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Abstract

In today’s technological world, distributed denial of service (DDoS) attacks threaten Internet users by flooding huge

network traffic to make critical Internet services unavailable to genuine users. Therefore, design of DDoS attack detection

system is on urge to mitigate these attacks for protecting the critical services. Nowadays, deep learning techniques are

extensively used to detect these attacks. The existing deep feature learning approaches face the lacuna of designing an

appropriate deep neural network structure for detection of DDoS attacks which leads to poor performance in terms of

accuracy and false alarm. In this article, a tuned vector convolutional deep neural network (TVCDNN) is proposed by

optimizing the structure and parameters of the deep neural network using binary and real cumulative incarnation (CuI),

respectively. The CuI is a genetic-based optimization technique which optimizes the tuning process by providing values

generated from best-fit parents. The TVCDNN is tested with publicly available benchmark network traffic datasets and

compared with existing classifiers and optimization techniques. It is evident that the proposed optimization approach yields

promising results compared to the existing optimization techniques. Further, the proposed approach achieves significant

improvement in performance over the state-of-the-art attack detection systems.

Keywords Convolutional neural network � Cumulative incarnation � Deep learning � DDoS attacks � Neural network

tuning � Optimization

1 Introduction

Denial of service (DoS) attacks exploit today’s Internet

infrastructure to a huge extent, and identification of these

attacks is challenging to Internet Service Providers. These

attacks consume huge network traffic and server resources

thereby denying services to legitimate users [1]. Nowadays,

these attacks are distributive in nature, and hence, these

attacks are named as distributed denial of service (DDoS)

attacks. The intention of the attackers is to overwhelm the

resources with useless packets for denying legitimate users

to access the target system or services. These attacks are

launched in the higher layers such as network layer,

transport layer, and application layer [2]. The reason for

these attacks is the enormous amount of attack tools

available in the Internet. Even a novice can launch such

attacks with the available tools. The DDoS attack packets

do not show any specific characteristics that distinguish

malicious traffic from legitimate traffic. According to

Kaspersky Lab DDoS Intelligence Report, DDoS attacks

are the most dominant threats registered in 79 countries in

most of the organizations. Further, the number and com-

plexity of these attacks are on the rise which necessitate

identification of these attacks [3].

In order to identify the class of the attack, the network

traffic patterns have to be learned using machine learning

approaches. The existing DDoS attack detection systems
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that are based on machine learning approaches exhibited

poor performance with respect to accuracy and false alarm

due to their inability to learn the features in different levels

of abstraction [4]. In order to overcome this issue, nowa-

days, deep learning has been used for pattern recognition

and classification [5]. The deep neural networks learn the

features layer by layer in a better way to identify unknown

attacks [6]. The deep learning techniques used for attack

detection include convolutional neural network (CNN),

recurrent neural network (RNN), long short-term memory

(LSTM), auto-encoder, transfer learning, etc. The CNN

automatically and adaptively learns the features using

convolutional, pooling, and fully connected layers [2]. The

RNN learns by remembering the information based on time

[7]. The LSTM is a RNN in which it learns by remem-

bering the information using gates such as input, output,

and forget [8]. The auto-encoder is an unsupervised

learning technique that learns the data by ignoring the noise

in the data [9, 10]. The deep learning techniques can be

utilized for transfer learning in which a model trained for

solving one problem can be reused for similar problem

solving, i.e. it is an improvement of learning in a new task

through the transfer of knowledge from a related task that

has already been learned [11]. Among these techniques,

researchers are mostly attracted towards CNN as it pro-

vides automatic feature extraction efficacy and handling of

non-linear data in robust manner. The CNN is an extension

of the conventional feedforward neural networks. Initially,

this technique has been studied for processing two-di-

mensional or three-dimensional images. Nowadays, this

technique is being applied for intrusion detection with one-

dimensional network traffic data [12]. The processing is

similar to that of higher dimensional but differs in the

selection of filters and strides [13].

The success of utilizing CNN for attack detection

depends on proper setting of the structure and parame-

ters/connected weights of deep neural network [14]. The

number of hidden layers and the neurons in those layers

constitute the structure of the neural network. The param-

eters of the neural network are the connected weights, and

random generation of these weights may get the network

stuck in the local optima. The issues in the existing deep

learning-based DDoS attacks identification systems are the

choice of hidden layers and neurons in the hidden layers

using trial and error method leading to more training time

and inefficient performance [13]. Further, the random

choice of weights gets stuck in the local optima leading to

poor performance [15]. The weights in the structure of the

deep neural network are tuned using optimization algo-

rithms to yield promising results [16].

Evolutionary optimization algorithms such as genetic

algorithms (GA) [15], differential evolution (DE) [17],

particle swarm optimization (PSO) [16] and ant colony

optimization (ACO) are popularly used to find optimal

solutions but suffered from long run time and converge

early leading to degradation in performance. This problem

is effectively captured using CuI optimization [18].

The important challenge in the construction of DDoS

attack detection system is the selection and design of an

appropriate network structure with suitable parameters for

identifying multiple classes. To overcome the challenges in

the design of structure and parameters of deep neural net-

work, a method which finds the suitable structure and best

set of weights is proposed.

The following propositions are the key contributions of

this article:

1. Binary cumulative incarnation (BCuI) approach and its

algorithm to tune the structure of the vector convolu-

tional deep neural network (VCDNN).

2. Real cumulative incarnation (RCuI) approach and its

algorithm to tune the weights of the VCDNN. The CuI

approach proposed by us in [18] has been utilized for

tuning the weights of VCDNN; but the structure of the

VCDNN is different as compared to the structure of the

neural network in [18].

3. TVCDNN-based DDoS attacks identification algorithm

is designed to identify the class of the network traffic.

The rest of the article is organized as follows: Sect. 2

discusses the related works in five aspects, viz. DDoS

attacks, DDoS attacks detection system, neural network-

based classification, deep neural network-based attack

detection, and neural network tuning using optimization

techniques. Section 3 discusses the proposed TVCDNN

approach for DDoS attacks detection. Section 4 discusses

the experimental results of the proposed TVCDNN

approach for identifying the type of DDoS attacks. Sec-

tion 5 concludes the article with future research directions.

2 Related works

This section discusses the literature related to the proposed

approach.

2.1 DDoS attacks

DDoS attacks deny legitimate users from accessing critical

services by exploiting the Internet infrastructure. Due to the

vulnerabilities existing in the Internet and the availability

of more and more attack tools, the complexity and conse-

quences of these attacks get increased. Table 1 shows the

types of DDoS attacks categorized in benchmark datasets

[19–21]. Table 2 shows the recent DDoS attacks that

happened in the world [3]. It is observed that DDoS attacks
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are happening all over the world and prevailing as one of

the most serious cyber attacks.

2.2 DDoS attacks detection system

The mechanisms to construct DDoS attack detection sys-

tems are classified into statistical, machine learning, and

data mining approaches [22, 23]. The statistical method-

based detection mechanisms are based on distance mea-

sures, and the knowledge of attack traffic is not required for

attack detection, but prior assumptions are needed for

better and fast detection [24, 25]. The machine learning-

based detection methods create a model by learning the

features. Neural network is one of the most popularly used

machine learning-based methods which provides better

generalization capability but suffers from high

Table 1 Types of DDoS attacks
Attack Description

Back URL with many back slashes

Neptune SYN flood attack on one or more ports

Smurf Packets directed to IP broadcast addresses remotely

Teardrop Misfragmented UDP packets cause system reboot

Others Attacks including land, ping of death, process table, and mail bomb

Table 2 Recent DDoS attacks

Attack victim Month/
Year

Incident

US HHS Dept Mar.
2020

Deprived citizens from accessing official data about COVID-19 pandemic and measures taken
against it

German Food Delivery Service Mar.
2020

Launched DDoS attack and demanded two bitcoins of about $11,000

Facebook Mar.
2019

Users were unable to log into their accounts

Philippines National Union of
Journalists

Feb.
2019

Website disabled several hours with traffic of 468 Gbps

UAlbany Feb.
2019

Servers down for five min in the University of Albany

US-based Wired
Telecommunication Carrier

Mar.
2018

Traffic of 1.7 terabytes per second

GitHub Feb.
2018

1.3 Tbps of DoS attacks launched in GitHub code repository

Boston Globe Nov.
2017

Disrupted Boston Globe newspaper’s telephones and interrupted editing system

Electroneum Cryptocurrency Nov.
2017

Suffered DDoS attack on company’s website

UK National Lottery Sep.
2017

Attack launched on lottery’s website and its mobile app

DreamHost Aug.
2017

Attacked DNS infrastructure in offline mode

Melbourne IT Apr.
2017

Suffered DDoS attack by forcing the victimized Domain Name Register by denying cloud hosting
and mailing platforms to their customers

Dyn Oct.
2016

Websites crippled by DNS errors

ISPs in Mumbai Jul.
2016

Experienced huge magnitude of 200 Gbps

BBC Dec.
2015

BBC sites down for three hours

Dutch Government Sites Feb.
2015

Central Government’s major websites crippled more than seven hours
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computational burden and overfitting [26]. These issues

motivated us for the creation of TVCDNN in which the

structure and parameters are tuned to design a generalized

deep learning structure for DDoS attacks identification.

2.3 Neural network-based classification

The survey of existing neural network-based classification

methods is given in [22]. Neural processing techniques [27]

such as multi-layer perceptron (MLP), support vector

machine (SVM), k-nearest neighbour, and deep learning

are used for anomaly detection in recent research [4]. The

following are the categories of neural network-based

learning methods: supervised learning, unsupervised

learning, and semi-supervised learning [28–30]. The

supervised learning is a type of machine learning that

model the relationship between the input features and the

target output such that the new data are predicted based on

the learned relationships from previous data. The learning

happens with labelled dataset. The class label acts as a

boundary to separate normal from attack category. The

unsupervised learning models relationship with the input

patterns alone and is applied when the human expert does

not know the type of pattern in the data. The learning

happens with unlabelled dataset. The training set contains

only normal traffic and anything that does not belong to

this kind of traffic is considered as anomalous. The semi-

supervised learning lies between supervised and unsuper-

vised learning. The majority of data have no labels and few

have labels. The goal of semi-supervised learning is to

compute groups of similar examples within the data or to

determine the distribution of data within the input space

and is best suited for model building.

2.4 Deep neural network-based attack detection

The most widely used neural processing technique is deep

learning that learns the data with different abstraction

levels [5, 31, 32]. Deep learning approaches such as CNN,

auto-encoder, RNN, and LSTM are used for anomaly

detection [33]. These methods are capable of adapting to

network environments that change dynamically which

motivated us to incorporate deep learning in the proposed

approach [34]. Among these, the CNNs handle non-lin-

earity in the data in a more robust manner which is the

intuition behind proposing a tuned CNN. Generally, CNNs

consist of convolutional layer (CL), pooling layer (PL), and

fully connected network with input layer, one or more

hidden layer (HL), and output layer [35].

2.5 Neural network-tuning using optimization
methods

The challenge in the successful design of deep neural

network is to have a generalized structure which improves

the performance of the system. The tuning of deep neural

network structure based on trial and error is time con-

suming. Therefore, autonomous tuning is required, and

optimization algorithms are suitable for the tuning process

[36]. The evolutionary optimization techniques such as

GA, DE, Evolution Strategies, PSO, ACO, and simulated

annealing suffer from high run time and premature con-

vergence [37, 38]. The advantages and drawbacks of these

existing neural network tuning based on optimization

methods are tabulated in Table 3.

The hurdles in the utilization of optimization techniques

for tuning are representation of individuals using encoding

schemes and techniques for run time reduction of evolu-

tionary algorithms. This article proposes approaches for

tuning the structure and parameters of the deep neural

network using BCuI algorithm and RCuI algorithm,

respectively.

3 Proposed tuned vector convolutional
deep neural network (TVCDNN) approach

The proposed TVCDNN is a deep neural network in which

features are extracted using vector convolution method and

the structure and parameters of the learning network are

tuned using the proposed BCuI- and RCuI-based opti-

mization method. Figure 1 depicts the block diagram of the

proposed TVCDNN approach for DDoS attacks detection

which detects and identifies the type of traffic. It consists of

two modules: TVCDNN learning and TVCDNN-based

DDoS attacks identification. The training is done with the

TVCDNN network by constructing the VCDNN with

structure and parameters tuning. The testing is done in

TVCDNN-based DDoS attack identification module using

the test data with the learned weights obtained from the

TVCDNN learning module. The boxes represented in bold

are the working processes and in dotted are the input and

output flow of the computations. The network traffic is

obtained from the edge router and the result of computa-

tions, viz. normal traffic is forwarded to the machines

connected to the network switch and the identified class of

attacks is forwarded to attack mitigation system.

3.1 Construction of VCDNN

The VCDNN consists of vector convolutional feature

extraction (VCFE) and fully connected neural network
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Table 3 Pros and cons of existing neural network-tuning techniques

Ref.
no

Methods used Application Advantages Drawbacks

[16] Particle Swarm
Optimization

Smart building occupant prediction Less usage of computational
resources

Manual choice of initial neural
network parameters setting

[29] Taguchi Genetic
Algorithm

Sunspot number forecast, Associative memory
tuning, and XOR problem classification

Robustness, fast convergence,
and statistical soundness

Initial neural network parameters
set manually

[14] Co-operative
Binary Real
PSO

Sunspot number prediction Low implementation cost, viz.
hardware and processing
time

Usage of link switches make the
neural network more
complicated

[30] Multiobjective
optimization

MNIST and CIFAR-10 image classification High representation ability Time consuming as layerwise
structure tuning was performed

Fig. 1 Block diagram of proposed TVCDNN approach

Fig. 2 Structure of vector convolutional deep neural network
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(FCNN). Figure 2 depicts the structure of VCDNN. The

VCFE comprises of x number of CL and PL. The FCNN

comprises of input layer, more than one, i.e., y HLs, and

output layer. The CL generates transformed convolution,

TrCi, which is given as input to the PL. The transformed

convolution of input vector, Xi, with the filter, Fil, is

computed as follows:

TrCi ¼ Xi � Fil ð1Þ

where i is the number of records in the dataset.

The PL down samples the feature vector of CL. The max

pooling is applied, and the transformed pooling, TrPðÞ, is

computed as follows:

TrP TrCij;TrCik

� �

¼ max TrCij;TrCik

� �

ð2Þ

where j is the position of the feature and k = j ? 1.

The extracted feature vector is passed to the FCNN

training module. The input layer of the FCNN passes the

extracted feature vector to the first HL. The computation in

the HL is performed by finding the sum of products of

feature vector with the weights. It is computed as follows:

OHj ¼
X

OHj�1 �Wij ð3Þ

where OHj is the intermediate output of the HL, and W ij is

the weights from input layer of FCNN to first HL.

The output of HL is computed using the activation

function, Rectified Linear Unit (ReLU), and is as follows:

f OHj

� �

¼ max OHj; 0
� �

ð4Þ

The computations in all the hidden layers are similar to

(3) and (4). The computation in the output layer is similar

to (3) with the addition of bias term, B, and is computed as

follows:

OHy ¼
X

OHy�1 �Wyo þ B ð5Þ

where Wyo is the weights from last HL of FCNN to the

output layer.

The output layer produces the output, Outi, using Soft-

Max function, and is computed as follows:

Outi ¼
Exp IOji

� �

Pk
i¼0 Exp IOji

� � ð6Þ

The performance of learned network is evaluated using

cross-entropy, CE, as follows:

CE Tari; Outið Þ ¼ �
X

n

i¼1

Tarilog Outið Þ ð7Þ

where Tari is the target label of each network traffic record

in the training dataset.

3.2 Structure tuning using binary cumulative
incarnation

The structure of the VCDNN network is tuned using the

proposed binary CuI approach. The intuition behind using

CuI approach for tuning the structure is that the CuI opti-

mization provides best-fit weights for the subsequent gen-

erations. The tuning of CLs, PLs, HLs, and neurons in all

the layers is the structure of the deep neural network, and

the following sections describe the cumulative incarnation,

initial generation of populations, and better offspring

generation using BCuI approach.

3.2.1 Cumulative incarnation

Figure 3 depicts the flow diagram of CuI approach. The

CuI is based on GA [15]. In each iteration, the population is

new and different as the new 50% of the population, viz.

the second generation, is obtained by calculating the

cumulative sum of chromosomes which are best fitted in

the previous generation. The termination criterion is either

based on the number of generations or by fixing a threshold

for the objective function. The objective function of the

proposed approach is to maximize the survival of fittest

function which is computed as follows:

fobj ¼ 1=CE ð8Þ

Algorithm 1: BCuI Algorithm

Input: Population Size , Number of generations

Output: New population,

1: Generate initial population of chromosomes

2: Compute the fitness value of each chromosome

3: Rank chromosomes based on fitness value

4: Select top 50% of the chromosomes, 

5: Generate another 50% of the chromosomes, using (9)

6: 

7: return
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3.2.2 Initial binary population generation

The binary coding technique is used to solve the problem

of tuning the CL, PL, HL, and the number of neurons in

each layer. In the binary coding scheme, each chromosome

is encoded as a vector of binary numbers of size m, where

m is the maximum value of each parameter of the structure.

The initialization procedure generates p chromosomes,

where p is the size of population.

3.2.3 Better binary offspring generation

The better offspring is generated by performing the

cumulative binary OR operation on the best fit chromo-

somes as follows:

Dl ¼ OR C1;C2; . . .;Clþ1ð Þ
Dp ¼ OR D1;D2; . . .;Dlð Þ

ð9Þ

where ORðÞ is a function that returns the value 1 if any or

all of its operands is 1 and l ranges from 1 to p� 1, where p

is the size of the population. For example, consider two

chromosomes, C1 and C2, where C1 ¼ x1; x2; � � � ; xnð Þ and
C2 ¼ y1; y2; � � � ; ynð Þ. The new offspring, D1, is generated

by computing C1ORC2.

The BCuI algorithm is depicted in Algorithm 1. This

algorithm takes the population size, pb and number of

generations as inputs and generates new population of

chromosomes, pbnew as output. Here, b represents binary,

bc represents chromosomes in binary, and bnew represents

new binary offspring. The partial illustration (due to limi-

tation in space) of the generation of number of HLs and

neurons in each HL is depicted in Fig. 4. The presence of

HL is represented as 1, and the absence of HL is repre-

sented as 0. It is seen from the illustration that 3 HLs are

generated, each HL with 15, 11, and 8 neurons, respec-

tively. The same method is applicable for generating CL

and PL as well.

3.3 Parameters tuning using real cumulative
incarnation

The tuning of filters used in CL and weights in HL is one

and the same and the following sections describe the initial

generation of populations and better offspring generation

using RCuI approach.

3.3.1 Initial real population generation

The real coding technique is used to solve the problem of

tuning the filters in CL and network weights in fully con-

nected neural network. In the real coding scheme, each

chromosome is encoded as a vector of real numbers of size

m which includes both positive and negative numbers,

where m is the maximum value of each parameter. The

initialization procedure generates p chromosomes, where p

is the size of population. Each chromosome is divided into

Fig. 3 Flow diagram of cumulative incarnation approach

Algorithm 2: RCuI Algorithm

Input: Population Size , Number of generations

Output: New population,

1: Generate initial population of chromosomes

2: Compute the fitness value of each chromosome

3: Rank chromosomes based on fitness value

4: Select top 50% of the chromosomes, 

5: Generate another 50% of the chromosomes, using (10)

6: 

7: return

Fig. 4 Illustration of hidden layers and hidden neurons generation
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genes, and each gene represents a weight needed for

training the VCDNN. Both positive and negative weights

are generated and used for experimentation.

3.3.2 Better real offspring generation

The better offspring is generated by performing the

cumulative sum operation on the best fit chromosomes as

follows:

Drl ¼ l Cr1;Cr2; . . .;Crlþ1ð Þ
Drp ¼ l Dr1;Dr2; . . .;Drlð Þ

ð10Þ

where lðÞ is a function that computes the mean of the

chromosomes. Consider two chromosomes, Cr1 and Cr2,

where Cr1 ¼ xr1; xr2; � � � ; xrnð Þ and

Cr2 ¼ yr1; yr2; � � � ; yrnð Þ. The new offspring Dr1 is gener-

ated as l Cr1;Cr2ð Þ.

Algorithm 2 depicts the RCuI algorithm which takes the

population size, pr and number of generations as inputs and

generates new population, prnew as output. Here, r repre-

sents real, rc represents chromosomes in real, and rnew

represents new real offspring.

Figure 5 illustrates the generation of weights using

cumulative incarnation [18]. The objective function com-

puted using (8) denoted as WeightsRi 1� i� qð Þ is used to

rank the VCDNN weights. The top ranked 50% of weights

from the previous generation, R1 to Rp, are selected for

elitism in the next generation. The incarnated 50% of

weights are calculated from these best fit weights, R1 to Rp.

The pþ 1ð Þth individual of weights, WeightsN1, is the mean

of weights R1 and R2. The pþ 2ð Þth individual of weights is

the mean of R1, R2, and R3. Likewise, the q� 1ð Þth indi-

vidual of weights is the mean of R1, R2, � � �, Rp�1, and Rp.

The qth individual of

Fig. 5 Illustration of cumulative incarnation of weights
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weights, WeightsNp, is the mean of individual pþ 1 to

individual q� 1. This method of weight generation pro-

duces optimized weights leading to better results and hence

used for optimizing the tuning process.

3.4 TVCDNN-based DDoS attacks identification

Algorithm 3 depicts the TVCDNN-based DDoS attacks

identification algorithm which takes test data, TVCDNN

structure, and learned weights as inputs and outputs any

one of the identified class labels. The VCDNN is con-

structed for the test data with the tuned CL, PL, HL, and

number of neurons in each layer, and the learned weights

using RCuI are assigned to the network. The features are

extracted using VCFE, and the class label of the given test

data is obtained from FCNN.

4 Experimental results

The proposed approach was implemented in MATLAB

R2020b on Intel�Core TM2 Quad CPU Q9650@3.00 GHz

processor with GPU NVIDIA and 16 GB RAM under

Windows 10. The benchmark datasets such as KDD Cup

[20] and NSL KDD [21] datasets were used to evaluate the

performance of the proposed TVCDNN for DDoS attacks

identification. The statistics of the benchmark network

traffic datasets are tabulated in Table 4. The NSL KDD

dataset is the refined version of the KDD Cup dataset. The

training dataset of KDD Cup consists of redundant and

duplicate records. In order to overcome the training results

biased to some classes, these records have been removed in

the refined version [20]. Table 5 shows the parameter ini-

tialization ranges. The maximum number of HLs is half of

the input features and being a deep neural network, and the

minimum is chosen as more than one HL.

4.1 Performance analysis

The performance analysis of the proposed approach is

based on the following measures:

• True Negative (TN): Normal traffic is classified as

Normal

• False Positive (FP): Normal traffic is classified as

Attack

• False Negative (FN): Attack traffic is classified as

Normal

Neural Computing and Applications (2022) 34:2869–2882 2877

123



• True Positive (TP): Attack traffic is classified as Attack

The obtained confusion matrices for the two benchmark

datasets, viz. KDD Cup and NSL KDD on applying the

proposed approach are tabulated in Tables 6 and 7,

respectively. The optimized structure of the TVCDNN

consists of three levels of CL and PL with the filter of size

3. The number of hidden layers in the FCNN are four, and

the number of neurons in each hidden layer are 16, 12, 9,

and 7 for the first, second, third, and fourth hidden layers,

respectively.

The performance metrics such as accuracy, precision,

and error rate / false alarm are computed for measuring the

performance of TVCDNN using (11), (12), and (13) and

are tabulated in Table 8.

Accuracy ¼
TP

TPþ FP
� 100 ð11Þ

Precision ¼
TP

TPþ FP
� 100 ð12Þ

ErrorRate ¼
TP

TPþ FP
� 100 ð13Þ

4.2 Comparison with base classifiers

The performance of the proposed TVCDNN is compared

with VCDeepFL [13] and base classifiers for multi-class

classification, namely MLP and SVM. The structure of

MLP used for experimentation is n� 10� 9� 8� 7� 6

structure and the activation functions, tanh and sigmoid

have been used for hidden layers and output layer,

respectively. Table 8 tabulates the performance metrics of

the classifiers. It is evident that TVCDNN provides sig-

nificant improvement over existing multi-class classifiers.

The achievement of 100% accuracy is obtained on Tear-

drop attack class using the proposed approach for both the

datasets.

4.3 Comparison with existing optimization
algorithms

The proposed TVCDNN approach is compared with

existing optimization algorithms, viz. GA, DE, PSO, and

ACO. The tuning of VCDNN structure with the proposed

BCuI and RCuI optimization is compared with tuning of

VCDNN using the existing optimization methods. The

initial population size of all the optimization algorithms is

100. The dataset is trained using TVCDNN network up to

150th generation and stopped as the performance was not

improved after 100th generation. Figure 6a and b depicts

the accuracy of the proposed approach with varying gen-

erations for KDD Cup and NSL KDD datasets, respec-

tively. It is observed that the performance of the attack

Table 4 Statistics of datasets
Dataset Normal Back Neptune Smurf Teardrop Others

KDD Cup Training 97,278 2203 107,201 280,790 979 285

Testing 60,593 1098 58,001 164,091 12 5855

NSL KDD Training 13,449 196 8282 529 188 39

Testing 2152 359 1579 627 12 1026

Table 5 Parameter initialization ranges

Parameter Minimum Maximum

Number of CL and PL 1 5

Number of Filters 2 5

Number of HL 2 14

Number of Neurons in HL 7 20

Table 6 Confusion matrix of proposed TVCDNN approach for KDD
Cup dataset

Traffic Normal Back Neptune Smurf Teardrop Others

Normal 59,186 536 442 137 101 191

Back 7 1002 29 28 14 18

Neptune 3 21 57,921 19 11 26

Smurf 142 256 194 163,089 171 239

Teardrop 0 0 0 0 12 0

Others 14 19 21 8 7 5786

Table 7 Confusion matrix of proposed TVCDNN approach for NSL
KDD dataset

Traffic Normal Back Neptune Smurf Teardrop Others

Normal 2146 3 1 0 0 2

Back 0 353 3 0 0 3

Neptune 4 2 1569 0 0 4

Smurf 2 0 0 624 0 1

Teardrop 0 0 0 0 12 0

Others 21 24 39 17 4 921
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identification system with respect to accuracy was

improved with the increase in the number of generations.

Figure 7a and b depicts the error rate of the proposed

approach with varying generations for KDD Cup and NSL

KDD datasets, respectively, and it is seen that the error rate

tends to decrease around 70th generations for the proposed

Table 8 Comparison of
proposed approach with existing
multi-class classifiers

Approach Dataset Metrics Normal Back Neptune Smurf Teardrop Others

TVCDNN KDD Cup Accuracy 97.68 91.25 99.86 99.39 100 98.82

Precision 99.72 54.63 98.83 99.88 75 92.40

Error Rate 2.32 8.74 0.14 0.36 0 1.18

NSL KDD Accuracy 99.72 98.33 99.37 99.52 100 89.77

Precision 98.76 92.41 97.33 97.35 75 98.93

Error rate 0.28 1.67 0.63 0.48 0 10.23

VCDeepFL KDD Cup Accuracy 97.58 88.89 99.60 99.22 83.33 97.40

Precision 99.71 68.35 98.99 99.77 2.73 81.27

Error rate 2.42 11.11 0.40 0.33 16.67 2.60

NSL KDD Accuracy 99.63 95.90 97.93 91.07 19.61 97.81

Precision 99.26 97.77 99.05 99.20 83.33 87.13

Error rate 0.37 4.10 2.07 8.93 80.39 2.19

MLP KDD Cup Accuracy 97.17 82.24 98.26 98.94 58.33 87.60

Precision 98.08 56.97 98.21 99.49 1.20 82.01

Error rate 2.83 17.76 1.74 0.74 41.67 12.40

NSL KDD Accuracy 99.12 86.5 95.59 90.83 22.92 97.5

Precision 98.93 96.38 98.80 99.52 91.67 79.82

Error rate 0.88 13.5 4.41 9.17 0.77 2.5

SVM KDD Cup Accuracy 96.76 79.51 98.46 99.18 75 89.91

Precision 98.66 50.06 98.11 99.60 2.91 80.05

Error rate 3.24 20.49 1.54 0.53 25 10.09

NSL KDD Accuracy 99.16 83.66 95.05 91.16 44.44 96.98

Precision 99.02 95.54 98.54 98.72 66.67 81.48

Error rate 0.84 16.34 4.95 8.84 0.56 3.02

Fig. 6 Accuracy comparisons for varying number of generations a KDD Cup b NSL KDD
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approach. The convergence of the TVCDNN approach has

been obtained around 80th and 70th generations and gets

saturated for KDD Cup and NSL KDD datasets, respec-

tively. The VCDNN with GA approach has been converged

while reaching 90th generations for both the datasets and

the VCDNN with DE, PSO, and ACO converges beyond

100th generations and gets saturated for both the datasets. It

is observed that as the number of generations is less, the

learning time is fast. Therefore, it is evident that TVCDNN

converges earlier compared to tuning of VCDNN with GA,

DE, PSO, and ACO for both the datasets. Further, the

learning time is less, and there is gradual convergence

using the proposed TVCDNN approach compared to tuning

the VCDNN using the existing optimization techniques.

4.4 State-of-the-art comparison

The proposed approach is compared with the state-of-the-

art deep neural network approaches for attack detection,

and it is observed that the proposed approach yields

promising results. Table 9 tabulates the state-of-the-art

comparison for the performance metrics, accuracy and

error rate with NSL KDD dataset. It is noticed that the

performance of proposed approach for identifying other

categories of attacks exhibits drastic improvement, and

hence, the proposed approach is suitable for identifying

unknown attacks. Figure 8a and b depicts the comparison

of deep neural network with tuning and without tuning for

the performance metrics, viz. accuracy and error rate,

respectively, for the benchmark datasets. It is seen that the

VCDNN with tuning provides promising results compared

to VCDNN without tuning. The NSL KDD dataset pro-

vides better results compared to KDD Cup dataset with and

without tuning as NSL KDD does not contain redundant

and duplicate records. Moreover, the reason for significant

improvement with tuning is that both the structure and

parameters are tuned using CuI approach which only uses

best fit positive and negative weights. The significance of

positive and negative weights in tuning VCDNN is to

represent an excitatory and inhibitory connection, respec-

tively. Generally, the nodes of the network correspond to

the excitatory neurons of the brain. But the learning

Fig. 7 Error rate comparisons for varying number of generations a KDD Cup b NSL KDD

Table 9 State-of-art comparison
of NSL KDD dataset with
respect to accuracy and error
rate

Approach Metrics Normal Back Neptune Smurf Teardrop Others

TVCDNN Accuracy 99.72 98.33 99.37 99.52 100 98.82

Error rate 0.28 1.67 0.63 0.48 0 1.18

Reported Results [13] Accuracy 99.63 95.90 97.93 91.07 19.61 97.81

Error rate 0.37 4.10 2.07 8.93 80.39 2.19

Reported Results [33] Accuracy 97.91 36.77 98.05 99.10 100 –

Error Rate 2.09 63.23 1.95 0.9 0 –
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process could be slow if only excitatory neurons are used.

Hence, the anti-correlations represented by the negative

weights are represented by parallel opposing populations of

excitatory neurons which are kept separated and anti-cor-

related by inhibitory neurons that connect between them

improved the performance of the tuning process.

5 Conclusion

In this article, TVCDNN approach is proposed for the

detection of DDoS attacks. The objective is to generalize

the structure and parameters of VCDNN to identify DDoS

attacks with better performances. The structure and

parameters of TVCDNN network were tuned using BCuI

and RCuI, respectively. The TVCDNN-based DDoS attack

detection system identified the category of traffic. The

benchmark datasets, viz. KDD Cup and NSL KDD have

been used to evaluate the performance of the proposed

TVCDNN approach. The experimental results showed that

the proposed approach yields significant improvement in

accuracy and reduction in error rate compared to the state-

of-the-art deep learning approaches. Further, it is observed

from the experimental analysis that the proposed TVCDNN

approach converges faster than the existing optimization

algorithms, such as GA, DE, PSO, and ACO. It is also

depicted that tuning the structure and parameters of the

VCDNN shows improvement in performance compared to

deep neural network without tuning. However, the exten-

sion of this work could be on the fly detection of DDoS

attacks using deep autonomous learning.
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