sizeh as a function of distance for the local-error method applied
to the multichannel CRZ system. The upper two plots show the step sizes for
the first two and last two periods of the dispersion map, and the lower two plots
show the corresponding portions of the dispersion map. Triangles indicate the
positions of amplifiers.

accuracy. The logarithmic step-size method is not efficient in
the CRZ system because the step-size choice is only based
on limiting spurious FWM, which is only one of the potential
sources of error in a multichannel simulation. We also found
that in the logarithmic step-size method, the error grows most
rapidly in fibers with high dispersion. We find that the constant
step-size method is inefficient in the multichannel CRZ system.
The reason it performs so poorly is that for a given step size
the global error does not accumulate linearly with distance.
Consequently, in some sections of the transmission line the
global error grows rapidly, while in others the error accumulates
very slowly and computational effort is wasted.

In Fig. 6, we show the step sizes in the local-error method as
a function of propagation distance when the targeted range for
the local error is (0.5 10 , 2 10 ). The upper two plots
show the step sizes for the first two and last two periods of the
dispersion map, and the lower two plots show the corresponding
portions of the dispersion map. The amplifiers, marked by trian-
gles, are placed after the precompensation fiber and then every
45 km. Notice that the step size increases as the signal power
and the strength of the nonlinear interactions decrease due to
the fiber loss. Also note that step size is smaller in fibers with
higher dispersion since the pulses in neighboring channels move
faster with respect to each other.

To characterize the dependence of the local-error method on
the number of Fourier modes, we modeled the multichannel
CRZ system with different numbers of Fourier modes. The
results in Fig. 5 were obtained with . We also simu-
lated the system with , , and .
In each case, the log–log plots of the number of FFTs versus the
global error have the same slope as for the local-error method
plot shown in Fig. 5. However, the curves are slightly shifted
with respect to each other. The number of FFTs required to
achieve a given global error can increase by a factor of two
as is increased from 3072 to 6144. Since we keep the time
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Fig. 7. Plot of the global error as a function of method parameter for (a) local
error, (b) walk-off, (c) nonlinear phase, (d) logarithmic step, and (e) constant
step methods.

window fixed, the frequency window increases asincreases,
and more high-frequency components contribute to the global
error. However, if we further increase from 4096 to 8192,
the number of FFTs grows by less than 30%, since the addi-
tional high frequency modes lie well outside the bandwidth of
the WDM signal and contribute little to the error.

E. Variation of Method Parameters

In this section, we address two important questions con-
cerning how the method parameter should be chosen to achieve

a desired global accuracy. The method parameter is the param-
eter in a split-step method that we vary to adjust the accuracy of
the method. First, for a given global error, how much does the
method parameter depend on the particular system? Second, by
what factor should the method parameter be decreased to halve
the global error?

To answer the first question, in Fig. 7(a)–(e), we show the
dependence of the global error on the method parameter for
the local error, walk-off, nonlinear phase, logarithmic step, and
constant step-size methods, respectively. Although the walk-off
method is the most efficient in some cases, it exhibits the
worst system dependence. In particular, for the five systems we
studied, when the global error is 10, the walk-off parameter
varies over five orders of magnitude, whereas the parameter
for the other three methods vary only over one to two orders
of magnitude. Even omitting the two soliton systems from the
comparison, the walk-off method has a greater system depen-
dence than the local-error method. Consequently, each new
system requires a significantly different walk-off parameter to
achieve the same global accuracy.

To answer the second question, we examine the slopes of
the curves in Fig. 7. For the walk-off, nonlinear phase, and
logarithmic steps methods, the slopes are approximately 2, as
expected, since these three schemes are second order and the
step sizes depend linearly on the method parameter. Ideally, the
global error should depend linearly on the local error. However,
for the local-error method, the slopes of the curves in Fig. 7(a)
are approximately 1.3 rather than 1. The reason for this discrep-
ancy is that the true local error (10) is unavailable. Instead, we
use an estimate of local error given by (11). In addition, in our
local-error algorithm, the local error (11) is maintained within a
range of values rather than being kept constant.

IV. CONCLUSION

We have studied the performance of different implementa-
tions of the symmetric split-step Fourier method for solving the
nonlinear Schrödinger equation applied to various optical-fiber
transmission systems. We developed an implementation of the
symmetric split-step Fourier method that is globally third-order
accurate and for which the step sizes are chosen using a cri-
terion that keeps the local error within a specified range. We
showed that the local-error method performs best for modeling
optical solitons, soliton–pulse interactions, and single-channel
transmission systems. Because it is a higher order method, the
local-error method is much more computationally efficient at
high accuracy than the other three methods we considered for
all of the systems we studied. This behavior is expected with
higher order schemes [9]. Moreover, even at low accuracy, the
local-error method has the advantage that it is robust for arbi-
trary systems.

We find that the nonlinear phase-rotation method is inefficient
for modeling typical modern optical-fiber transmission systems,
although it performs reasonably well for solitons. The loga-
rithmic step-size method, which is based on bounding the spu-
rious FWM in each step [6], and the constant step-size method
are not efficient for multichannel systems, although they can
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be as efficient as the nonlinear phase and walk-off methods in
single-channel systems. Finally, the walk-off method, in which
the step size is chosen to be inversely proportional to the fiber
dispersion, performs well for multichannel systems over the ac-
curacy range of interest in commercial applications.
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