
1630 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

Optimization of Two-Granularity Software

Rejuvenation Policy Based on the Markov

Regenerative Process
Gaorong Ning, Jing Zhao, Yunlong Lou, Javier Alonso, Rivalino Matias Jr., Kishor S. Trivedi, Fellow, IEEE,

Bei-Bei Yin, and Kai-Yuan Cai

.Abstract—Software rejuvenation is a proactive software con-
trol technique that is used to improve a computing system
performance when it suffers from software aging. In this paper,
a two-granularity inspection-based software rejuvenation policy,
which works as a closed-loop control technique, is proposed. This
policy mitigates the negative impact of two-level software aging.
The two levels considered are the user-level applications and the
operating system. A Markov regenerative process model is con-
structed based on the system condition. We obtain the degradation
rate of the application software and operating system from fault in-
jection experiments. The diagnostic accuracy of the adopted moni-
tor and analysis system, which is applied to inspect the application
software and operating system, is considered as we provide the opti-
mal rejuvenation strategies. Finally, the availability and the overall
loss probability with their corresponding optimal inspection time
intervals are obtained numerically based on the parameter val-
ues estimated from the experiments. Experimental results show
that two-granularity software rejuvenation is much more effective
than traditional single-level software rejuvenation. In our experi-
mental study, when two-granularity software rejuvenation is used,
the unavailability and the overall loss probability of the system
were reduced by 17.9% and 2.65%, respectively, in comparison
with the single-level rejuvenation.

Index Terms—Diagnostic accuracy, Markov regenerative pro-
cess (MRGP), multigranularity software aging, overall loss proba-
bility, software rejuvenation.

Manuscript received May 7, 2015; revised January 9, 2015, January 14, 2016,
and January 26, 2016; accepted March 3, 2016. Date of publication June 16,
2016; date of current version November 29, 2016. This work was supported
in part by the CNPq under Grant Universal 487182/2013-8, the U.S. National
Science Foundation under Grant CNS-1523994, the National Natural Science
Foundation of China and Microsoft Research Asia under Grant 61572150, Grant
61272164, and Grant 61402027, the Spanish National Institute of Cybersecu-
rity (INCIBE) according to rule 19 of the Digital Confidence Plan (Digital
Agency of Spain) and the University of León under Contract X43, and the
Beijing Higher Education Young Elite Teacher Project under Grant YETP1072.
Associate Editor: C. Smidts.

G. Ning is with the Commanding Automation Technique D&R and Appli-
cation Center, the Fourth Academy, China Aerospace Science and Industry
Corporation, Beijing 102308, China (e-mail: ninggaorong@buaa.edu.cn).

J. Zhao and Y. Lou are with the Department of Computer Science and
Technology, Harbin Engineering University, Harbin 150001 China (e-mail:
zhaoj@hrbeu.edu.cn; 906196253@qq.com).

J. Alonso is with the Research Institute of Applied Sciences in Cybersecurity,
University of León, 24004 León, Spain (e-mail: javier.alonso@unileon.es).

R. Matias, Jr., is with the School of Computer Science, Federal University of
Uberlandia, Uberlandia MG-38400-902, Brazil (e-mail: rivalino@ufu.br).

K. S. Trivedi is with the Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708-0294 USA (e-mail: ktrivedi@duke.edu).

B.-B. Yin and K.-Y. Cai are with the Department of Automatic Control,
Beihang University, Beijing 100191, China (e-mail: yinbeibei@buaa.edu.cn;
kycai@buaa.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2016.2570539

NOMENCLATURE

Acronyms

AS Application software.

OS Operating system.

MRGP Markov regenerative process.

M&A Monitor and analysis system.

MTrD Mean time from robust to degradation state.

EMC Embedded Markov chain.

EMRS Embedded Markov renewal sequence.

ALT Accelerated life test.

TTF Time to failure.

CBMG Customer behavior model graph.

EBs Emulated browsers.

JVM Java virtual machine.

MCR Mean consumption rate.

Notation

Tin Time to trigger inspection.

K(t) Global kernel matrix.

E(t) Local kernel matrix.

Γ(t) Gamma distribution.

π Steady-state probability of the MRGP.

A Steady-state system availability.

L Overall loss probability.

⌊·⌋ Floor function returns an integer value of nearest

rounded down integer.

λ(·) Transition rate.

I. INTRODUCTION

T
HE software aging concept was introduced more than 20

years ago. It is about the phenomenon that software shows

a performance degradation after executing for a long time un-

interruptedly [1]. The cause of software aging is essentially

residual defects (bugs) either in the software code or in design

[2]. Commonly investigated causes of software aging include

but are not limited to memory leaks, unreleased file-locks, and

round-off errors [2], [3]. To counteract software aging, Huang

et al. [1] introduced a software recovery technique known as

software rejuvenation. This technique is used to proactively

mitigate the software aging effects before the system crashes. It

has been applied extensively in industry and academia [4]–[6].

Aging-related bugs are usually hard to find and fix [7], [8].

We note that there are tools available for finding and fixing such

bugs. Nevertheless, many such bugs remain in complex software

systems during operation. Hence, a complementary mitigation

0018-9529 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1631

method needs to be proposed to deal with these remaining bugs

during the operational phase. Cleaning the software environment

during operation has been demonstrated effective to deal with

aging-related bugs. These cleaning actions can be done in a re-

active manner (after the occurrence of failures due to these bugs)

or can be done in a proactive manner. Software rejuvenation is

a cost-effective technique to proactively schedule a cleanup of

the software environment (by means of techniques like a restart

or a reboot) prior to the occurrence of a failure due to such bugs.

Software rejuvenation does not remove software bugs. Instead

of removing software bugs, software rejuvenation “refreshes”

the operating environment by removing accumulated errors and

freeing system resources when it is triggered.

Generally speaking, two main approaches are used to ad-

dress software aging and rejuvenation challenges: analytical

model-based approach and measurement-based approach [3],

[9]. The analytical model-based approach uses probability mod-

els to estimate the software aging process and determine the

optimal rejuvenation scheduling based on the estimated aging

state [1], [10]–[12]. On the other hand, measurement-based ap-

proaches collect information directly from the system and es-

timates using statistical or machine learning methods the real

state of the system to trigger the rejuvenation process accord-

ingly [13]–[23]. Meanwhile, the former approach is relatively

easy to generalize across different systems because it is based

on a simplification of the system. The latter is not easy to gen-

eralize since usually it exploits some peculiar aspect related to

the nature of the considered system (e.g., the fact that some

particular resource exhibits seasonal or fractal patterns). More-

over, measurement-based approaches are not meant to estimate

long-term dependability measures such as availability. Several

attempts have been made to combine the benefits of both model-

based and measurement-based approaches, by describing the

phenomenon analytically, most often by Markov-based models,

and determining the model’s parameters (and some case even

the model structure) through measurements, i.e., via observed

data [24]. These efforts are here referred to as hybrid, in that

they combine aspects of the previous two approaches. Despite

the practical importance of hybrid approaches, only a minor-

ity of studies has been made to exploit measures for feeding

models.

To the best of our knowledge, most research interests in the

literature only give careful consideration to the rejuvenation

at a single level [5], [25]. Castelli et al. [6] first proposed a

two-level software rejuvenation method, which was developed

theoretically in [12].

An experimental study of four-granularity rejuvenation tech-

niques was first carried out by Alonso, Matias, Vicente,

Maria, and Trivedi [26], which covers application level, OS

level, virtual machine level, and physical machine level. Ning,

Trivedi, Hu, and Cai [9] gave a theoretical analysis on multi-

granularity rejuvenation based on continuous-time Markov

chain.

To put the multigranularity software rejuvenation into use in

a real system, there are several challenges to solve.

1) The first one is how to know which granularity the aging-

related fault is at. To rightly ascertain the aged granularity

is much more difficult than to know whether there is an

aged granularity in the system.

2) The second challenge is how to analyze and model the

multigranularity software system when there are several

granularities need to consider. These granularities may

depend on each other. So to obtain the optimal multigran-

ularity rejuvenation strategy is much tougher than that in

single-level cases.

3) The third challenge is how to experimentally or theo-

retically prove that multigranularity rejuvenation strategy

is more effective than single-level software rejuvenation.

Anyhow, rebooting the system is a valid method to coun-

teract the software aging without identifying the aging

granularity.

When the phenomenon of software aging is observed in a

software system, if there is too little information to identify the

location of the aging-related faults, then single-level rejuvena-

tion of rebooting the OS may be an appropriate choice. If the

aging can be located at the module level, then multigranularity is

a suitable method. Using tools such as Leaky [27], LeakTracer

[28], and Compuware DevPartner Java Edition [29], we usu-

ally can know which module or granularity the memory related

bug is in. Furthermore, if the causes of aging can be located in

the code, then fixing it may be possible. Unfortunately, aging-

related bugs are commonly very hard to locate and fix in code

[6], [30]–[32].

In this paper, we apply the paradigm of MRGP to study

two-granularity software rejuvenation scheduling. We obtain

the steady-state system availability and the overall loss proba-

bility as functions of the inspection interval. Then, the optimal

inspection intervals are calculated accordingly by maximizing

the availability and minimizing the loss probability.

The main contributions of this paper are the following:

1) an MRGP model for capturing the two-granularity soft-

ware states;

2) obtaining the diagnostic accuracy of the M&A and its

effects on the rejuvenation strategy;

3) optimizing the two-granularity rejuvenation scheduling to

maximize the system availability and minimize the loss

probability.

The rest of this paper is organized as follows. In Section II, the

two-granularity software rejuvenation policy is explained. Then,

in Section III, an MRGP model for the two-granularity software

rejuvenation policy is constructed and the closed-form solution

is obtained. Section IV is devoted to availability analysis. In

Section V, we present the experimental setup and the methods

used in our experimental study. The experimental results are an-

alyzed in Section VI. Section VII presents the threats to validity.

Finally, Section VIII presents the concluding remarks.

II. TWO-GRANULARITY SOFTWARE REJUVENATION POLICY

Time-based [13], [25] and inspection-based [9], [14], [18] are

the two main types of software rejuvenation scheduling strate-

gies. Time-based rejuvenation is used to recover the system at

predetermined time intervals. It is usually an open-loop con-

trol technique. When inspection-based rejuvenation is applied,

1632 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

Fig. 1. Example of a two-level computer system.

it needs to periodically inspect the system to perceive soft-

ware aging effects and then trigger rejuvenation accordingly.

The inspection-based rejuvenation is, thus, a closed-loop con-

trol technique. Granularity of rejuvenation is another dimension

of classification as proposed in [26]. This dimension identifies

the location of aging effects and directly targets the aged gran-

ularity.

In this paper, we present an inspection-based model to analyze

system availability, where two granularities are considered: AS

level and OS level (see Fig. 1).

1) AS-Level Granularity: Application granularity software

rejuvenation can be executed to mitigate the impacts

of software aging at the AS level. This granularity re-

juvenation implicates stopping and restarting the aged

application. AS rejuvenation implies a proactive applica-

tion restart that is useful in removing volatile in-memory

application-specific aging effects [2], [6].

2) OS-Level Granularity: OS granularity is at a lower level

than the AS granularity, whose effects are more complex

than that of AS level. If the aging effects are caused by

OS kernel, or that interacts between the AS and OS, then

rejuvenation at the AS granularity is likely to be ineffec-

tive. Rejuvenation at the OS level would be required in

this case.

A general model of software aging and rejuvenation was

first presented by Huang et al. [1]. It is a four-state Markov

model, including a robust state, a failure-prone state, a reju-

venation state, and a failure state, where the robust and the

failure-prone states are available (up) states, and the failure

state and the rejuvenation state are unavailable (down) states.

Xie, Hong, and Trivedi [12] proposed a more detailed model

by dividing the failure-prone state into “middle efficient state”

and “low efficient state” and dividing the rejuvenation state into

“partial rejuvenation state” and “full rejuvenation state” while

studying inspection-based preventive maintenance in two-level

systems. Alonso, Matias, Vicente, Maria, and Trivedi [26] pro-

posed a comparative experimental analysis of four-granularity

software and software rejuvenation overhead. In their paper,

AS rejuvenation strategy is used to mitigate the aging effects

first. If AS rejuvenation strategy fails, then the next higher

TABLE I
STATE DEFINITION OF THE SYSTEM

NO. State AS OS Keep? Available?

0 Robust Robust Rob. Yes Yes

1 DA Rej. Rob. Yes No

2 DO Rej. Deg. Yes No

3 DV Rej. Rej. Yes No

4 DP Failed Rob. Yes No

5 FA Failed Deg. Yes No

6 FO Failed Failed Yes No

7 rD Rob. Deg. Yes Yes

8 Dr Deg. Rob. Yes Yes

9 DD Deg. Deg. Yes Yes

10 rR Rob. Rej. No –

11 rF Rob. Failed No –

12 DF Deg. Deg. No –

13 DR Deg. Rej. No –

14 RF Rej. Failed No –

15 FR Failed Rej. No –

level of granularity rejuvenation is executed till the aging is

mitigated.

Rejuvenation strategies of different granularity treat differ-

ent levels of software aging impact and have different costs.

So it is necessary to choose the proper rejuvenation strategy to

lessen the aging impacts at different levels. Being different from

[26], our paper deals with how to obtain the optimal strategy

and how to use those rejuvenation techniques presented by the

above cited paper. Our method is to rejuvenate the aging part

(or level) with the corresponding granularity rejuvenation tech-

nique, rather than rejuvenate the system from low level to high

level.

We develop the aforementioned model proposed in [1] by

dividing the software system into AS and OS software. We

consider the case that the AS and the OS have their separated

memory usage. In our model, for AS, there are four states:

robust state, degradation state, rejuvenation state, and failed

state, which are denoted by r, D, R, and F, respectively. Similarly,

OS software has the same four states. So, there are total 4 × 4 =
16 states for the whole software system, which are depicted in

Table I. These states are represented by two letters. The left one

corresponds to the AS level and the right one corresponds to

the OS level. For instance, state “rD” means AS is at robust

state and OS is at degradation state. Out of 16 states, we need to

consider only ten states, and the other six states can be ignored.

Take the state “rF” for example, if the OS software has failed,

the application will not be available. So, the state “rF” can be

dropped.

An M&A is used to decide at which granularity rejuvenation

should be carried out. The M&A consists of a monitor and a

data analyzer. The monitor collects specific data from the AS

and OS when the system is up. The data analyzer evaluates the

data collected by the monitor and then diagnoses the state of the

target system. Let (t) be the state reported by the M&A at time

t. The maintenance actions of the system are determined by (t),
which are given by Table II.

We have the following assumptions for our two-granularity

software aging and rejuvenation model.

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1633

TABLE II
MAINTAIN ACTIONS AND THEIR CORRESPONDING TIME DETERMINED

BY THE MONITOREDSTATE(t)

NO. MonitoredState(t) Action at Action at Time of

AS level OS level the action

0 rr no action no action -

4 Fr Rea. Rest. no action TA 4

5 FD Proa. Rest. Proa. Rebo. TO 3

6 FF Rea. Rest. Rea. Rebo. TO 4

7 rD Proa. Rest. Proa. Rebo. TO 3

8 Dr Proa. Rest. no action TA 3

9 DD Proa. Rest. Proa. Rebo. TO 3

1) The time to inspection trigger is a constant, Tin , which is

actually the constant variable in this paper.

2) There is no delay in carrying out the inspection for the

M&A, which means that the system makes instantaneous

diagnoses after it is triggered.

3) When the AS fails, the M&A will be triggered immedi-

ately to detect the state of the OS.

4) After each rejuvenation of the AS or the OS, the timer of

the M&A will be reset.

5) The holding time TA1 (or TO1) of AS (or OS) from robust

state to degradation state has the exponential distribution

with parameter λA1 (or λO1). The holding time TA2 (or

TO2) of the AS (or OS) from degradation state to failed

state also has the exponential distribution with parameter

λA2 (or λO2).

6) The rejuvenation time TA3 (or TO3) of the AS (or OS)

from degradation state to robust state has a general distri-

bution FA3(t) (or FO3(t)). The reactive restart (or reboot)

time TA4 (or TO4) of the AS (or OS) also has a general

distribution FA4(t) (or FO4(t)).
Let TrueState(t) be the true state of the system at time t.

Assume that the M&A does not always make correct diagnoses.

MonitoredState(t) �= TrueState(t) means that the M&A makes

a misdiagnosis. Recall that the AS and the OS have their sepa-

rated memory usage. Suppose that the M&A makes diagnoses

independently for the AS and the OS. Let MonitoredStateAS(t)
and MonitoredStateOS (t) be the diagnosis results of AS and OS,

respectively. (t) = ‘rD’ means that MonitoredStateAS(t) = ‘r’

and MonitoredStateOS (t) = ‘D.’ Suppose that if AS and OS are

at one of the states in {failed, rejuvenation}, they can be rightly

diagnosed by the M&A. Let

pr = Pr{MonitoredStateAS(t) = r |TrueStateAS(t) = r}

pD = Pr{MonitoredStateAS(t) = D |TrueStateAS(t) = D}

qr = Pr{MonitoredStateOS(t) = r |TrueStateOS(t) = r}

qD = Pr{MonitoredStateOS(t) = D |TrueStateOS(t) = D}.

(1)

When and which rejuvenation technique should be executed

depends on the diagnosis results from the M&A. For example,

if TrueState(t) is “rD,” there are four possible actions according

Fig. 2. True state diagram for the two-granularity software aging and rejuve-
nation model.

to the inspection results MonitoredState(t):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

no action → rD, if (t) = rr

Reju. OS → rr, if (t) = rD

Reju. AS → rD, if (t) = Dr

Reju. OS → rr, if (t) = DD

by noting our assumption that if the AS and the OS are at one

of the states in {failed, rejuvenation}, they can be rightly di-

agnosed by the M&A. The meaning of the above brace can

be explained as follows. Suppose that TrueState(t) is “rD.” If

MonitoredState(t) is “rr,” which means that the M&A makes

a right report regarding the AS level and makes a wrong re-

port regarding the OS level, then no maintenance action will

be taken. The true state of the system will still be “rD.” If

MonitoredState(t) is “Dr,” which means that the M&A makes

wrong reports regarding both the AS level and the OS level,

then the action of AS rejuvenation will be taken. The true state

of the system will still be “rD” after AS rejuvenation. The true

state transition path in this case is rD → RD → rD.

Based on the rejuvenation scheduling defined above, the true

state diagram is determined. Fig. 2 shows the state diagram of

the ten states for our two-granularity software aging and rejuve-

nation model. In the figure, F(·)(t) are the distribution functions

of the corresponding sojourn times. According to our supposi-

tion, the holding time TA1 of the AS transition from robust state

to degradation state follows exponential distribution FA1(t).
Also the holding times TA2 , TO1 , and TO2 follow exponential

distribution with the distribution functions FA2(t), FO1(t), and

FO2(t), respectively. As shown in Fig. 2, because the time to

trigger inspection is a deterministic value Tin , the stochastic

process Z(t) determined by the model is not a Markov process

1634 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

but an MRGP whose EMC is identified by states 0, 1, 2, 3, 4, 5,
and 6. And the states 7, 8, and 9 are not regenerative state and

hence are not in the EMC. The holding times of the transitions

from one of the states in {7, 8, 9} to one of the states in {1, 2, 3}
are not conditional independent. For example, the sojourn time

distributions of the transition from state 7 to state 2 depend on

the latest state to state 7. If the trajectory is from state 5 to state

7 and to state 2, the sojourn time at state 7 is Tin ; if the trajectory

is from state 1 to state 7 and to state 2, the sojourn time at state

7 is smaller than Tin .

A formalized description of the MRGP model will be given

in the following section.

III. MRGP MODEL ANALYSIS

Here, we study the steady-state probability of the MRGP

model presented in Section II. We use Z = {Z(t); t ≥ 0} with

state space Φ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} to represent the state

of the system. Clearly, the stochastic process Z(t) is not a ho-

mogeneous continuous-time Markov chain, because not all the

sojourn times of the states are exponentially distributed. Fur-

thermore, Z(t) is not a semi-Markov process if the distribution

Fin(t) is not exponential. Z(t) is called regenerative if there exist

time points Si at which the process probabilistically replicates

itself [20]. The random times Si are called regeneration time

points of Z(t). The sequence {Si , i = 1, 2, . . .} of the regenera-

tion points identifies an embedded renewal sequence. Therefore,

at each regeneration point Si , the process Z(t) is independent

of its past and has the same stochastic behavior as that Z(t) has

from t = 0.

Z(t) is called an MRGP if it identifies an EMRS (X,S) with

the further property that the distributions of {Z(t + Sn); t ≥ 0}
supposed {Z(u); 0 ≤ u ≤ Sn , Xn = i, i ∈ Ω ⊆ Φ}, are the

same as those of {Z(t), t ≥ 0} with X0 = i, where Ω =
{0, 1, 2, 3, 4, 5, 6}. So we know that {Z(t); t ≥ 0} has Markov

property at time points (S0 , S1 , . . . , Sn , . . .) with the corre-

sponding state sequence (X0 , X1 , . . . , Xn , . . .), respectively.

This also implies that the future of the process Z when

Z(t) = i /∈ Ω may do not have the Markov property, which

means that state changes between two consecutive regeneration

epochs Si and Si+1 do not have regenerations. So, it might be

possible that Z(t) returns to Ω without passing these Markov

regeneration epochs.

For such an MRGP, we can identify the matrix V(t) =
[Vi,j (t)] as the conditional transition probabilities:

Vi,j (t) = Pr{Z(t) = j | Z(0) = i}.

At any instant t, the conditional transition probability matrix

Vi,j (t) defined by Z(t) can be expressed as follows [8], [10]:

Vi,j (t) = Pr{Z(t) = j, S1 > t | Z(0) = i}

+Pr{Z(t) = j, S1 ≤ t | Z(0) = i}

= Pr{Z(t) = j, S1 > t | Z(0) = i}

+
∑

k∈Ω

∫ t

0

dKi,k (u)Vk,j (t − u)

for all i ∈ Ω, j ∈ Φ, and t ≥ 0. Let E(t) = [Ei,j (t)], where

Ei,j (t) = Pr{Z(t) = j, S1 > t | Z(0) = i}.

Then, the integral equations for Vi,j (t) identify a Markov re-

newal equation and can be written in the following matrix form:

V(t) = E(t) +

∫ t

0

dK(u)V(t − u). (2)

The matrixK(t) in (2) is called the global kernel matrix andE(t)
is called the local kernel matrix of the MRGP, where K(t) =
(K1(t), K2(t)), and

K1(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 k0,1(t) k0,2(t) k0,3(t)

k1,0(t) 0 0 0

0 0 0 k2,3(t)

k3,0(t) 0 0 0

k4,0(t) 0 0 0

k5,0(t) 0 k5,2(t) k5,3(t)

k6,0(t) 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

K2(t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

k0,4(t) k0,5(t) k0,6(t)

0 0 0

0 k2,5(t) k2,6(t)

0 0 0

0 0 0

0 0 k5,6(t)

0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Here, we present k0,1(t) and k0,2(t). The other ki,j (t) are given

in the Appendix briefly.

For k0,1(t), there are two paths: 0 → 1 and 0 → 8 → 1. Be-

cause the M&A is triggered at evenly spaced intervals Tin which

is value to optimize in this paper, so we have

k0,1(t) = Pr{Z(S1) = 1, S1 ≤ t | Z(0) = 0}

=

⌊ t
T i n

⌋
∑

k=1

(prqr)
k−1(1 − pr)qre

−(λA 1 +λO 1)kT i n

+ pD qr

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

λA1e
−(λA 1 +λO 1)x(prqr)

⌊ x
T i n

⌋

[(1 − pD)qr]
k−⌊ x

T i n
⌋−1

e−(λA 1 +λO 1)(kT i n −x)dx

where the function ⌊x⌋ finds the nearest integers less than or

equal to x. So ⌊x/Tin⌋ is the number of diagnoses before the

state of the AS is degradation, and these diagnoses are rightly

made. So the number of diagnoses is k − ⌊x/Tin⌋, when the

system is at state “Dr,” of which the first k − ⌊x/Tin⌋ − 1 diag-

noses are wrongly made and the last one is rightly made.

For k0,2(t), there are three paths: 0 → 7 → 2, 0 → 7 → 9 →
2, and 0 → 8 → 9 → 2. So

k0,2(t) = Pr{Z(S1) = 2, S1 ≤ t | Z(0) = 0}

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1635

= (1 − pr)(1 − qD)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

λO1e
−(λA 1 +λO 1)x

(prqr)
⌊ x

T i n
⌋
[pr (1 − pD)]

k−⌊ x
T i n

⌋−1

e−(λA 1 +λO 1)(kT i n −x)dx

+ pD (1 − qD)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

∫ kT i n

x

λO1e
−(λA 1 +λO 1)x

λA1e
−(λA 1 +λO 2)(y−x)e−(λA 2 +λO 2)(kT i n −y)

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
k−⌊ y

T i n
⌋−1

dydx

+ pD (1 − qD)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

∫ kT i n

x

λA1e
−(λA 1 +λO 1)x

λO1e
−(λO 1 +λA 2)(y−x)e−(λA 2 +λO 2)(kT i n −y)

(prqr)
⌊ x

T i n
⌋
[(1 − pD)qr]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
k−⌊ y

T i n
⌋−1

dydx.

Once K(t) is specified, we need to obtain the local kernel matrix

E(t). Because an MRGP can change states between two con-

secutive Markov regeneration epochs, we need to capture these

changes through the matrix E(t). Moreover, the cardinality of

Z(t) can be larger than the cardinality of the EMC state space

and so, generally, E(t) is a rectangular matrix. In fact, in the

present example, the EMC has seven states, while the MRGP

has ten possible states. By a careful examination of the MRGP

in Fig. 2, we have E(t) = E1(t), E2(t), where

E1(t) = diag{E0,0(t), E1,1(t), . . . , E6,6(t)}

and

E2(t) =

⎛

⎜

⎝

E0,7(t) 0 E2,7(t) 0 0 E5,7(t) 0

E0,8(t) 0 0 0 0 0 0

E0,9(t) 0 E2,9(t) 0 0 E5,9(t) 0

⎞

⎟

⎠

T

.

Here, we given E0,0(t) and E0,7(t). The others are given in the

Appendix. For E0,0(t), we have

E0,0(t) = Pr{Z(S1) = 1, S1 > t | Z(0) = 0}

=
+∞
∑

k=0

Pr{Z(S1) = 1, S1 > t | Z(0) = 0,

Nin(t) = k} · Pr{Nin(t) = k}

= e−(λA 1 +λO 1)t [(1 − Fin(t))

+

∞
∑

k=1

(prqr)
k

∫ t

0

(1 − Fin(t − x))dF ∗k
in (x)]

= e−(λA 1 +λO 1)t(prqr)
⌊ t

T i n
⌋
.

For E0,7(t), we have

E0,7(t) =

∫ t

0

(prqr)
⌊ x

T i n
⌋
[pr (1 − qr)]

⌊ t
T i n

⌋−⌊ x
T i n

⌋

λO1e
−(λA 1 +λO 1)xe−(λA 1 +λO 2)(t−x)dx.

Once both the kernel matrices K(t) and E(t) are specified, the

model can be analyzed. For the steady-state probabilities of the

EMC, we define

K := lim
t→∞

K(t).

Solve the equation v = v · K, where the row vector is v =
(v0 , v1 , . . . , v6); then, one of the solutions is

v = (1, k0,1 , v2 , k0,2 + k0,5k5,2 + v2k2,5k5,2 ,

k0,4 , k0,5 + v2k2,5 ,

k0,6 + k0,5k5,6 + v2(k2,6 + k2,5k5,6))

where

v2 =
k0,2 + k0,5k5,2

1 − k2,5k5,2
.

So, the steady-state probability vector of the EMC is

v
∗ =

v
∑6

i=0 vi

.

To obtain the steady-state probabilities of the MRGP, we define

the following terms:

μi = E[S1 | X0 = i] and αm,n =

∫ ∞

0

Em,ndt

where μi are given in the Appendix, and αm,n can be calculated

with Em,n , which are also given in the Appendix.

Then, the steady-state probabilities of the MRGP are given

by

πi =

6
∑

k=0

βk
αk,i

μk
, i ∈ {0, 1, 2, . . . , 9}

with

βk =
vkμk

∑6
i=0 viμi

.

IV. AVAILABILITY ANALYSIS

Here, we provide more detailed analysis for the availability.

The distributions FA3(t) and FO3(t) of proactive rejuvenation

times are chosen as Weibull distributions, which occur in many

situations of scientific interest, especially in man-made phenom-

ena [33]. Here, the distributions FA4(t) and FO4(t) of reactive

rejuvenation times are chosen as Pareto distributions. The dis-

tribution functions are given by

FA3(t) = 1 − e−(t/a)b

, FO3(t) = 1 − e−(t/c)d

FA4(t) = 1 −
m

t

σ
, FO4(t) = 1 −

n

t

̺
. (3)

1636 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

The expected times E(TA3), E(TO3), E(TA4), and E(TO4) in

(3) can be rewritten as

E(TA3) = aΓ(1 + 1/b), E(TO3) = cΓ(1 + 1/d)

E(TA4) =
mσ

σ − 1
, E(TO4) =

n̺

̺ − 1
.

Actually, our model can accommodate very general distribu-

tions. When the MRGP steady-state analysis is employed, we

just need the mean sojourn time for each repair state. However,

Weibull distribution is very popular in modeling the TTF and

the time to repair of complex systems [33]. The use of Weibull

and Pareto distributions can be seen as an example only. We

highlight that due to the nature of MRGP models, any other

distribution could be used, which makes the adopted approach

very flexible.

To maximize system availability, different scenarios of soft-

ware aging and corresponding rejuvenation policies have been

considered [3]. Suppose that the system is up when it is at state

in i ∈ SA = {0, 7, 8, 9}. If the system state is not in SA , it is

not up. Then, the steady-state system availability as a function

of the inspection time interval Tin is

A(Tin) =
∑

i∈SA

πi(Tin).

Then, the optimal inspection interval T ∗
in for maximizing the

availability satisfies

d(A(T ∗
in))

dT ∗
in

= 0.

In addition, we consider the loss probability Li measured value

as the reward of the model for the up state i in SA . The reward

rate of loss probability is 1 for the down states. Then, the overall

loss probability of the system is

L(Tin) =
∑

i∈SA

Li · πi(Tin) +
∑

i /∈SA

πi(Tin).

The optimal inspection interval T ∗
in for minimizing the overall

loss probability satisfies

d(L(T ∗
in))

dT ∗
in

= 0.

V. EXPERIMENTS

Memory leaks are recognized to be one of the major causes

of resource exhaustion problems in complex software, which

represents one of the most serious causes of aging. Many papers

have studied the effect of memory leaks in software [2], [15],

[21], [32], [34]–[38].

The ALT approach has been successfully applied in many

engineering fields [36], [37] to significantly reduce the experi-

mentation time. In [36] and [37], the authors employed the ALT

approach to solve the optimal rejuvenation problem. In this pa-

per, we employ the injecting memory leaks approach to study

the two-granularity strategies. We focus on the distributions of

the TTF of the AS and the OS when they suffer from software

aging.

Fig. 3. Experiment test bed.

A. Experiment Setup

Our test bed is based on the settings used in [35], where it is

composed of two physical machines which are connected by a

switch. The two physical machines have exactly the same hard-

ware facilities (CPU: Intel(R) Core(TM)2 Quad Q9400, RAM: 2

Gbyte, NIC: 1000 Mbps). One of the physical machines is used

as a server provider, which is the system under test. The OS

in this server is Fedora 13: 2.6.33.3-85.fc.i386.PAE. We chose

TPC_W benchmark of Version 6.0.29 as the web server soft-

ware [40], which also includes MySQL as the database server.

The other physical machine is used to imitate the clients gener-

ating requests to the server provider. It is composed of a set of

EBs. The number of EBs is 100 throughout the experiment.

In TPC-W standard, there are 14 different web pages includ-

ing home page, best selling page, new books page, search page,

shopping cart, order status page, etc. According to the functions,

the 14 pages can be divided into browse and order categories.

The order pages typically have greater processing requirements

than the browse pages due to the high frequency of database

accesses and secure transactions. The users’ navigation pattern

is emulated based on a CBMG. The CBMG shows how the

users navigate, how to use the functions, and how to control

the transition frequency of these functions. In a user session, an

EB sends a sequence of logically connected requests to the web

application server. Before the EB sends the next requests, there

is a “thinking time.” We can obtain the controlled execution per-

centage of each page by enforcing the transition probabilities

for the CBMG.

We wrote a perl script to work as the monitor which collects

the memory usage of the two levels and other information from

the web server. In our experiment, the monitor is executed every

7 s.

Fig. 3 illustrates the experimental environment used in this

paper.

B. Separation of the AS and the OS

To make sure that the memory usage of the AS and the OS is

independent as the initial assumption, we configure the JVM in

which Tomcat and TPC_W servlets run. The initial and maxi-

mum heap size is set to be 25% of the total available physical

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1637

Fig. 4. AS memory used after memory separation.

memory. Therefore, the maximum size of the Heap will be al-

located to it once the JVM is started. In this way, the memory

allocated to the TPC_W would not change throughout the ex-

periment, and thus, memory usage will work independently, and

therefore, we will able to collect the memory usage of each level

separately [41].

Fig. 4 shows that the heap size is fixed after memory usage

separation.

C. Injecting Memory Leaks

To emulate the software aging effects of memory exhaustion,

we inject memory leaks into the AS and the OS by modifying the

source code of TPC_W Benchmark and an OS kernel module,

respectively.

1) Injecting Memory Leaks Into the AS: We mod-

ify the two pages TPC_W_search_request_Servlet and

TPC_W_Shopping_cart_interaction. If the request_Servlet or

Shopping_cart_interaction is requested by the EBs, then

a bug is triggered and a random number N , which is

the size of the injected memory leak, is generated on

each invocation of doGet(). In this way, we embed two

bugs into the pages of TPC_W_search_request_servlet and

TPC_W_shopping_cart_interaction. Fig. 5 illustrates how

memory leaks are injected at the AS level.

2) Injecting Memory Leaks Into the OS: A kernel module is

written to inject memory leaks into the OS to emulate the mem-

ory exhaustion effects at the OS level. In this module, we add a

new function write_ex() which has the same function as the ker-

nel system call write(). When TPC_W_search_request_Servlet

or TPC_W _order_status_Servlet is requested, the added kernel

module is then triggered. In this case, the routine write_ex()

is executed, which makes memory leak inside the kernel. Note

that the other software will not call write_ex(), because this is

exclusive for our use only. If TPC_W_search_request_Servlet

is visited, both the AS level and the OS level are injected with

memory leaks. The process of injecting memory leaks into the

OS is similar to that into the AS. The process is presented in

Fig. 6.

Fig. 5. AS injecting memory leak process.

Fig. 6. Memory leak injection at the OS level.

D. System State Definition and Diagnostic Accuracy

of Monitor

Before we get the sojourn time of each state, we need to define

the states of AS and OS. In this paper, we use a full path method

to define the states of AS and OS, which is used to obtain the

misdiagnosis ratio of the M&A. The advantage of the full path

method is that we need only a few sensors and the diagnosis can

be done offline. Fig. 7 presents the monitoring process. First, it

1638 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

Fig. 7. Monitor.

Fig. 8. State definition of AS.

invokes JVM monitoring tool Jmap to obtain the memory usage

of Young, Old, and Permanent spaces. Second, it invokes the

system program “free” to obtain the memory usage of the OS.

Last, it invokes a script written in bash to obtain the status of

the Tomcat server by visiting the admin page of Tomcat server.

Let tfA be the time that AS goes down; then, we define the

critical time point tDA as

tDA = min
t∗

{t∗ | the average memory usage of AS

in the time interval [t∗, tfA] equals

90% of the total memory of AS}.

Then, we consider that TrueStateAS(t) of AS is degradation

state when t ∈ [tDA , tfA], and TrueStateAS(t) is robust state

when t ∈ [0, tDA]. We define the states of the OS just in the

same way as that of the AS (see Figs. 8 and 9).

A question is why we use 90% of the total memory as the

critical value to define the degradation state of AS. Actually,

when the memory usage of AS is about 90% of its total memory,

Fig. 9. State definition of OS.

it is expected that the swap space starts being used and thus the

system performance is affected.

After TrueStateAS(t) being defined, we give the definition

of MonitoredStateAS(t). To improve the diagnostic accuracy

of the M&A, we set 2% absolute error tolerance. So if the

M&A reports that MonitoredStateAS(tk) is robust state, then the

M&A reports that MonitoredStateAS(tk+1) at time (k + 1)τ is

degradation state if and only if the AS memory usage inspected

by the M&A is more than 92% of its total memory. If the M&A

reports that MonitoredStateAS(tk) is degradation state, then the

M&A reports that MonitoredStateAS(tk+1) is robust state if and

only if the AS memory usage inspected by the M&A is less than

88% of the total memory.

If MonitoredStateAS(t) �= TrueStateAS(t) in an inspection,

then we say that the M&A makes a misdiagnosis in this

inspection.

Another question is why we set 2% absolute error tolerance

when we determine the diagnostic accuracy of the M&A. Actu-

ally, if we set a larger value for the absolute error tolerance, then

the M&A becomes more insensitive when the available mem-

ory changes. If we set a smaller value, then the M&A becomes

much more sensitive when the available memory changes. If the

M&A is insensitive, then type II error in our statistical hypoth-

esis testing occurs with larger probability. While if the M&A

is sensitive, then type I error occurs with larger probability. Of

course, a reasonable value for absolute error tolerance is likely

to depend on the change of memory usage. Our experimental

data show that 2% absolute error tolerance makes a compromise

between the two types of statistical errors.

To obtain the misdiagnosis probability of the M&A to the

AS and OS, we need to record memory usage at the AS and

OS levels. The misdiagnosis probability of the M&A to the AS

under the condition that the TrueStateAS(t) is robust is estimated

by

1 − pr =
Nm,AS,r

Nt,AS,r

where Nm,AS,r is the number of misdiagnosis times of the M&A

to the AS and Nt,AS,r is the diagnosis times when the real state

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1639

of AS is robust. We use a preliminary experiment to get data of

Nm,AS,r and Nt,AS,r . In the experiments, the memory usage of

the AS and the OS level is recorded about every 7.1 s till AS

crashes. The time interval from the AS restarts to AS crashes

is [0 s, 14 320 s]. In the time interval [0 s, 9341 s] ⊂ [0 sec,

14 320 s], the AS is at robust state, and in the time interval

(9341 s, 14 320 s], the AS is at degradation state. When the AS

is at robust state in this time interval [0 s, 9341 s], the diagnosis

times when the AS is at robust state as 1315 units. According

to the state definition of AS, we have right diagnosis times is

1310. So we obtained Nm,AS,r = 5 and Nt,AS,r = 1315. Then,

the estimation of the misdiagnosis probability of the M&A to

the AS under the condition of the AS being at robust state is

1 − pr =
5

1315
= 0.0038

and the rightly diagnosis probability is 0.9962.

When AS is at degradation state in the time interval [9341 s,

14 320 s], the misdiagnosis probability of the M&A to AS is

estimated by

1 − pD =
Nm,AS,D

Nt,AS,D

where Nm,AS,D is the number of misdiagnosis times of the M&A

to the AS and Nt,AS,D is the total times of inspection. We obtain

the estimation of the conditional misdiagnosis probability as

1 − pD =
6

712
= 0.0085.

Similarly, we obtain the estimations of the misdiagnosis proba-

bilities of the M&A to the OS when the real state of the OS is

robust or degradation, respectively:

1 − qr =
905

22 789
= 0.0397

1 − qD =
346

2543
= 0.1361.

Because the environment of these experiments to obtain the right

diagnosis probability of the M&A are similar to the environment

of the other experiments to obtain to the distributions of the

random variables such as TA1 , TA2 in the following section, so

we conclude that the right diagnosis probability of the M&A is

the same as that in the experiments in Section VI.

Actually, the right diagnosis probability also depends on the

environment, in which the AS and the M&A work. How to

develop the right diagnosis probability of the M&A should be

considered in the further research.

VI. RESULT ANALYSIS

The degradation rate of a given software usually depends

on the running environment, which involves the type of work

and its respective intensity [25], [37]. To obtain the measure-

ments of MTrD, and the mean time from degradation to failed

state (MTDF) of AS and OS, respectively, a two-stage ran-

dom number generating method is used. In the first stage,

two series of random number values (X1 , X2 , . . . , X6) and

(Y1 , Y2 , . . . , Y6) are generated following an exponential dis-

tribution with the parameter λ equaling to 1kb, which are used

TABLE III
MEMORY CONSUMPTION RATE AND TTF OF AS AND OS

Amount AS From AS AS From MCR

Group of Memory Health To Experiment Degradation of AS

Injection Degradation TTF To Dead Level

(kbyte) (minute) (minute) (minute) (byte/minute)

1 grp 1.94 168.1 252.8 84.7 413 226.630

2 grp 1.22 217.7 494.1 276.4 220 982.776

3 grp 1.32 91.1 186.9 95.8 579 525.056

4 grp 0.84 178.0 410.1 232.1 257 752.463

5 grp 0.70 417.6 596.7 179.1 145 538.356

6 grp 1.02 111.4 324.7 213.3 275 094.530

Amount OS From OS OS From MCR

Group of Memory Health To Experiment Degradation of OS

Injection Degradation TTF To Dead Level

(kbyte) (minute) (minute) (minute) (byte/minute)

1 grp 1.95 145.6 294.0 148.4 585 963.462

2 grp 0.22 527.7 1580.0 1052.3 102 752.829

3 grp 0.72 189.6 538.3 348.7 279 518.242

4 grp 0.044 1603.0 4204.0 2601.0 45 399.326

5 grp 1.85 148.2 296.5 148.3 625 204.966

6 grp 2.33 114.5 206.7 92.2 807 782.578

TABLE IV
PARAMETERS OBTAINED FROM THE EXPERIMENT

λA 1 λA 2 λO 1

0.0051 /min 0.0055 /min 0.0022 /min

λO 2 L r r LD r

0.0043 /min 0.0044 0.0196

L r D LD D

0.0178 0.0211

as the average size of each memory leak injected at the AS

level and the OS level in each experiment, respectively. We use

(X1 , X2 , . . . , X6) and (Y1 , Y2 , . . . , Y6) to represent the com-

plexity of different types of work the sever system provides,

which makes the MTrD and MTDF exponentially distributed.

In the second stage, in each experiment for the AS and the

OS, the injected leak size of each visit follows a Poisson dis-

tribution, which represents the strength of the work. For exam-

ple, in the ith experiment for the AS level, the injected leak

size of each visit to the page TPC_W_search_request_page as

well as TPC_W_shopping_cart_interaction follows the Pois-

son distribution Poisson(Xi) at the AS level, and the injected

leak size of each visit to the TPC_W_search_request_page and

TPC_W_order_status_Servlet also follow a Poisson distribu-

tion, Poisson(Yi), at the OS level. We conducted a total of 12

experiments to obtain six samples of MTrD and six samples

of MTDF for the AS and OS respectively, which are shown in

Table III. The six experiments for the AS and that for the OS

were executed independently.

In each experiment, we end the experiment run after the mem-

ory resource is exhausted; then, we obtained the MTrD and

MTDF and the memory consumption rate in each experiment,

which are shown in Table III. Therefore, we obtained the state

transition rates of Table II, which are given in Table IV.

1640 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

Fig. 10. Availability of the system versus the optimal inspection time interval.

Fig. 11. Overall loss probability of the system versus the optimal inspection
time interval.

In addition, we record the loss probabilities Lrr , LrD , LDr ,

and LDD when the system is at “rr,” “rD,” “Dr,” and “DD” states

(see Table IV).

Suppose that the average repair times of the AS are E(TA3) =
0.5 min and E(TA4) = 1 min. The average repair times of the

OS are E(TO3) = 1.5 min and E(TO4) = 2 min, which are the

common time for software maintenance [26]. Then, the avail-

ability of the system versus Tin is given in Fig. 10, where the

optimal availability found was 0.99968 (which means that the

unavailability is 1 − 0.99968 = 0.00032) and the correspond-

ing optimal inspection interval was T ∗
in = 10.5 min. The overall

loss probability of the system versus Tin is given in Fig. 11.

From the figure, we know that the minimum overall loss prob-

ability is 4.7461 × 10−3 and the corresponding optimal T ∗
in for

the overall loss probability in this case is 21 min.

The numerical results show that the percentage of rejuvena-

tion at the AS level is 60.19%, and the percentage of rejuvenation

at the OS level is 1 − 60.19% = 39.81%.

To comparatively analyze the effects of two-granularity soft-

ware rejuvenation and single-level software rejuvenation, we

suppose that there is no AS proactive or reactive restart, which

is the common case when the traditional single-level rejuvena-

tion is used. In this scenario, if the AS is at aging state, we

rejuvenate the OS level (not just the AS level); if the OS is at

aging state, we also rejuvenate the OS level. Similarly, if the AS

is at crash state, we reactively restart the OS level (not the AS

level); if the OS is at crash state, we also reactively restart the

OS level. In our model, we correspondingly replaced the RD

and Rr states in Fig. 2 with RR and RR states. Then, the sojourn

times of the corresponding new states have the distribution FO3 .

The other states and their sojourn times did not change. In this

case, numerical results show that the unavailability and overall

loss probability of the system are 0.00039 and 4.8753 × 10−3 ,

respectively.

If two-granularity software rejuvenation is used, the unavail-

ability of the system is reduced by

0.00039 − 0.00032

0.00039
= 17.9%

in comparison when the single-level rejuvenation is used. Sim-

ilarly, the overall loss probability of the system is reduced by

4.8753 × 10−3 − 4.7461 × 10−3

4.8753 × 10−3
= 2.65%.

VII. THREATS TO VALIDITY

Every empirical study suffers from methodological short-

comings [31], [32]. Basically, the following four categories of

validity are the most concerned issues by researchers in this

respect.

1) Conclusion validity: Conclusion validity refers to the sta-

tistical relationship between the treatment and the out-

come.

In this paper, we use a preliminary experiment to ob-

tain the misdiagnosis probability of the M&A. If the event

MonitoredStateAS(t) �= TrueStateAS(t) is observed in an

inspection, then we say that the M&A makes a misdiag-

nosis in this inspection. A threat to the misdiagnosis prob-

ability is that the event above has different rates during a

state of the AS. For example, if the AS is at robust state,

the event occurrence rate is smaller rate when the system

has enough memory, and the event occurrence rate be-

comes larger when the time approaches the critical time

tDA which is defined previously in this paper. Besides,

when repeating the preliminary experiment, deviation oc-

curs to the misdiagnosis probability.

Another threat to validity is that the independent vari-

ables such as TTF of the AS and the OS are not known

to correlate substantially. Besides, the JVM garbage col-

lection impacts on the memory usage measurement in the

experiment, which makes the parameters such as λDA and

λDO vary.

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1641

2) Internal validity: Internal validity refers to the relationship

between the treatment and the outcome. A threat to the

internal validity might result from the dependent variables

in an experiment, especially when the researchers are not

aware of the relationships among dependent variables.

In this paper, we used memory usage as the indicator

of software aging. There are some other software aging

indicators such as CPU usage rate, reply time delay, and so

on. If we use different aging indicators, then the variables

such as TDA and TDO measured are different. In this case,

an issue would be to select low quality aging indicators,

that is, aging indicators with a low precision to capture

the aging effects or even that show high false-positive or

false-negative rates. A good source of discussion on this

problem would be [38].

Another weak threat to validity is the other AS on the

OS. In this paper, we focus on the web server AS and OS,

but they are more or less affected by the other supporting

AS.

3) External validity: External validity is concerned with the

generalizability of the results for the other people outside

the investigated case.

In this paper, we considered the case that the AS and the

OS are independent by separating memory usage of the

AS and the OS levels. Our method cannot be applied to

the other case when the AS and the OS shares the memory

usage. Thus, this is one threat to external validity.

4) Construct validity: Construct validity is about the extent

to which the specific variables of an empirical study are

consistent with the intended constructs in the theoretical

model.

Commonly investigated causes of software aging include

but are not limited to memory leaks, unreleased file-locks,

and round-off errors [2], [8]. Memory usage is one of the

most used measurements of software aging [38]. This

paper uses memory usage as the measurement of software

aging. However, the other measurements cannot totally be

ignored in a software system. They are potential threats to

validity.

The software aging-related bugs are the root causes of

software aging. In this paper, software rejuvenation strat-

egy was optimized to counteract the impacts of software

aging-related bugs. Therefore, the bugs unrelated to soft-

ware aging are threats to validity.

VIII. CONCLUSION

In this paper, we have discussed the two-level software ag-

ing behavior of software systems. The aim of this study is to

apply an overall optimal rejuvenation strategy to the system

that suffers from two-granularity software aging. According to

the software states identified, four software maintenance tech-

niques, AS proactive rejuvenation, OS proactive rejuvenation,

AS reactive restart, and OS reactive restart, are used to counter-

act the negative impact of the software aging effects.

We have proposed a Markov regeneration process model

based on the states identified in the Apache Tomcat server

system. We have validated the analytical solution of the Markov

regeneration process model. The aging behavior-related

parameters of the software were obtained from controlled

experiments. Therefore, the corresponding optimal inspection

interval was given from the analytical solution.

The experimental results show that two-granularity software

rejuvenation was much more effective to counteract the software

aging than single (OS) level rejuvenation.

Note that multilevel rejuvenation can be applied only when

we know which part (or level) the aging is at. So, the main

limitation of this paper is the difficulty to locate the aged part

(level) by using different metrics for software aging detection

in real applications. While if the traditional single (OS) level

rejuvenation is used, this limitation can be redeemed by applying

the metric of system performance [38]. So, it is important to

investigate appropriate metrics and mechanisms to measure the

aging effects in different levels of computing systems, which

will allow us to apply easier our proposal approach.

The diagnostic accuracy of the M&A has been considered

when we gave the optimal rejuvenation scheduling in this paper.

For this purpose, a full path method is used. How to improve

the diagnostic accuracy of the M&A is an interesting extension

of this study. With a fine-grained software observability, high

dependable automatic software rejuvenation technique will be

closer to real systems.

APPENDIX

The global kernel matrix K(t):
For k0,1(t), there are two paths: 0 → 1, and 0 → 8 → 1.

k0,1(t) = Pr{Z(S1) = 1, S1 ≤ t | Z(0) = 0}

=

⌊ t
T i n

⌋
∑

k=1

(prqr)
k−1(1 − pr)qre

−(λA 1 +λO 1)kT i n

+ pD qr

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

λA1e
−(λA 1 +λO 1)x(prqr)

⌊ x
T i n

⌋

[(1 − pD)qr]
k−⌊ x

T i n
⌋−1

e−(λA 1 +λO 1)(kT i n −x)dx.

For k0,2(t), there are three paths: 0 → 7 → 2, 0 → 7 → 9 → 2
and 0 → 8 → 9 → 2. So

k0,2(t) = Pr{Z(S1) = 2, S1 ≤ t | Z(0) = 0}

= (1 − pr)(1 − qD)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

λO1e
−(λA 1 +λO 1)x

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

k−⌊ x
T i n

⌋−1

e−(λA 1 +λO 1)(kT i n −x)dx

+ pD (1 − qD)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

∫ kT i n

x

λO1e
−(λA 1 +λO 1)x

λA1e
−(λA 1 +λO 2)(y−x)e−(λA 2 +λO 2)(kT i n −y)

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

1642 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

[(1 − pD)(1 − qD)]
k−⌊ y

T i n
⌋−1

dydx

+ pD (1 − qD)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

∫ kT i n

x

λA1e
−(λA 1 +λO 1)x

λO1e
−(λO 1 +λA 2)(y−x)e−(λA 2 +λO 2)(kT i n −y)

(prqr)
⌊ x

T i n
⌋
[(1 − pD)qr]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
k−⌊ y

T i n
⌋−1

dydx.

For k0,3(t), there are five paths: 0 → 3, 0 → 7 → 3, 0 → 8 → 3,

0 → 7 → 9 → 3, and 0 → 8 → 9 → 3. So

k0,3(t) = Pr{Z(S1) = 3, S1 ≤ t | Z(0) = 0}

=

⌊ t
T i n

⌋
∑

k=1

e−(λA 1 +λO 1)kT i n (prqr)
k−1(1 − qr)

+ qD

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

λO1e
−(λA 1 +λO 1)x

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

k−⌊ x
T i n

⌋−1

e−(λA 1 +λO 2)(kT i n −x)dx

+(1 − qr)

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

λA1e
−(λA 1 +λO 1)x

(prqr)
⌊ x

T i n
⌋
[qr (1 − pD)]

k−⌊ x
T i n

⌋−1

e−(λA 2 +λO 1)(kT i n −x)dx

+qD

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

∫ kT i n

x

λO1e
−(λA 1 +λO 1)x

λA1e
−(λA 1 +λO 2)(y−x)e−(λA 2 +λO 2)(kT i n −y)

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
k−⌊ y

T i n
⌋−1

dydx

+qD

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

∫ kT i n

x

λA1e
−(λA 1 +λO 1)x

λO1e
−(λO 1 +λA 2)(y−x)e−(λA 2 +λO 2)(kT i n −y)

(prqr)
⌊ x

T i n
⌋
[(1 − pD)qr]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
k−⌊ y

T i n
⌋−1

dydx.

For k0,4(t), there is one path: 0 → 8 → 4. So

k0,4(t)

= Pr{Z(S1) = 4, S1 ≤ t | Z(0) = 0}

=

∫ t

0

∫ t−x

0

λA1λA2e
−(λA 1 +λO 1)xe−(λA 2 +λO 1)y

(prqr)
⌊ x

T i n
⌋
[(1 − pD)qr]

⌊ x + y
T i n

⌋−⌊ x
T i n

⌋
dydx.

For k0,5(t), there are two paths: 0 → 8 → 9 → 5, 0 → 7 →
9 → 5. So

k0,5(t)

= Pr{Z(S1) = 5, S1 ≤ t | Z(0) = 0}

=

∫ t

0

∫ t

x

∫ t

y

λO1e
−(λA 1 +λO 1)x

λA1e
−(λA 1 +λO 2)(y−x)

λA2e
−(λA 2 +λO 2)(z−y)

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
⌊ z

T i n
⌋−⌊ y

T i n
⌋
dzdydx

+

∫ t

0

∫ t

x

∫ t

y

λA1e
−(λA 1 +λO 1)x

λO1e
−(λA 1 +λO 2)(y−x)

λA2e
−(λA 2 +λO 2)(z−y)

(prqr)
⌊ x

T i n
⌋
[qr (1 − pD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
⌊ z

T i n
− y

T i n
⌋
dzdydx.

For k0,6(t), there are three paths: 0 → 7 → 6, 0 → 7 → 9 → 6,

0 → 8 → 9 → 6.

So

k0,6(t)

= Pr{Z(S1) = 6, S1 ≤ t | Z(0) = 0}

=

∫ t

0

∫ t−x

0

λO1λO2e
−(λA 1 +λO 1)xe−(λA 1 +λO 2)y

(prqr)
⌊ x

T i n
⌋
[(1 − qD)pr]

⌊ x + y
T i n

⌋−⌊ x
T i n

⌋
dydx

∫ t

0

∫ t

x

∫ t

y

λO1e
−(λA 1 +λO 1)x

λA1e
−(λA 1 +λO 2)(y−x)

λO2e
−(λA 2 +λO 2)(z−y)

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
⌊ z

T i n
⌋−⌊ y

T i n
⌋
dzdydx

+

∫ t

0

∫ t

x

∫ t

y

λA1e
−(λA 1 +λO 1)x

λO1e
−(λA 1 +λO 2)(y−x)

λO2e
−(λA 2 +λO 2)(z−y)

(prqr)
⌊ x

T i n
⌋
[qr (1 − pD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

[(1 − pD)(1 − qD)]
⌊ z

T i n
− y

T i n
⌋
dzdydx.

k1,0(t) = FA3(t).

When k2,3(t) is considered, we need to note that there are two

rings: 2 → 7 → 2 and 2 → 7 → 9 → 2. Let

F272(t) =

⌊ t
T i n

⌋
∑

k=1

e−(λA 1 +λO 2)(kT i n) [(1 − pr)(1 − qD)]

[pr (1 − qD)]k−1FA3(t − kTin),

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1643

F2792(t) =

⌊ t
T i n

⌋
∑

k=1

∫ kT i n

0

[pr (1 − qD)]
⌊ x

T i n
⌋
[pD (1 − qD)]

[(1 − pD)(1 − qD)]
k−⌊ x

T i n
⌋−1

e−(λA 1 +λO 2)(x)

λA1e
−(λA 2 +λO 2)(kT i n −x)dx · FA3(t − kTin).

Then, we have

k2,3(t)

= Pr{Z(S1) = 3, S1 ≤ t | Z(0) = 2}

=

+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

⌊ t−x −y
T i n

⌋−1
∑

m=0

[pr (1 − qD)]m qD

e−(λA 1 +λO 2)(m+1)T i n dFA3(y)dF ∗k
272 ∗ F

∗(N −k)
2792 (x)

+

+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

∫ t−x−y

0

λA1e
−(λA 1 +λO 2)(z)

[pr (1 − qD)]
⌊ z

T i n
⌋

⌊ t−x −y
T i n

⌋−⌊ z
T i n

⌋−1
∑

m=0

[(1 − pD)(1 − qD)]m

e−(λA 2 +λO 2)(m+1)T i n qD dzdFA3(y)

dF ∗k
272 ∗ F

∗(N −k)
2792 (x).

k2,5(t)

= Pr{Z(S1) = 5, S1 ≤ t | Z(0) = 2}

=

+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

∫ t−x−y

0

∫ t−x−y−z

0

λA1e
−(λA 1 +λO 2)(z)

λA2e
−(λA 2 +λO 2)(u)

[pr (1 − qD)]
⌊ z

T i n
⌋
[(1 − pD)(1 − qD)]

⌊ z + u
T i n

⌋−⌊ z
T i n

⌋

dudzdFA3(y)dF ∗k
272 ∗ F

∗(N −k)
2792 (x).

k2,6(t)

=
+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

∫ t−x−y

0

λO2e
−(λA 1 +λO 2)(z)

[pr (1 − qD)]
⌊ z

T i n
⌋
dzdFA3(y)dF ∗k

272 ∗ F
∗(N −k)
2792 (x).

+
+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

∫ t−x−y

0

∫ t−x−y−z

0

λA1e
−(λA 1 +λO 2)(z)

λO2e
−(λA 2 +λO 2)(u)

[pr (1 − qD)]
⌊ z

T i n
⌋
[(1 − pD)(1 − qD)]

⌊ z + u
T i n

⌋−⌊ z
T i n

⌋

dudzdFA3(y)dF ∗k
272 ∗ F

∗(N −k)
2792 (x).

k3,0(t) = FO3(t).

k4,0(t) = (1 − qr)FO3(t) + qrFA4(t).

k5,0(t) = qD FO3(t).

To obtain k5,2(t), we let

F5795(t)

= (1 − p4)

∫ t

0

∫ t−x

0

∫ t−x−y

0

λA1e
−(λA 1 +λO 2)y

[pr (1 − qD)]
⌊ y

T i n
⌋
λA2e

−(λA 2 +λO 2)z

[(1 − pD)(1 − qD)]
⌊ y + z

T i n
⌋−⌊ y

T i n
⌋
dzdydFA4(x).

Then

k5,2(t)

= Pr{Z(S1) = 2, S1 ≤ t | Z(0) = 5}

=

+∞
∑

k=0

∫ t

0

∫ t−x

0

⌊ t−x −y
T i n

⌋−1
∑

m=0

[pr (1 − qD)]m

e−(λA 1 +λO 2)[(m+1)T i n][(1 − pr)(1 − qD)]

dFA4(y)dF ∗k
5795(x)

+
+∞
∑

k=0

∫ t

0

∫ t−x

0

∫ t−x−y

0

λA1e
−(λA 1 +λO 2)z

[pr (1 − qD)]
⌊ z

T i n
⌋

⌊ t−x −y −z
T i n

⌋−1
∑

m=0

[(1 − pD)(1 − qD)]m

e−(λA 2 +λO 2)[(m+1)T i n][pD (1 − qD)]

dzdFA4(y)dF ∗k
5795(x).

k5,3(t)

= Pr{Z(S1) = 3, S1 ≤ t | Z(0) = 5}

=

+∞
∑

k=0

∫ t

0

∫ t−x

0

⌊ t−x −y
T i n

⌋−1
∑

m=0

[pr (1 − qD)]m

e−(λA 2 +λO 2)[(m+1)T i n]qD dFA4(y)dF ∗k
5795(x)

=

+∞
∑

k=0

∫ t

0

∫ t−x

0

∫ t−x−y

0

λA1e
−(λA 1 +λO 2)z

[pr (1 − qD)]
⌊ z

T i n
⌋

⌊ t−x −y −z
T i n

⌋−1
∑

m=0

[(1 − pD)(1 − qD)]m

·e−(λA 2 +λO 2)[(m+1)T i n]qD dzdFA4(y)dF ∗k
5795(x).

k5,6(t)

= Pr{Z(S1) = 6, S1 ≤ t | Z(0) = 5}

=

+∞
∑

k=0

∫ t

0

∫ t−x

0

∫ t−x−y

0

λO2e
−(λA 1 +λO 2)z

[pr (1 − qD)]
⌊ z

T i n
⌋
dzdFA4(y)dF ∗k

5795(x)

+

+∞
∑

k=0

∫ t

0

∫ t−x

0

∫ t−x−y

0

λA1e
−(λA 1 +λO 2)z

1644 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

[pr (1 − qD)]
⌊ z

T i n
⌋

⌊ t−x −y −z
T i n

⌋−1
∑

m=0

[(1 − pD)(1 − qD)]m

e−(λA 2 +λO 2)[(m+1)T i n]dzdFA4(y)dF ∗k
5795(x).

k6,0(t) = FA4(t).

The local kernel matrix E(t):

E0,0(t) = e−(λA 1 +λO 1)t [(1 − Fin(t))

+
+∞
∑

k=1

(prqr)
k

∫ t

0

(1 − Fin(t − x))dF ∗k
in (x)]

= e−(λA 1 +λO 1)t(prqr)
⌊ t

T i n
⌋
.

E1,1(t) = 1 − FA3(t).

E2,2(t) = 1 − FA3(t) +

+∞
∑

N =1

N
∑

k=0

Ck
N

∫ t

0

(1 − FA3(t − x))dF ∗k
272 ∗ F

∗(N −k)
2792 (x).

E3,3(t) = 1 − FO3(t).

E4,4(t) = 1 − FA4(t).

E5,5(t) = [1 − qD FO3(t) − (1 − qD)FA4(t)]

+

+∞
∑

k=0

∫ t

0

[1 − qD FO3(t − x)

−(1 − qD)FA4(t − x)]dF ∗k
5795(x).

E6,6(t) = 1 − FO4(t).

E0,7(t)

=

∫ t

0

λO1e
−(λA 1 +λO 1)xe−(λA 1 +λO 2)(t−x)

(prqr)
⌊ x

T i n
⌋
[pr (1 − qD)]

⌊ t
T i n

⌋−⌊ x
T i n

⌋
dx.

E0,8(t)

=

∫ t

0

λA1e
−(λA 1 +λO 1)xe−(λA 2 +λO 1)(t−x)

(prqr)
⌊ x

T i n
⌋
[(1 − pD)qr]

⌊ t
T i n

⌋−⌊ x
T i n

⌋
dx.

E0,9(t)

=

∫ t

0

∫ t

x

λO1e
−(λA 1 +λO 1)x(prqr)

⌊ x
T i n

⌋

λA1e
−(λA 1 +λO 2)(y−x) [pr (1 − qD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

e−(λA 2 +λO 2)(t−y)

[(1 − pD)(1 − qD)]
⌊ t

T i n
⌋−⌊ y

T i n
⌋
dydx

+

∫ t

0

∫ t

x

λA1e
−(λA 1 +λO 1)x(prqr)

⌊ x
T i n

⌋

λO1e
−(λA 1 +λO 2)(y−x) [qr (1 − pD)]

⌊ y
T i n

⌋−⌊ x
T i n

⌋

e−(λA 2 +λO 2)(t−y)

[(1 − pD)(1 − qD)]
⌊ t

T i n
⌋−⌊ y

T i n
⌋
dydx.

E2,7(t)

=

+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

e−(λA 1 +λO 2)(t−x−y)

[pr (1 − qD)]
⌊ t−x −y

T i n
⌋
dFA3(y)dF ∗k

272 ∗ F
∗(N −k)
2792 (x).

E2,9(t)

=

+∞
∑

N =0

N
∑

k=0

Ck
N

∫ t

0

∫ t−x

0

∫ t−x−y

0

λA1e
−(λA 1 +λO 2)(z)

e−(λA 2 +λO 2)(t−x−y−z) [pr (1 − qD)]
⌊ z

T i n
⌋

[(1 − pD)(1 − qD)]
⌊ t−x −y

T i n
⌋−⌊ z

T i n
⌋

dzdFA3(y)dF ∗k
272 ∗ F

∗(N −k)
2792 (x).

E5,7(t) =

+∞
∑

k=0

∫ t

0

∫ t−x

0

(1 − qD)k+1

e−(λA 1 +λO 2)(t−x−y)(1 − Fin(t − x − y))

dFA4(y)dF ∗k
5795(x).

E5,9(t) =

+∞
∑

k=0

∫ t

0

∫ t−x

0

∫ t−x−y

0

(1 − qD)k+1

λA1e
−(λA 1 +λO 2)ze−(λA 2 +λO 2)(t−x−y−z)

(1 − Fin(t − x − y))dzdFA4(y)dF ∗k
5795(x).

The mean sojourn time at state i ∈ Ω:

μ0 =

∫ +∞

0

E0,0(t) + E0,7(t) + E0,8(t) + E0,9(t)dt.

μi =

∫ +∞

0

Ei,i(t)dt, for i = 1, 3, 4, 6.

μ2 =

∫ +∞

0

E2,2(t) + E2,7(t) + E2,9(t)dt.

μ5 =

∫ +∞

0

E5,5(t) + E5,7(t) + E5,9(t)dt.

REFERENCES

[1] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software reju-
venation: Analysis, module, and applications,” in Proc. 25th Int. Symp.

Fault-Tolerance Comput., 1995, pp. 381–390.
[2] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of soft-

ware aging,” in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops., 2008,
pp. 1–6.

[3] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software
rejuvenation,” IEEE Trans. Dependable Secure Comput., vol. 2, no. 2,
pp. 124–136, Apr.–Jun. 2005.

[4] J. Alonso, M. Grottke, A. Nikora, and K. S. Trivedi, “The nature of the
times to flight software failure during space missions,” in Proc. IEEE Int.

Conf. Softw. Rel. Eng., Workshops, 2012, pp. 331–340.
[5] C. Kintala, “Software rejuvenation in embedded systems,” J. Autom.,

Lang. Combinatorics, vol. 14, pp. 63–73, 2009.

NING et al.: OPTIMIZATION OF TWO-GRANULARITY SOFTWARE REJUVENATION POLICY BASED ON THE MRGP 1645

[6] V. Castelli et al., “Proactive management of software aging,” IBM J. Res.

Develop., vol. 45, pp. 311–332, 2001.
[7] W. Yurcik and D. Doss, “Achieving fault-tolerant software with reju-

venation and reconfiguration,” IEEE Softw., vol. 18, no. 4, pp. 48–52,
Jul./Aug. 2001.

[8] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, Feb. 2007.

[9] G. Ning, K. S. Trivedi, H. Hu, and K.-Y. Cai, “Multi-granularity software
rejuvenation policy based on continuous time Markov chain,” in Proc.

IEEE 3rd Int. Workshop Softw. Aging Rejuvenation, 2011, pp. 32–37.
[10] T. Dohi, K. G. Popstojanova, and K. S. Trivedi, “Analysis of software cost

models with rejuvenation,” in Proc. Int. Symp. High Assurance Syst. Eng.,
2000, pp. 25–34.

[11] T. Dohi, K. G. Popstojanova, and K. S. Trivedi, “Estimating software
rejuvenation schedules in high assurance systems,” Comput. J., vol. 44,
pp. 473–485, 2001.

[12] W. Xie, Y. Hong, and K. S. Trivedi, “Analysis of a two-level software
rejuvenation policy,” Rel. Eng. Syst. Safety, vol. 87, pp. 13–22, 2005.

[13] T. Dohi, K. G. Popstojanova, and K. S. Trivedi, “Statistical non-parametric
algorithms to estimate the optimal software rejuvenation schedule,” in
Proc. Pacific Rim Int. Symp. Dependable Comput., 2000, pp. 77–84.

[14] Y. Bao, X. Sun, and K. S. Trivedi, “A workload-based analysis of software
aging, and rejuvenation,” IEEE Trans. Rel., vol. 54, no. 3, pp. 102–114,
Sep. 2005.

[15] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of soft-
ware aging in a web server,” IEEE Trans. Rel., vol. 55, no. 3, pp. 411–420,
Sep. 2006.

[16] Y. Hong, D. Chen, L. Li, and K. S. Trivedi, “Closed loop design for
software rejuvenation,” presented at the Workshop Self-Healing, Adaptive
Self-Managed Syst., New York, NY, USA, 2002.

[17] W. Qin and Q. Wang, “Feedback performance control for computer sys-
tems: An LPV approach,” in Proc. Amer. Control Conf., 2005, pp. 4760–
4765.

[18] A. Bobbio, A. Sereno, and C. Anglano, “Fine grained software degradation
models for optimal rejuvenation policies,” Perform. Eval., vol. 46, pp. 45–
62, 2001.

[19] S. Garg, Y. Huang, C. Kintala, and K. S. Trivedi, “Time and load based
software rejuvenation: Policy, evaluation and optimality,” in Proc. 1st

Fault-Tolerant Symp., 1995, pp. 22–25.
[20] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A method-

ology for detection and estimation of software aging,” in Proc. 9th Int.

Symp. Softw. Rel. Eng., 1998, pp. 283–292.
[21] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y. Liu, “Soft-

ware aging and multifractality of memory resources,” in Proc. Int. Conf.

Dependable Syst. Netw., 2003, pp. 721–730.
[22] Y. Jia, X. Chen, and K. -Y. Cai, “Chaotic analysis of software aging in a

web server,” in Proc. 2th Int. Workshop Service-Oriented Syst. Eng., 2006,
pp. 117–120.

[23] K. Xue, L. Su, Y. Jia, and K. -Y. Cai, “A neural network approach to
forecasting computing-resource exhaustion with workload,” in Proc. 9th

Int. Conf. Quality Softw., 2009, pp. 315–324.
[24] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for software

rejuvenation,” IEEE Trans. Dependable Secure Comput., vol. 2, no. 2,
pp. 124–136, Apr.–Jun. 2005.

[25] R. Matias and P. J. Freitas Filho, “An experimental study on software
aging and rejuvenation in Web servers,” in Proc. 30th Annu. Int. Comput.

Softw. Appl. Conf., pp. 189–196, vol. 1, 2006.
[26] J. Alonso, R. Matias, E. Vicente, A. Maria, and K. S. Trivedi, “A com-

parative experimental study of software rejuvenation overhead,” Perform.

Eval., vol. 70, pp. 231–250, 2013.
[27] Linux. Player. c, Linux memory leak detection tool, [EB/OL]. [Online].

Available: http://www.linuxidc.com/Linux/2014-09/106299.htm
[28] Frederic Germain,Trace and analyze memory leaks in C++ programs,

[EB/OL]. [Online]. Available: http://www.andreasen.org/LeakTracer/
[29] Compuware Corporation, Compuware Ships DriverStudio 3.0, [EB/

OL]. [Online]. Available: http://www.prnewswire.com/news-releases/
compuware-improves-the-quality-of-enterprise-java-applications-with-
devpartner-java-edition-33-54093837.html

[30] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesséln,
Experimentation in Software Engineering. New York, NY, USA: Springer,
2012.

[31] F. Huang, B. Liu, Y. Song, and S. Keyal, “The links between human error
diversity and software diversity: Implications for fault diversity seeking,”
Sci. Comput. Program., vol. 89, pp. 350–373, 2014.

[32] F. Huang, B. Liu, S. Wang, and Q. Li, “The impact of software process
consistency on residual defects,” J. Softw.: Evol. Process, vol. 27, 2015.

[33] A. Kumar and M. Saini, “Cost-benefit analysis of a single-unit system
with preventive maintenance and Weibull distribution for failure and repair
activities,” J. Appl. Math., Statist. Informat., vol. 10, pp. 5–19, 2014.

[34] K. Vaidyanathan, D. Selvamuthu, and K. S. Trivedi, “Analysis of
inspection-based preventive maintenance in operational software sys-
tems,” in Proc. 21st Int. Symp. Rel. Distrib. Syst., 2002, pp. 286–295.

[35] J. Alonso, J. Torres, J. Berral, and R. Gavalda, “Adaptive on-line software
aging prediction based on machine learning,” in Proc. IEEE/IFIP Int.

Conf. Dependable Syst. Netw., 2010, pp. 507–516.
[36] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. Matias, and K. -Y. Cai,

“A comprehensive approach to optimal software rejuvenation,” Perform.

Eval., vol. 70, pp. 917–933, 2013.
[37] R. Matias, P. A. Barbetta, and K. S. Trivedi, “Accelerated degradation

tests applied to software aging experiments,” IEEE Trans. Rel., vol. 59,
no. 1, pp. 102–114, Mar. 2010.

[38] R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi, “A system-
atic differential analysis for fast and robust detection of software aging,”
in Proc. 33rd IEEE Int. Symp. Rel. Distrib. Syst., 2014, pp. 311–320.

[39] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of preven-
tive maintenance in transactions based software systems,” IEEE Trans.

Comput., vol. 47, no. 1, pp. 96–107, Jan. 1998.
[40] M. Lipasti, Tpc-W Java version, [EB/OL]. (2009). [Online]. Available:

http://www.ece.wisc.edu/ pharm/
[41] Oracle, Understanding Memory Management, [EB/OL]. (2010). [Online].

Available: http://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/
geninfo/diagn os/garbage_collect.html

Gaorong Ning received the Ph.D. degree in navigation guidance and control
from the Department of Automatic Control, Beihang University, Beijing, China,
in 2016.

His main research interests include software reliability engineering and
network information warfare.

Jing Zhao received the Ph.D. degree in computer science and technology from
the Harbin Institute of Technology of China, Harbin, China, in 2006.

In 2010, she was with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC, USA, as a Postdoctoral Researcher under
the supervision of Dr. K. Trivedi. She is currently a Professor with the School
of Computer Science, Harbin Engineering University of China. Her research in-
terests include reliability engineering, software aging theory, and dependability
modeling.

Yunlong Lou is currently working toward the M.S. degree in the Department
of Computer Science and Technology, Harbin Institute of Technology of China,
Harbin, China.

His research interests include software reliability and network information
warfare.

Javier Alonso received the master’s degree in computer science and Ph.D.
degree from the Technical University of Catalonia (Universitat Politecnica de
Catalunya, UPC), Barcelona, Spain, in 2004 and 2011, respectively.

From 2006 to 2011, he was an Assistant Lecturer with the Computer Archi-
tecture Department, UPC. From 2011 to 2014, he was a Postdoctoral Associate
under the mentoring of Prof. K. S. Trivedi, with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC, USA. He is currently
the Research Manager and Acting Research Director with the Research Institute
of Applied Sciences in Cybersecurity, University of León, León, Spain. He is
also a Visiting Assistant Professor with Duke University. His research interests
include software engineering focusing on high-performance and high-available
large-scale distributed software systems as well as mobile/cloud computing.

1646 IEEE TRANSACTIONS ON RELIABILITY, VOL. 65, NO. 4, DECEMBER 2016

Rivalino Matias, Jr., received the B.S. degree in informatics from Minas Gerais
State University, Belo Horizonte, Brazil, in 1994, and the M.S. and Ph.D. de-
grees in computer science, and industrial and systems engineering from the
Federal University of Santa Catarina, Santa Catarina, Brazil, in 1997 and 2006,
respectively.

He is currently an Associate Professor with the Computer School, Federal
University of Uberlândia, Uberlândia, Brazil. His research interests include de-
pendability applied to computing systems, software aging theory, and diagnosis
protocols for computing systems.

Kishor S. Trivedi (M’86–SM’87–F’92) received the B.S.E.E. degree from
Indian Institute of Technology, India, in 1968, and the M.S. and Ph.D. degrees
from the University of Illinois in 1972 and 1974, respectively.

Dr. Trivedi holds the Hudson Chair with the Department of Electrical and
Computer Engineering, Duke University, Durham, NC, USA. He has been on the
Duke faculty since 1975. He is the author of a well-known book entitled Prob-

ability and Statistics with Reliability, Queuing and Computer Science Applica-

tions (Prentice-Hall, 1982); a thoroughly revised second edition (including its
Indian edition) of this book has been published by Wiley. He has also published
two other books entitled Performance and Reliability Analysis of Computer Sys-

tems (Kluwer, 1996) and Queueing Networks and Markov Chains (Wiley, 1998).
His research interests include reliability, availability, performance, performabil-
ity, and survivability modeling of computer and communication systems.

Dr. Trivedi is a Golden Core Member of the IEEE Computer Society. He
received the IEEE Computer Society Technical Achievement Award for his re-
search on software aging and rejuvenation.

Bei-Bei Yin received the Ph.D. degree from Beihang University (Beijing Uni-
versity of Aeronautics and Astronautics), Beijing, China, in 2010.

She has been a Lecturer with Beihang University since 2010. Her main
research interests include software testing, software reliability, and software
cybernetics.

Kai-Yuan Cai received the B.S., M.S., and Ph.D. degrees from Beihang Uni-
versity (Beijing University of Aeronautics and Astronautics), Beijing, China, in
1984, 1987, and 1991, respectively.

He has been a Full Professor at Beihang University since 1995. He is a
Cheung Kong Scholar (Chair Professor), jointly appointed by the Ministry of
Education of China and the Li Ka Shing Foundation of Hong Kong in 1999. His
main research interests include software testing, software reliability, reliable
flight control, and software cybernetics.

