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Bioeconomic modeling of the exploitation of biological resources such as �sheries has gained importance in recent years. In this
work we propose to de�ne and study a bioeconomic equilibrium model for two �shermen who catch three species taking into
consideration the fact that the prices of �sh populations vary according to the quantity harvested; these species compete with each
other for space or food; the natural growth of each species is modeled using a logistic law. �e main purpose of this work is to
de�ne the �shing e	ort that maximizes the pro�t of each �sherman, but all of them have to respect two constraints: the �rst one is
the sustainable management of the resources and the second one is the preservation of the biodiversity. �e existence of the steady
states and their stability are studied using eigenvalue analysis.�e problem of determining the equilibriumpoint thatmaximizes the
pro�t of each �sherman leads to Nash equilibrium problem; to solve this problem we transform it into a linear complementarity
problem (LCP); then we prove that the obtained problem (LCP) admits a unique solution that represents the Nash equilibrium
point of our problem. We close our paper with some numerical simulations.

1. Introduction

Over�shing leads to resource destruction, that is why there
is an increasing need for the bioeconomic modeling tool
that evaluates the biological and economic e	ects of di	erent
harvesting strategies directed at extracting the long-term
maximum sustainable production while avoiding the risk of
recruitment over�shing.�e techniques and issues associated
with the bioeconomic modeling for the exploitation of
marine resources have been discussed in detail by Clark and
Munro [1, 2]. Clark and Munro [1] demonstrated that, with
the aid of optimal control theory, �sheries economics can
without di
culty be cast in a capital-theoretic framework
yielding results that are both general and readily compre-
hensible. Chaudhuri [3] discussed the problem of combined
harvesting of two competing �sh species, each of which
obeys the law of logistic growth; it is shown that the open-
access �shery may possess a bioeconomic equilibrium which
drives one species to extinction. In this context, Chaudhuri
[4] considered the problem of dynamic optimization of the
exploitation policy connected with the combined harvesting
of two competing �sh species, each of which obeys the

logistic growth law. Models on the combined harvesting of
a two-species prey-predator �shery have been discussed by
Chaudhuri and Ray [5]. Kar and Chaudhuri [6] studied
the problem of harvesting two competing species in the
presence of a predator species which feeds on both the
competing species; a combined harvesting e	ort is devoted
to the exploitation of the �rst two (prey) species while the
third (predator) species is not harvested. Mchich et al. [7]
proposed a speci�c stock-e	ort dynamic model; the stock
corresponds to two �sh populations growing and moving
between two �shing zones, on which they are harvested
by two di	erent �eets; the e	ort represents the number of
�shing vessels of the two �eets which operate on the two
�shing zones; the bioeconomicmodel is a set of four ordinary
di	erential equations governing the stocks and the �shing
e	orts in the two �shing areas; �sh migration, as well as
vessels displacements, between the two zones is assumed to
take place at a faster time scale than the variation of the
stocks and the changes of �eets sizes, respectively; the vessels
movements between the two �shing areas are assumed to be
stock dependent, that is, the larger the stock density is in a
zone, the more the vessels tend to remain in it.
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Many mathematical models have been developed to
describe the dynamics of �sheries; we can refer, for example,
to El Foutayeni et al. [8] who in their work have built a
bioeconomic equilibrium model for several �shermen who
catch two �sh species; in this work, the authors have showed
that the problem of determining the equilibrium point that
maximizes the pro�t of each �sherman is solved by using
linear complementarity problem. El Foutayeni et al. [9]
have also de�ned a bioeconomic equilibrium model for “�”
�shermen who catch three species; these species compete
with each other for space or food; the natural growth of
each species is modeled using a logistic law; the objective of
their work is to calculate the �shing e	ort that maximizes the
pro�t of each �sherman at biological equilibriumby using the
generalized Nash equilibrium problem.

Most bioeconomic models do not take into account the
variational of the price of �sh population.Usually, the existing
models consider that the prices of the �sh populations are
constants. In this context, El Foutayeni and Khaladi [10, 11]
have presented a bioeconomic model of �sh populations
taking into consideration the fact that the prices of �sh
populations vary according to the quantity harvested. But
in these articles they assumed the existence of a single
�sherman.

�is paper is situated in this general context; in this work
we present a bioeconomic model for three species which
compete with each other for space or food and each of which
obeys the law logistic growth. �ese species are caught by
two �shermen. We will assume that the price of the �sh
population increases with decreasing harvest and the price of
the �sh population decreases with the increase of the harvest,
but the minimum price is equal to a �xed positive constant.
�e aim of this paper consists in determining the �shing
e	ort strategy adopted by each �sherman to maximize its
incomeunder two assumptions; the �rst one is the sustainable
management of the resources, and the second one is the
preservation of the biodiversity.

�e paper is structured as follows. In Section 2, we give
a description of the biological model of �sh populations; we
will de�ne the mathematical model and study the stability
of the equilibrium of our system. In Section 3, we give
the bioeconomic model of the �sh populations taking into
consideration the fact that the prices of �sh populations
vary according to the quantity harvested; in this section
we prove that the resolution of bioeconomic equilibrium
model of the three �sh populations is equivalent to solving
a Nash equilibrium problem and then we show that the latter
problem is equivalent to a linear complementarity problem,
then we prove that the obtained problem (LCP) admits
a unique solution that represents the Nash equilibrium
of our problem. Some numerical simulations are given in
Section 4 to illustrate the results. Finally, in Section 5 we give
a conclusion.

2. The Biological Model of Fish Populations

�e aim of this section is to de�ne a biological model of three
marine species that compete with each other for space or food
and whose natural growth of each is obtained by means of a

logistic law. We study the existence of the steady states and
their stability using eigenvalue analysis and Routh-Hurwitz
stability criterion.

2.1. �e Mathematical Model and Hypotheses. �e evolution
of the biomass of the �rst species is given by the following
mathematical equation:�̇1 (�) = �1�1 (�) (1 − �1 (�)�1 ) − 
12�1 (�) �2 (�)− 
13�1 (�) �3 (�) , (1)

where �1(�) is the biomass of population 1; �1 is the intrinsic
growth rate of species 1;�1 is the carrying capacity for species1; 
12 is the coe
cient of competition between species 2 and
species 1; and 
13 is the coe
cient of competition between
species 3 and species 1.

�e evolution of the biomass of the second population is
given by the following mathematical equation:�̇2 (�) = �2�2 (�) (1 − �2 (�)�2 ) − 
21�1 (�) �2 (�)− 
23�2 (�) �3 (�) , (2)

where �2(�) is the biomass of population 2; �2 is the intrinsic
growth rate of species 2;�2 is the carrying capacity for species2; 
21 is the coe
cient of competition between species 1 and
species 2; and 
23 is the coe
cient of competition between
species 3 and species 2.

�e evolution of the biomass of the third species is given
by the following mathematical equation:�̇3 (�) = �3�3 (�) (1 − �3 (�)�3 ) − 
31�1 (�) �3 (�)− 
32�2 (�) �3 (�) , (3)

where �3(�) is the biomass of population 3; �3 is the intrinsic
growth rate 3; �3 is the carrying capacity for the species of
species 3; 
31 is the coe
cient of competition between species1 and species 3; and 
32 is the coe
cient of competition
between species 2 and species 3.

It is interesting to note that to assure the existence of the
three species and their stability we should assume that�� > 
����, ∀�,  = 1, 2, 3, with � ̸= . (4)

�e evolution of the biomass of �sh populations is
modeled by the following equations:�̇1 (�) = �1�1 (�) (1 − �1 (�)�1 ) − 
12�1 (�) �2 (�)− 
13�1 (�) �3 (�) ,�̇2 (�) = �2�2 (�) (1 − �2 (�)�2 ) − 
21�1 (�) �2 (�)− 
23�2 (�) �3 (�) ,�̇3 (�) = �3�3 (�) (1 − �3 (�)�3 ) − 
31�1 (�) �3 (�)− 
32�2 (�) �3 (�) .

(5)
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Let �(�) = (�1(�), �2(�), �3(�)) be the solution of system
(5). �en all the solutions of the system (5) are nonnegative.
To demonstrate that, we must recall that by [12] the system of
equation�̇ = � (�1, �2, . . . , ��) with � (� = 0) = �0 (6)

is a positive system if and only if�̇� = �� (�1 ≥ 0, . . . , �� = 0, . . . , �� ≥ 0) ≥ 0;∀� ∈ [1 ⋅ ⋅ ⋅ �] . (7)

In our case, for�1 = 0, �2, �3 ≥ 0, we have��1/�� = 0 ≥ 0.By
the same, for�2 = 0, �1, �3 ≥ 0, we have��2/�� = 0 ≥ 0.Also
for �3 = 0, �1, �2 ≥ 0, we have ��3/�� = 0 ≥ 0.�erefore, all
the solutions of system (5) are nonnegative.

�eorem 1. All the solutions of system (5) which start in R
3
+

are uniformly bounded.

Proof. We de�ne the function� = �1 + �2 + �3. (8)

�erefore, the time derivative along a solution of (5) is���� = �1�1 (1 − �1�1) + �2�2 (1 − �2�2)
+ �3�3 (1 − �3�3) − 
12�1�2 − 
13�1�3− 
21�1�2 − 
23�2�3 − 
31�1�3 − 
32�2�3.

(9)

For each � > 0, we have���� + �� = �1�1 (1 − �1�1) + �2�2 (1 − �2�2)
+ �3�3 (1 − �3�3) − 
12�1�2 − 
13�1�3− 
21�1�2 − 
23�2�3 − 
31�1�3− 
32�2�3 + ��1 + ��2 + ��3

≤ �1�1 (1 − �1�1) + �2�2 (1 − �2�2)
+ �3�3 (1 − �3�3) + ��1 + ��2 + ��3

= �1 [�1 (1 − �1�1) + �]
+ �2 [�2 (1 − �2�2) + �]
+ �3 [�3 (1 − �3�3) + �]

= �1 (�1 + �) − �1�1 �21 + �2 (�2 + �)− �2�2 �22 + �3 (�3 + �) − �3�3 �23.
(10)

We can easily show that

− �1�1 �21 + �1 (�1 + �) − �14�1 (�1 + �)2 ≤ 0,
− �2�2 �22 + �2 (�2 + �) − �24�2 (�2 + �)2 ≤ 0,
− �3�3 �23 + �3 (�3 + �) − �34�3 (�3 + �)2 ≤ 0.

(11)

�en

− �1�1 �21 + �1 (�1 + �) ≤ �14�1 (�1 + �)2 ,
− �2�2 �22 + �2 (�2 + �) ≤ �24�2 (�2 + �)2 ,
− �3�3 �23 + �3 (�3 + �) ≤ �34�3 (�3 + �)2 .

(12)

�erefore, we can deduce that���� + �� ≤ �14�1 (�1 + �)2 + �24�2 (�2 + �)2
+ �34�3 (�3 + �)2 .

(13)

So the right-hand side is positive; therefore it is bounded for

all (�1, �2, �3) ∈ R
3
+.�erefore we �nd a � > 0 with ��/�� +�� < �. Using the theory of di	erential inequality [13], we

obtain 0 ≤ �(�1, �2, �3)
≤ �� + [�(�1 (0) , �2 (0) , �3 (0)) − ��] �−�� (14)

which, upon letting � → ∞, yields 0 ≤ � ≤ �/�.
�en, we have

� = {(�1, �2, �3) ∈ R
3
+ : � < �� + !, for any ! > 0} , (15)

where � is the region in which all the solutions of system of

(5) that start in R
3
+ are con�ned.

2.2. �e Steady States of the System. �e steady states of the
system of (5) are obtained by solving the system of equations
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�1�1 (1 − �1�1) − 
12�1�2 − 
13�1�3 = 0,
�2�2 (1 − �2�2) − 
21�1�2 − 
23�2�3 = 0,
�3�3 (1 − �3�3) − 
31�1�3 − 
32�2�3 = 0.

(16)

�is system of equations has eight solutions#1(0, 0, 0), #2(�1, 0, 0), #3(0, �2, 0), #4(0, 0, �3),#5(�(5)1 , �(5)2 , 0), where
�(5)1 = �1�2 �1 − 
12�2�1�2 − 
12
21�2�1 ,�(5)2 = �2�1 �2 − 
21�1�1�2 − 
12
21�2�1 ,

(17)

#6(�(6)1 , 0, �(6)3 ), where
�(6)1 = �1�3 �1 − 
13�3�1�3 − 
13
31�3�1 ,�(6)3 = �3�1 �3 − 
31�1�1�3 − 
13
31�3�1 ,

(18)

#7(0, �(7)2 , �(7)3 ), where
�(7)2 = �2�3 �2 − 
23�3�3�2 − 
32
23�2�3 ,�(7)3 = �3�2 �3 − 
32�2�3�2 − 
32
23�2�3 ,

(19)

and #8(�∗1 , �∗2 , �∗3 ), where
�∗1 = �1 (�1�2�3 − �1
23
32�2�3 + �3
12
23�2�3 − �2�3
12�2 − �2�3
13�3 + �2
13
32�2�3)Δ ,
�∗2 = �2 (�1�2�3 − �2
13
31�1�3 + �1
23
31�1�3 − �1�3
21�1 − �1�3
23�3 + �3
13
21�1�3)Δ ,
�∗3 = �3 (�1�2�3 − �3
12
21�1�2 − �1�2
31�1 + �1
21
32�1�2 + �2
12
31�1�2 − �1�2
32�2)Δ ,
Δ = �1�2�3 − �1
23
32�2�3 − �2
13
31�1�3 − �3
12
21�1�2 + 
12
23
31�1�2�3 + 
13
21
32�1�2�3.

(20)

�e system of (16) has several solutions, but only one of
them can give the coexistence of the biomass of the three
species; this solution is the point #8(�∗1 , �∗2 , �∗3 ).
2.3. �e Stability of the Steady States. �e variational matrix
of system (5) is

% = [[[[
%11 −
12�1 −
13�1−
21�2 %22 −
23�2−
31�3 −
32�3 %33

]]]] , (21)

where

%11 = �1 (1 − 2�1 �1) − 
12�2 − 
13�3,
%22 = �2 (1 − 2�2 �2) − 
21�1 − 
23�3,
%33 = �3 (1 − 2�3 �3) − 
31�1 − 
32�2.

(22)

Proposition 2. �e point #1(0, 0, 0) is unstable.

Proof. �e variational matrix of system (5) at the steady state#1(0, 0, 0) is
%1 = [[[[

�1 0 00 �2 00 0 �3
]]]] . (23)

�e eigenvalues of %1 are71 = �1 > 0,72 = �2 > 0,73 = �3 > 0, (24)

then, the point #1(0, 0, 0) is unstable.
Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 1 shows the dynam-

ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values �(0) =0.01, A(0) = 0.01, B(0) = 0.01. By Figure 1 we �nd that the
steady state point#1 is unstable, andmore precisely this point
tends to the point #8.
Proposition 3. �e point #2(�1, 0, 0) is unstable if the condi-
tions of existence given by (4) hold; if not, it is stable.
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Figure 1: Dynamical behaviors and phase space trajectories of the three marine species.

Proof. �e variational matrix of system (5) at the steady state#2(�1, 0, 0) is
%2 = [[[

−�1 −
12�1 −
13�10 �2 − 
21�1 00 0 �3 − 
31�1
]]] . (25)

�e eigenvalues of %2 are71 = −�1 < 0,72 = �2 − 
21�1,73 = �3 − 
31�1 (26)

if �2 > 
21�1�3 > 
31�1, (27)

then, the point #2(�1, 0, 0) is unstable; if not, it is stable.
Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 2 shows the dynam-

ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values �(0) =

70, A(0) = 0.01, B(0) = 0.01. By Figure 2 we can see that the
steady state point#2 is unstable, andmore precisely this point
tends to the point #8 too.
Proposition 4. �e point #3(0, �2, 0) is unstable if the condi-
tions of existence given by (4) hold; if not, it is stable.

Proof. �e variational matrix of system (5) at the steady state#3(0, �2, 0) is
%3 = [[[

�1 − 
12�2 0 0−
21�2 −�2 −
23�20 0 �3 − 
32�2]]] . (28)

�e eigenvalues of %3 are71 = �1 − 
12�2,72 = −�2 < 0,73 = �3 − 
32�2 (29)

if �1 > 
12�2,�3 > 
32�2; (30)

therefore, the point #3(0, �2, 0) is unstable; if not, it is stable.
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Figure 2: Dynamical behaviors and phase space trajectories of the three marine species.

Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 3 shows the dynam-
ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values �(0) =0.01, A(0) = 50, B(0) = 0.01. By Figure 3 we can see that the
steady state point#3 is also unstable and tends to the point#8.
Proposition 5. �e point #4(0, 0, �3) is unstable if the condi-
tions of existence given by (4) hold; if not, it is stable.

Proof. �e variational matrix of system (5) at the steady state#4(0, 0, �3) is
%4 = [[[[

�1 − 
13�3 0 00 �2 − 
23�3 0−
13�3 −
32�3 −�3
]]]] . (31)

�e eigenvalues of %4 are
71 = �1 − 
13�3,72 = �2 − 
23�3,73 = −�3 < 0

(32)

if �1 > 
13�3,�2 > 
23�3, (33)

then, the point #4(0, 0, �3) is unstable; if not, it is stable.
Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 4 indicates the

dynamical behaviors and phase space trajectory of the three
marine species against time, beginning with the initial values�(0) = 0.01, A(0) = 0.01, B(0) = 40. Following Figure 4 we
can see that the steady state point#3 is unstable and also tends
to the point #8.
Proposition 6. �e point #5(�(5)1 , �(5)2 , 0) is unstable.
Proof. �e variational matrix of system (5) at the steady state#5(�(5)1 , �(5)2 , 0) is

%5 = [[[[[
− �1�1 �(5)1 −
12�(5)1 −
13�(5)1−
21�(5)2 − �2�2 �(5)2 −
23�(5)20 0 �3 − 
31�(5)1 − 
32�(5)2

]]]]]
. (34)
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Figure 3: Dynamical behaviors and phase space trajectories of the three marine species.

�e eigenvalues of %5 are
71 = − 12�1�2 (D − √F) ,
72 = − 12�1�2 (D + √F) ,
73 = �3 − 
31�(5)1 − 
32�(5)2 ,

(35)

whereD = �1�(5)1 �2 + �1�2�(5)2 ,F = [�1�(5)1 �2 − �1�2�(5)2 ]2 + 4�21�22
21�(5)2 
12�(5)1 . (36)

If �1 > 
12�2,�2 > 
21�1 (37)

then, 73 > 0; if not, then 71 > 0.�erefore, the point #5(�(5)1 ,�(5)2 , 0) is unstable in all cases.

Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 5 represents the

dynamical behaviors and phase space trajectory of the three
marine species against time, beginning with the initial values�(0) = 60, A(0) = 28, B(0) = 0.01. Following Figure 5 we
can deduce that the steady state point #5 is unstable and also
tends to the point #8.
Proposition 7. �e point #6(�(6)1 , 0, �(6)3 ) is unstable.
Proof. �e variational matrix of system (5) at the steady state#6(�(6)1 , 0, �(6)3 ) is

%6 = [[[[[[
− �1K1 �(6)1 −
12�(6)1 −
13�(6)10 �2 − 
21�(6)1 − 
23�(6)3 0−c31�(6)3 −
32�(6)3 − �3�3 �(6)3

]]]]]]
. (38)

�e eigenvalues of %6 are
71 = − 12�1�3 (L − √M) ,
72 = �2 − 
21�(6)1 − 
23�(6)3 ,73 = − 12�1�3 (L + √M) ,

(39)
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Figure 4: Dynamical behaviors and phase space trajectories of the three marine species.

where

L = �1�(6)1 �3 + �1�3�(6)3 ,M = [�1�(6)1 �3 − �1�3�(6)3 ]2 + 4�21�23
31�(6)3 
13�(6)1 . (40)

If �1 > 
13�3,�3 > 
31�1 (41)

then, 72 > 0; if not, then 71 > 0; therefore, point #6(�(6)1 ,0, �(6)3 ) is unstable.
Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 6 indicates the

dynamical behaviors and phase space trajectory of the three
marine species against time, beginning with the initial values�(0) = 59, A(0) = 0.01, B(0) = 38. Following Figure 6 we
can deduce that the steady state point #6 is unstable and also
tends to the point #8.
Proposition 8. �e point #7(0, �(7)2 , �(7)3 ) is unstable.

Proof. �e variational matrix of system (5) at the steady state#7(0, �(7)2 , �(7)3 ) is
%7 = [[[[[[

�1 − 
12�(7)2 − 
13�(7)3 0 0−
21�(7)2 − �2�2 �(7)2 −
23�(7)2−
31�(7)3 −
32�(7)3 − �3�3 �(7)3
]]]]]]
. (42)

�e eigenvalues of %7 are71 = �1 − 
12�(7)2 − 
13�(7)3 ,72 = − 12�2�3 (N − √O) ,73 = − 12�2�3 (N + √O) ,
(43)

whereN = �2�(7)2 �3 + �2�3�(7)3 ,O = [�2�(7)2 �3 + �2�3�(7)3 ]2 + 4�22�23
23�(7)2 
32�(7)3 . (44)

If �2 > 
23�3,�3 > 
32�2 (45)
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Figure 5: Dynamical behaviors and phase space trajectories of the three marine species.

then, 71 > 0; if not, then 72 > 0. �erefore, point #7(0, �(7)2 ,�(7)3 ) is unstable.
Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 7 shows the dynam-

ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values �(0) =0.01, A(0) = 48, B(0) = 39. By Figure 7 we can conclude that
the steady state point#7 is unstable and also tends to point#8.
�eorem 9. �e point #8(�∗1 , �∗2 , �∗3 ) is locally asymptotically
stable.

Proof. Weproof this theorem by using Routh-Hurwitz stabil-
ity criterion.

�e variational matrix of system (5) in the steady state#8(�∗1 , �∗2 , �∗3 ) is
%8 = [[[

%11 −
12�∗1 −
13�∗1−
21�∗2 %22 −
23�∗2−
31�∗3 −
32�∗3 %33
]]] , (46)

where %11 = �1 (1 − 2�1 �∗1) − 
12�∗2 − 
13�∗3 ,

%22 = �2 (1 − 2�2 �∗2) − 
21�∗1 − 
23�∗3 ,%33 = �3 (1 − 2�3 �∗3) − 
31�∗1 − 
32�∗2 .
(47)

Using the fact that by (16) we have

�1 (1 − 2�1 �∗1) − 
12�∗2 − 
13�∗3 = − �1�1 �∗1 ,�2 (1 − 2�2 �∗2) − 
21�∗1 − 
23�∗3 = − �2�2 �∗2 ,�3 (1 − 2�3 �∗3) − 
31�∗1 − 
32�∗2 = − �3�3 �∗3
(48)

then

%8 = [[[[[[
− �1�1 �∗1 −
12�∗1 −
13�∗1−
21�∗2 − �2�2 �∗2 −
23�∗2−
31�∗3 −
32�∗3 − �3�3 �∗3

]]]]]]
. (49)

�e characteristic polynomial of the variational matrix is# (7) = P073 + P172 + P27 + P3, (50)
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where

P0 = 1,P1 = �1�1 �∗1 + �2�2 �∗2 + �3�3 �∗3 ,P2 = �1�1 �∗1 �2�2 �∗2 + �1�1 �∗1 �3�3 �∗3 + �2�2 �∗2 �3�3 �∗3− 
23�∗2 
32�∗3 − 
12�∗1 
21�∗2 − 
13�∗1 
31�∗3 ,P3 = �1�1 �∗1 �2�2 �∗2 �3�3 �∗3 + 
12�∗1 
23�∗2 
31�∗3+ 
13�∗3 
32�∗2 
21�∗1 − 
12�∗1 
21�∗2 �3�3 �∗3− 
23�∗2 
32�∗3 �1�1 �∗1 − 
13�∗3 
31�∗1 �2�2 �∗2 ;

(51)

we have P� > 0, ∀� = 0, 1, 2, 3. In fact,

(i) P0 = 1 > 0,
(ii) P1 = (�1/�1)�∗1 + (�2/�2)�∗2 + (�3/�3)�∗3 > 0,
(iii) using the fact that by (4) we have

�1�2 > 
12�2
21�1,�2�3 > 
23�3
32�2,�1�3 > 
13�3
31�1 (52)

soP2 = �1�1 �∗1 �2�2 �∗2 + �1�1 �∗1 �3�3 �∗3 + �2�2 �∗2 �3�3 �∗3− 
23�∗2 
32�∗3 − 
12�∗1 
21�∗2 − 
13�∗1 
31�∗3 > 0,P3 = �1�1 �∗1 �2�2 �∗2 �3�3 �∗3 + 
12�∗1 
23�∗2 
31�∗3
+ 
13�∗3 
32�∗2 
21�∗1 − 
12�∗1 
21�∗2 �3 �∗3�3− 
23�∗2 
32�∗3 �1�1 �∗1 − 
13�∗3 
31�∗1 �2�2 �∗2 > 0,

(53)

(iv)

P1P2 − P0P3 = ( �1�1 �∗1 + �2�2 �∗2 + �3�3 �∗3)
⋅ ( �1�1 �∗1 �2�2 �∗2 + �1�1 �∗1 �3�3 �∗3 + �2�2 �∗2 �3�3 �∗3
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Figure 7: Dynamical behaviors and phase space trajectories of the three marine species.

− 
23�∗2 
32�∗3 − 
12�∗1 
21�∗2 − 
13�∗1 
31�∗3)
− ( �1�1 �∗1 �2�2 �∗2 �3�3 �∗3 + 
12�∗1 
23�∗2 
31�∗3
+ 
13�∗3 
32�∗2 
21�∗1 − 
12�∗1 
21�∗2 �3 �∗3�3
− 
23�∗2 
32�∗3 �1�1 �∗1 − 
13�∗3 
31�∗1 �2�2 �∗2) = �1�1 �∗1
⋅ �2�2 �∗2 �3�3 �∗3 − 
12�∗1 
23�∗2 
31�∗3 + �1�1 �∗1 �2�2 �∗2
⋅ �3�3 �∗3 − 
13�∗3 
32�∗2 
21�∗1 + �21�21 �∗21 �2�2 �∗2 − �1�1
⋅ �∗21 
12
21�∗2 + �22�22 �∗22 �3�3 �∗3 − �2�2 �∗22 
32
23�∗3
+ �21�21 �∗22 �3�3 �∗3 − �1�1 �∗21 
13
31�∗3 + �23�23 �∗23 �1�1 �∗1

− �3�3 �∗23 
13
31�∗1 + �22�22 �∗22 �1�1 �∗1 − �2�2 �∗22 
12
21�∗1+ �23�23 �∗23 �2�2 �∗2 − �3�3 �∗23 
23
32�∗2 .
(54)

From (4) we deduce thatP1P2 − P0P3 > 0. (55)

�en, using the Routh-Hurwitz stability criterion we con-
clude that the steady state point #8(�∗1 , �∗2 , �∗3 ) is locally
asymptotically stable.

Let �1 = 2, �2 = 1, �3 = 3, 
12 = 0.009, 
21 = 0.007, 
13 =0.008, 
23 = 0.001, 
31 = 0.002, 
32 = 0.001, �1 = 70, �2 =50, �3 = 40 in appropriate units. Figure 8 shows the dynam-
ical behaviors and phase space trajectory of the three marine
species against time, beginning with the initial values �(0) =49, A(0) = 30, B(0) = 38. By Figure 8 one can see that the
steady state point #8 is locally asymptotically stable.

More precisely, beginning with di	erent initial values
we can con�rm that the three marine species tend to point#8, and according to the phase space trajectories given by
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Figure 8: Dynamical behaviors and phase space trajectories of the three marine species.

Figures 1–7 we can con�rm that the steady state point #8 is
a global attractor.

3. Bioeconomic Model of Fishery

�e main purpose of this section is to de�ne and study a
bioeconomic equilibriummodel for two �shermenwho catch
three �sh populations.

More speci�cally, this bioeconomic model includes three
parts: a biological part connecting the catch to the biomass
stock, an exploitation part connecting the catch to the �shing
e	ort, and an economic part connecting the �shing e	ort to
the pro�t.

So, introducing the �shing by reducing the rate of �sh
population growth by the amountQ�� = R�S����, (56)

whereQ�� is the catches of �sh population  by the �sherman�, S�� is the �shing e	ort to exploit a �sh population  by
the �sherman �, and R� is the catchability coe
cient of �sh
population , the model for the evolution of �sh populations
is given by the following mathematical system of equations:

�̇1 = �1�1 (1 − �1�1) − 
12�1�2 − 
13�1�3 − R1S1�1,

�̇2 = �2�2 (1 − �2�2) − 
21�1�2 − 
23�2�3 − R2S2�2,
�̇3 = �3�3 (1 − �3�3) − 
31�1�3 − 
32�2�3 − R3S3�3.

(57)

On one hand, we denote by Q� = Q1� + Q2� the
total catches of species  by all �shermen; on the other
hand, we denote by S� = S1� + S2� the total �shing e	ort
dedicated to species  by all �shermen, and we denote byS(�) = (S�1, S�2, S�3)� the vector �shing e	ort which must be
provided by the �sherman � to catch the three species.

In what follows of this paper, the product of two vectorsT ∈ R
3 and U ∈ R

3 is the vector noted by TU or UT and is
de�ned by TU fl (T1A1, T2A2, T3A3)� ∈ R

3. (58)

�e scalar product is noted by T�U.�e division of the vectorT ∈ R
3 and the not null vectorU ∈ R

3 (i.e.,U� ̸= 0,∀� = 1, 2, 3)
is the vector noted by T/U and is de�ned byTU fl (T1U1 , T2U2 , T3U3)� ∈ R

3. (59)
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�e product of the vector T ∈ R
3 and the matrix V ∈ R

3×3 is
noted by TV and is de�ned byTV fl diag (T) ⋅ V ∈ R

3×3. (60)

Nowwe give the expression of biomass as a function of �shing
e	ort.

�e biomasses at biological equilibrium are the solutions
of the system

�1 (1 − �1�1) = 
12�2 + 
13�3 + R1S1,
�2 (1 − �2�2) = 
21�1 + 
23�3 + R2S2,
�3 (1 − �3�3) = 
31�1 + 
32�2 + R3S3.

(61)

�e solutions of this system are given by�1 = P11S1 + P12S2 + P13S3 + �∗1 ,�2 = P21S1 + P22S2 + P23S3 + �∗2 ,�3 = P31S1 + P32S2 + P33S3 + �∗3 ,
(62)

where

P11 = �1 (
32�2�3
23R1 − �3�2R1)Δ ,
P12 = �1 (−
32�2R2
13�3 + �2R2
12�3)Δ ,
P13 = �1 (−�2�3
23
12R3 + R3�2
13�3)Δ ,
P21 = �2 (−�3
23R1�1
31 + �1
21�3R1)Δ ,
P22 = �2 (R2
13�1�3
31 − R2�1�3)Δ ,
P23 = �2 (�3
23�1R3 − �1
21R3
13�3)Δ ,
P31 = �3 (−R1�1
32�2
21 + R1�1�2
31)Δ ,
P32 = �3 (�1
32�2R2 − 
12�1�2R2
31)Δ ,
P33 = �3 (
12�1�2
21R3 − �1�2R3)Δ

(63)

or in matrix form W = −VS + W∗, where V = (−P��)1≤�,�≤3,S = (S1, S2, S3)�, andW∗ = (�∗1 , �∗2 , �∗3 )�.
3.1. Expression of the Total Revenue. It is interesting to note
that there exist many di	erent variables that a	ect the �sh
price; in this paper, we will consider that the price of the �sh
population depends on the quantity harvested; speci�cally we

assumed that the price of the marine species increases with
the decreasing harvest and the price of the marine species
decreases with the increase of the harvest, but the minimum
price is equal to a �xed positive constant. More precisely, the
price of marine species  exploited by the �sherman � is given
by X�� = P�/Q�� + X0�, where P� and X0� are given positive
parameters for all  = 1, 2, 3. Under these more realistic
assumptions the total revenue of the �sherman � is(TR)� = X�1Q�1 + X�2Q�2 + X�3Q�3

= ( P1Q�1 + X01)Q�1 + ( P2Q�2 + X02)Q�2
+ ( P3Q�3 + X03)Q�3

= X01Q�1 + X02Q�2 + X03Q�3 + 3∑

=1
P


= X01R1S�1�1 + X02R2S�2�2 + X03R3S�3�3
+ 3∑

=1
P
 = ⟨#0, RS(�)W⟩ + 3∑


=1
P


= ⟨#0, RS(�) (−VS + W∗)⟩ + 3∑

=1
P


= ⟨#0, RS(�)(−V 2∑
�=1
S(�) + W∗)⟩ + 3∑


=1
P


= ⟨S(�), R#0(−V 2∑
�=1
S(�) + W∗)⟩ + 3∑


=1
P
,

(64)

so, (TR)� = ⟨S(�), −#0RVS(�)⟩
+ ⟨S(�), #0R�W∗ − #0RVE(�)⟩ + 3∑


=1
P
, (65)

where #0 = diag(X0).
3.2. Expression of the Total E�ort Cost. In accordance with
many standard �sheries models, we consider that expression
of the total e	ort cost is(TC)� = ⟨
(�), S(�)⟩ , (66)

where 
(�) is the constant cost per unit of harvesting and S(�)
is the total e	ort of the �sherman �.
3.3. Expression of the Pro	t. �e pro�t of each �sherman b�
is equal to total revenue (TR)� minus total cost (TC)�; it is
represented by the following function:b� (S(�)) = (TR)� − (TC)�= ⟨S(�), −#0RVS(�)⟩
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+ ⟨S(�), #0RW∗ − #0RVS(�)⟩ + 3∑

=1
P


− ⟨
(�), S(�)⟩
= ⟨S(�), −#0RVS(�)⟩
+ ⟨S(�), #0RW∗ − 
(�) − #0RVS(�)⟩ + 3∑


=1
P
.

(67)

3.4. Constraints of the Model. �e biological model has a
meaning if and only if the biomass of all the marine species
are strictly positive, then we haveW = −VS + W∗ ≥ W0 > 0. (68)

In other words, for the �sherman �,VS(�) ≤ −VS(�) + W∗. (69)

3.5. Nash Equilibrium Problem. �e problem of determining
the �shing e	ort that maximizes the pro�t of each �sherman
leads to a Nash equilibrium problem. By de�nition a Nash
equilibrium exists when there is no unilateral pro�table
deviation from any of the �shermen involved. In other words,
no �sherman would take a di	erent action as long as every
other �sherman remains the same. �is problem can be
translated into the following two mathematical problems.

�e �rst �sherman must solve the problem (#1):
max b1 (S(1))= ⟨S(1), −#0RVS(1) + #0RW∗ − 
(1) − #0RVS(2)⟩

+ 3∑

=1
P


subject to VS(1) ≤ −VS(2) + W∗S(1) ≥ 0S(2)given

(#1)

and the second �sherman must solve the problem (#2):
max b2 (S(2))= ⟨S(2), −#0RVS(2) + #0RW∗ − 
(2) − #0RVS(1)⟩

+ 3∑

=1
P


subject to VS(2) ≤ −VS(1) + W∗S(2) ≥ 0S(1)given.

(#2)

�e point (S(1), S(2)) is called Nash equilibrium point if

and only if S(1) is a solution of problem (#1) for S(2) given,
and S(2) is solution of problem (#2) for S(1) given.

�e essential conditions of Karush-Kuhn-Tucker applied

to the problem (#1) con�rm that if S(1) is a solution of the

problem (#1) then there exist constants c(1) ∈ R
3
+, V
(1) ∈ R

3
+,

and 7(1) ∈ R
3
+ such that2#0RVS(1) + 
(1) − #0RW∗ + #0RVS(2) − c(1)+ V�7(1) = 0,VS(1) + V
(1) = −VS(2) + W∗,⟨c(1), S(1)⟩ = ⟨7(1), V(1)⟩ = 0.

(KKT1)
In the same way, the essential conditions of Karush-

Kuhn-Tucker applied to the problem (#2) con�rm that if S(2)
is a solution of the problem (#2) then there exist constantsc(2) ∈ R

3
+, V(2) ∈ R

3
+, and 7(2) ∈ R

3
+ such that2#0RVS(2) + 
(2) − #0RW∗ + #0RVS(1) − c(2)+ V�7(2) = 0,VS(2) + V

(2) = −VS(1) + W∗,⟨c(2), S(2)⟩ = ⟨7(2), V(2)⟩ = 0;
(KKT2)

we remark that (KKT1) and (KKT2) lead to the following
system: c(1) = 2#0RVS(1) + 
(1) − #0RW∗+ #0RVS(2) + V�7(1),c(2) = 2#0RVS(2) + 
(2) − #0RW∗+ #0RVS(1) + V�7(2),

V
(1) = −VS(1) − VS(2) + W∗,
V
(2) = −VS(1) − VS(2) + W∗,⟨c(�), S(�)⟩ = ⟨7(�), V(�)⟩ = 0 ∀� = 1, 2,

S(�), c(�), 7(�), V(�) ≥ 0 ∀� = 1, 2.

(70)

To maintain the biodiversity of species, it is natural to
assume that all biomasses remain strictly positive; that is,�� > 0 for all  = 1, 2, 3; therefore V(1) = V

(2) > 0.
As the scalar product of (7(�))�=1,2 and (V(�))�=1,2 is zero,7(�) = 0 for all � = 1, 2. So, we denote V = V

(1) = V
(2). �en we

have the following expressions:c(1) = 2#0RVS(1) + #0RVS(2) + 
(1) − #0RW∗,c(2) = 2#0RVS(2) + #0RVS(1) + 
(2) − #0RW∗,
V = −VS(1) − VS(2) + W∗,⟨c(�), S(�)⟩ = 0 ∀� = 1, 2,

S(�), c(�), V ≥ 0 ∀� = 1, 2.
(71)
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�us

(c(1)c(2)
V

) = [[[[
2#0RV #0RV V�#0RV 2#0RV 0−V −V 0

]]]](
S(1)S(2)0 )

+(
(1) − #0RW∗
(2) − #0RW∗W∗ ).
(72)

3.6. Linear Complementarity Problem. We denote

B = (S(1)S(2)0 ) ,
f = (c(1)c(2)

V

),
D = [[[[

2#0RV #0RV V�#0RV 2#0RV 0−V −V 0
]]]] ,

g = (
(1) − #0RW∗
(2) − #0RW∗W∗ ).

(73)

�e Nash equilibrium problem is equivalent to the Linear
Complementarity Problem LCP(D, g). Find vectors B, f ∈
R
6 such that f = DB + g ≥ 0,B, f ≥ 0,B�f = 0. (74)

�e following proposition con�rms that LCP(D, g) has a
unique solution.

Proposition 10. �e matrix

D = [[[[
2#0RV #0RV V�#0RV 2#0RV 0−V −V 0

]]]] (75)

is #-matrix.

Proof. We have P�� < 0 for all � = 1, 2, 3 and Δ > 0 so, if we
note by (D�)�=1,...,9 the submatrix ofD, we obtain

det (D1) = −2X01R1P11 > 0,
det (D2) = 4X01R1X02R2R2R1�1�3R2�2Δ > 0,
det (D3) = 8X01R1X02R2X3R3R3�3R1�1R2�2Δ2 > 0,

det (D4) = −12P11X201R21X02R2X03R3R3�3R1�1R2�2Δ2> 0,
det (D5)= 18X201R21X202R22X03R3R1�1�3R2�2R3�3R1�1R2�2Δ3> 0,
det (D6) = 27X201R21X202R22X203R23 (R3�3R1�1R2�2Δ2)2> 0,
det (D7) = −9X01R1X202R22X203R23P11 (R3�3R1�1R2�2Δ2)2> 0,
det (D8)
= 3X01R1X02R2X203R23R1�1�3R2�2Δ (R3�3R1�1R2�2Δ2)2> 0,
det (D) = X01R1X02R2X03R3 (R3�3R1�1R2�2Δ2)2 > 0.

(76)

�en, the matrixD is #-matrix and therefore the linear
complementarity problem LCP(D, g) admits one and only
one solution.

�e unique solution of LCP(D, g) represents the Nash
equilibrium point of our problem and it is given by

S(1) = 13V−1 (W∗ − 
(1)#0R) ,
S(2) = 13V−1 (W∗ − 
(2)#0R) ,

(77)

where

V−1 =
[[[[[[[[[[

�1�1R1 
12R1 
13R1
21R2 �2�2R2 
23R2
31R3 
32R3 �3�3R3

]]]]]]]]]]
. (78)

�en, the �shing e	ort that maximizes the pro�t of the �rst
�sherman for catching the �rst species is

S11 = 13 [ �1�1R1 (�∗1 − 
1#01R1) + 
12R1 (�∗2 − 
1#02R2)
+ 
13R1 (�∗3 − 
1#03R3)] ;

(79)
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the �shing e	ort that maximizes the pro�t of the �rst
�sherman for catching the second species is

S12 = 13 [ �2�2R2 (�∗2 − 
1#02R2) + 
21R2 (�∗1 − 
1#01R1)
+ 
23R2 (�∗3 − 
1#03R3)] ;

(80)

the �shing e	ort that maximizes the pro�t of the �rst �sher-
man for catching the third species is

S13 = 13 [ �3�3R3 (�∗3 − 
1#03R3) + 
31R3 (�∗1 − 
1#01R1)
+ 
32R3 (�∗2 − 
1#02R2)] .

(81)

�e �shing e	ort that maximizes the pro�t of the second
�sherman for catching the �rst species is

S21 = 13 [ �1�1R1 (�∗1 − 
2#01R1) + 
12R1 (�∗2 − 
2#02R2)
+ 
13R1 (�∗3 − c2#03R3)] ;

(82)

the �shing e	ort that maximizes the pro�t of the second
�sherman for catching the second species is

S22 = 13 [ �2�2R2 (�∗2 − 
2#02R2) + 
21R2 (�∗1 − 
2#01R1)
+ 
23R2 (�∗3 − 
2#03R3)] ;

(83)

the �shing e	ort that maximizes the pro�t of the second
�sherman for catching the third species is

S23 = 13 [ �3�3R3 (�∗3 − 
2#03R3) + 
31R3 (�∗1 − 
2#01R1)
+ 
32R3 (�∗2 − 
2#02R2)] .

(84)

4. Numerical Simulations and
Discussion of the Results

In this section, we take as case of study two �shermen
who catch three �sh species competing with each other for
space or food. In order to assure the existence and stability
of the locally asymptotically stable state of the three �sh
populations, we consider the parameters of the model system
(5) as shown in Table 1.

Let us consider the economic parameters such as that
shown in Table 2.

Using the parameters cited in Tables 1 and 2, therea�er we
will see how changes in the minimum prices can a	ect e	ort
�shing, catches, and pro�t.

Table 1: Characteristics of the three marine species.

Species 1 Species 2 Species 3�1 = 0,5 �2 = 0,3 �3 = 0,2�1 = 1000 �2 = 700 �3 = 600
12 = 2 ⋅ 10−4 
21 = 10−5 
31 = 10−4
13 = 3 ⋅ 10−4 
23 = 2 ⋅ 10−5 
32 = 10−4
Table 2: Economic parameters of the model.

Species 1 Species 2 Species 3P1 = 0,1 P2 = 0,2 P3 = 0,3X01 = 1 X02 = 2 X03 = 3R1 = 0,1 R2 = 0,02 R3 = 0,004
1 = 0,1 
1 = 0,1 
1 = 0,1
2 = 0,2 
2 = 0,2 
2 = 0,2

Table 3: �e in�uence of the price on the �shing e	ort.X01 X02 X03 S1 S2
1 2 3 17,0451 16,5151

11 17 23 17,5943 17,5314

16 27 48 17,6383 17,6073

31 47 78 17,6552 17,6363

51 70 108 17,6627 17,6492

84 101 273 17,6734 17,6677

106 133 327 17,6749 17,6702

340 378 427 17,6769 17,6736

574 577 606 17,6783 17,6760

808 811 914 17,6794 17,6778

917 956 981 17,6795 17,6781

1000 1079 1090 17,6797 17,6784

Table 4: �e in�uence of the price on the catches.X01 X02 X03 Q1 Q2
1 2 3 245,0957 234,4651

11 17 23 246,4411 245,9382

16 27 48 246,5725 246,2429

31 47 78 246,6298 246,3781

51 70 108 246,6552 246,5718

84 101 273 246,6865 246,5974

106 133 327 246,6923 246,6334

340 378 427 246,7020 246,6334

574 577 606 246,7063 246,6582

808 811 914 246,7095 246,6775

917 956 981 246,7101 246,6804

1000 1079 1090 246,7107 246,6839

4.1.�e In�uence of the Price on the Fishing E�ort, Catches, and
Pro	t. By Tables 3, 4, and 5 we will discover how changes in
the price can a	ect the �shing e	ort, catches, and pro�t.

According to Tables 3, 4, and 5, one can remark that
an increase in the price leads to an increase in �shing
e	ort, catches, and pro�t. But it is clear that when the price
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Table 5: �e in�uence of the price on the pro�ts.X01 X02 X03 b1 b2
1 2 3 282 269

11 17 23 2959 2942

16 27 48 4513 4500

31 47 78 8479 8465

51 70 108 13584 13567

84 101 273 23130 23118

106 133 327 29111 29099

340 378 427 85598 85572

574 577 606 142017 141987

808 811 914 200558 200531

917 956 981 227721 227692

1000 1079 1090 249295 249266

level increases signi�cantly, that is, when it varies in a large
amplitude interval, the �shing e	ort and the catches increase
by varying in an interval of small amplitude. More precisely,
when the price is between 1 and 1090, the �shing e	ort varies
between 16,51 and 17,68, and the catches vary between 234,4
and 246,7. �is is justi�ed by the need for conservation of
marine species even if the price increases signi�cantly.

From Table 5 one can see that the level of pro�t increases,
which allows �shermen to have highest returns throughmore
reasonable catches, taking into account the conservation of
biodiversity.

�ese results allow us to deduce that our model is
pertinent since it allows us to determine the �shing e	ort
that maximizes the pro�t of each �sherman without being
obliged tomakemore catches that lead to the overexploitation
of these marine species.

Let us add that when the price tends to in�nity, the
�shing e	orts of the two �shermen are equal and they do
not exceed 18, as well as the catches which do not exceed
250; contrariwise the pro�t is always increasing thanks to the
increase of the price. �en we can deduce the e	ect of the
price change on the �shing e	ort, catches, and pro�t.

It is very interesting to note that if the price tends to
in�nity and the �shing e	ort is superior to 18, then the catches
and the pro�t decrease.

5. Conclusions

In this paper, we have developed a bioeconomic model for
three species catches by two �shermen. In one hand, we have
assumed that the evolution of these species is described by
a density dependent model taking into account the competi-
tion between the species which compete with each other for
space or food. �e natural growth of each species is modeled
using a logistic law. On the other hand, we have assumed
that the prices of these species vary according to the quantity
harvested. In this work we have calculated �shing e	ort
that maximizes the income of each �sherman at biological
equilibrium by using the Nash equilibrium problem. �e
existence of the steady states and their stability are studied
using eigenvalue analysis and Routh-Hurwitz criterion.
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