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Optimization of Vehicle-to-Grid Scheduling in
Constrained Parking Lots

Ahmed Yousuf Saber, Member, IEEE and Ganesh Kumar Venayagamoorthy, Senior Member, IEEE

Abstract— An automatic Vehicle-to-Grid (V2G) technology can
contribute to the utility grid. V2G technology has drawn great
interest in the recent years. Success of the sophisticated automatic
V2G research depends on efficient scheduling of gridable vehicles
in constrained parking lots. Parking lots have constraints of
space and current limits for V2G. However, V2G can reduce
dependencies on small expensive units in the existing power
systems as energy storage that can decrease running costs. It
can efficiently manage load fluctuation, peak load; however,
it increases spinning reserves and reliability. As number of
gridable vehicles in V2G is much higher than small units of
existing systems, unit commitment (UC) with V2G is more
complex than basic UC for only thermal units. Particle swarm
optimization (PSO) is proposed to solve the V2G, as PSO has
been demonstrated to reliably and accurately solve complex
constrained optimization problems easily and quickly without
any dimension limitation and physical computer memory limit.
In the proposed model, binary PSO optimizes the on/off states of
power generating units easily. Vehicles are presented by signed
integer number instead of 0/1 to reduce the dimension of the
problem. Typical discrete version of PSO has less balance between
local and global searching abilities to optimize the number of
charging/discharging gridable vehicles in the constrained system.
In the same model, balanced PSO is proposed to optimize the
V2G part in the constrained parking lots. Finally, results show
a considerable amount of profit for using proper scheduling of
gridable vehicles in constrained parking lots.

Index Terms— V2G, particle swarm optimization, gridable
vehicles, constrained parking lots.

I. INTRODUCTION

ENVIRONMENT friendly modern technologies are essen-
tial to protect global warming. Thus research on V2G

is very important in power systems. Unit commitment (UC)
involves efficiently scheduling on/off states of all available
resources in a system. V2G scheduling involves intelligently
scheduling existing generating units and large number of
gridable vehicles for V2G technology in limited and restricted
parking lots so that maximum benefit can be achieved. In
addition to fulfill a large number of practical constraints, the
optimal V2G should meet the forecast load demand calculated
in advance, plus spinning reserve requirements at every time
interval such that the total cost is minimum. Its purpose is
to reduce bad environmental effects such as carbon emissions
and as to increase profit. The optimization of V2G is a combi-
natorial optimization problem with both binary and continuous
variables. The number of combinations of generating units
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and gridable vehicles grows exponentially in V2G problems.
UC is known as one of the most difficult problems in power
systems optimization. Unit commitment with V2G is even
more complex than typical UC of conventional generating
units, as number of variables in UC with V2G is much higher
than typical UC problems.

Various numerical optimization techniques have been em-
ployed to approach the UC problem. Priority list (PL) methods
[1] are very fast; however, they are highly heuristic. Dynamic
programming (DP) can find global solution by exploring all
combinations. However, DP and branch-and-bound methods
[2-3] have the danger of huge memory requirement, and
their execution time increases exponentially for large-scale
UC problems. Lagrangian relaxation (LR) methods [4-6]
concentrate on finding an appropriate co-ordination technique
for generating feasible primal solutions, while minimizing the
duality gap. The main problem with an LR method is the
difficulty encountered in obtaining feasible solutions.

The meta-heuristic methods [7-18] are iterative techniques
that can search not only local optimal solutions but also
a global optimal solution depending on problem domain
and execution time limit. In the meta-heuristic methods, the
techniques frequently applied to the UC problem are genetic
algorithm (GA), tabu search (TS), evolutionary programming
(EP), simulated annealing (SA), etc. They are general-purpose
searching techniques based on principles inspired from the
genetic and evolution mechanisms observed in natural systems
and populations of living beings. These methods have the
advantage of searching the solution space more thoroughly.
However, difficulties are their sensitivity to the choice of
parameters, balance between local and global searching abil-
ities, proper information sharing and conveying mechanisms,
converging to local minima, convergence rate, constraint man-
agement and so on.

There are two popular swarm inspired methods in compu-
tational intelligence areas: Particle swarm optimization (PSO)
and ant colony optimization (ACO). Inspired by the food-
seeking behavior of real ants, Ant Systems, attributable to
Dorigo et al., need huge memory like dynamic programming
even for a moderate size of UC problem, and difficult to
solve it in real-time and physical computer storage capacity.
However, PSO is simple and promising, and it requires less
computation time and memory, though it requires an extra
transformation for solving discrete optimization problems [12-
14].

Gridable vehicles can be used to level the real fluctuating
load demand. Efficient V2G scheduling can reduce generation
cost if gridable vehicles are charged from the grid at off-
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peak load and discharge to the grid at peak load. V2G
researchers have mainly concentrated on interconnection of
energy storage of vehicles and grid [19-25]. Their goals are
to educate about the environmental and economic benefits of
V2G and enhance the product market. However, success of
V2G researches greatly depends on the efficient scheduling of
gridable vehicles in limited and restricted parking lots, i.e.,
maximization of profit. This paper makes a bridge between
UC and V2G research areas and is the first one to consider
UC with gridable vehicles in V2G. It extends the area of unit
commitment bringing in the V2G technology and making it a
success.

The authors have reported different cases on unit commit-
ment with V2G in [26-27]. Gridable vehicles are charged
from renewable energy sources in [26]. Gridable vehicles
are charged from the grid at off-peak load; however, V2G
scheduling suffers from balance of local and global searching
abilities in [27]. In this paper, the authors have concentrated
on solution quality, as it is an off-line optimization process.
Gridable vehicles of V2G in constrained parking lots are
intelligently optimized to improve balance between local and
global searching abilities of the signed integer number of vehi-
cles at each hour. Results are therefore significantly improved
here.

II. UC-V2G PROBLEM FORMULATION

A. Nomenclature and Acronyms

The following notations are used in this paper.
N : Number of units
H : Scheduling hour
Ii(t) : ith unit status at hour t (1/0 for on/off)
Pi(t) : Output power of ith unit at time t
P max

i : Maximum output limit of ith unit
P min

i : Minimum output limit of ith unit
P max

i (t) : Maximum output power of unit i at time t
considering ramp rate

P min
i (t) : Minimum output power of unit i at time t

considering ramp rate
D(t) : Load demand at time t
R(t) : System reserve requirement at hour t
MUi/MDi : Minimum up/down time of unit i
Xon

i (t) : Duration of continuously on of unit i at
time t

Xoff
i (t) : Duration of continuously off of unit i at

time t
SCi() : Start-up cost function of unit i
FC() : Fuel cost function
h-costi : Hot start cost of ith unit
c-costi : Cold start cost of ith unit
c-s-houri : Cold start hour of ith unit
RURi : Ramp up rate of unit i
RDRi : Ramp down rate of unit i
Pv : Capacity of each vehicle
Nmax

V 2G(t) : Maximum parking lot capacity at hour t
NV 2G(t) : No. of vehicles connected to the grid at hour

t
Nmax

V 2G : Total vehicles in the system
SoC : State of charge
Effi : Efficiency
ELD : Economic load dispatch
T C : Total cost

B. Objective Function

Usually large cheap units are used to satisfy base load
demand of a system. Most of the time, large units are
therefore on and they have slower ramp rates. On the other
hand, small units have relatively faster ramp rates. In unit
commitment problems, main challenge is to properly schedule
small expensive units to handle uncertain, fluctuating and
peak loads. Gridable vehicles of V2G technology will reduce
dependencies on small/micro expensive units. But number of
gridable vehicles in V2G is much higher than small/micro
units. So profit, spinning reserve, reliability of power systems
vary on scheduling optimization quality.

V2G scheduling is an optimization problem. The objective
of the V2G scheduling is to minimize total running cost which
includes mainly fuel cost and startup cost.
1. Fuel cost

Fuel cost of a thermal unit is expressed as a second order
function of each unit output as follow:

FCi(Pi(t)) = ai + biPi(t) + ciP
2
i (t) (1)

where ai, bi and ci are positive fuel cost co-efficients.
2. Start-up cost

The start-up cost for restarting a decommitted thermal unit,
which is related to the temperature of the boiler, is included
in the model. In this paper, simplified start up cost is applied
as follows:

SCi(t) =
{

h-costi : MDi ≤ Xoff
i (t) ≤ Hoff

i

c-costi : Xoff
i (t) > Hoff

i

(2)

Hoff
i = MDi + c-s-houri. (3)

3. Shut-down cost
Shut-down cost is constant and the typical value is zero in

standard systems.

Therefore, the objective function of the V2G scheduling is

min T C = Fuel cost + Start-up cost + V2G cost

=
N∑

i=1

H∑
t=1

[FCi(Pi(t)) + SCi(1 − Ii(t − 1))]Ii(t)

+
H∑

t=1

[CV(NV 2G(t))] (4)

subject to (5-13) constraints.

Any new type of cost may be included or any existing type
of cost may be excluded from the objective function according
to the system operators’ demand in the deregulated market.

C. Constraints

The constraints that must be satisfied during the optimiza-
tion process are as follows:
1. Gridable vehicle balance in V2G

Negative and positive signs are used for charging and
discharging number of vehicles connected in the grid, respec-
tively. Only predefined registered/forecast gridable vehicles
are considered for the optimum V2G scheduling. Vehicles are
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charged from the grid and discharge to the grid during 24
hours. After the scheduling period, they will be come back to
the initial state.

H∑
t=1

NV 2G(t) = 0. (5)

H∑
t=1

|NV 2G(t)| = FREQ ∗ Nmax
V 2G . (6)

Here FREQ is maximum charging-discharging frequency
during the scheduling 24 hours.
2. Charging-discharging frequency

Multiple charging-discharging facilities of gridable vehicles
are considered per day. It should vary depending on life time
and type of batteries. Vehicles will be charged either from
wind/solar power or from utility grid at off-peak load when
price is low (or free for wind/solar power) and will discharge
to the grid at peak load when price is high.
3. System power balance

The generated power from all the committed units and
gridable vehicles must satisfy the load demand and the system
losses, which is defined as

N∑
i=1

Ii(t)Pi(t) + Pv NV 2G(t) = D(t) + Losses. (7)

4. Spinning reserve
To maintain system reliability, adequate spinning reserves

are required.

N∑
i=1

Ii(t)Pmax
i (t) + Pmax

v NV 2G(t) ≥ D(t) + R(t). (8)

5. Generation limits
Each unit has generation range, which is represented as

Pmin
i ≤ Pi(t) ≤ Pmax

i . (9)

6. State of charge
Each vehicle should have a desired departure state of charge

(SoC) level.
7. Constrained parking lot
Each parking lot has space and current limitations. There-

fore a limited number of vehicles can charge/discharge to/from
the grid in a constrained parking lot at a given time instant.

NV 2G(t) ≤ Nmax
V 2G(t) (10)

8. Efficiency
Charging and inverter efficiencies should be considered.

9. Minimum up/down time
Once a unit is committed/decommitted, there is a predefined

minimum time after it can be decommitted/committed again.

(1 − Ii(t + 1))MUi ≤ Xon
i (t), iff Ii(t) = 1

Ii(t + 1)MDi ≤ Xoff
i (t), iff Ii(t) = 0

}
. (11)

10. Ramp rate
For each unit, output is limited by ramp up/down rate at

each hour as follow:

Pmin
i (t) ≤ Pi(t) ≤ Pmax

i (t) (12)

where Pmin
i (t) = max (Pi(t − 1) − RDRi, Pmin

i )
and Pmax

i (t) = min (Pi(t − 1) + RURi, Pmax
i ).

11. Prohibited operating zone
In practical operation, the generation output Pi of unit i

must avoid unit operation in the prohibited zones. The feasible
operating zones of unit i can be described as follows:

Pmin
i ≤ Pi ≤ Pu

i,1

P l
i,j−1 ≤ Pi ≤ Pu

i,j , j = 2, 3, . . . , Zi

P l
i,Zi

≤ Pi ≤ Pmax
i

⎫⎬
⎭ . (13)

where P l
i,j and Pu

i,j are lower and upper bounds of the jth
prohibited zone of unit i, and Zi is the number of prohibited
zones of unit i.
12. Initial status

At the beginning of the schedule, initial states of all the
units and vehicles must be taken into account.

III. PROPOSED METHOD

A. Particle swarm optimization

Particle swarm optimization (PSO) is similar to other swarm
based evolutionary algorithms. Each potential solution, called
a particle, flies in multi-dimensional problem space with a
velocity, which is dynamically adjusted according to the flying
experiences of its own and its colleagues. PSO is an intelligent
iterative method where Velocity and position of each particle
are calculated as below.

vijt = w ∗ vijt + c1 ∗ rand1 ∗ (pbestijt − xijt) +
c2 ∗ rand2 ∗ (gbestjt − xijt). (14)

xijt = xijt + vijt. (15)

In the above velocity equation, the first term indicates the
current velocity of the particle (inertia); second term presents
the cognitive part of PSO where the particle changes its
velocity based on its own thinking and memory; and the third
term is the social part of PSO where the particle changes
its velocity based on the social-psychological adaptation of
knowledge.

B. Data structure of the proposed PSO for V2G scheduling

In the proposed method, each PSO particle has the
following fields for the V2G scheduling problem,
Particle Pi {

Generating unit : An N × H binary matrix Xi;
Vehicle : An H × 1 signed integer column vector Yi;
Velocity : An (N + 1) × H real-valued matrix Vi;
Fitness : A real-valued cost T C;
}.

PSO can easily optimize an N ×H binary matrix for gener-
ating units because possible state of a generating unit is either
1 or 0 only. On the other hand, basic PSO has less balance
between local and global searching abilities for the optimiza-
tion of an H × 1 signed integer column vector for gridable
vehicles, as possible number of charging/discharging number
of gridable vehicles varies from -Nmax

V 2G(t) to +Nmax
V 2G(t) at
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hour t. The authors have used binary PSO for the optimization
of generating units and balanced (regulated) PSO for the
optimization of gridable vehicles.

Besides, some extra storage is needed for pbesti, gbest and
temporary variables, which is acceptable and under typical
computer memory limit. For the V2G scheduling problem,
dimension of a particle P is (N + 1) × H . Dimensions of
location and velocity are presented by 3 indices as xijt and
vijt, respectively in the rest of the paper for simplicity where
i=particle number, j= generating unit/vehicles and t=time.

C. Binary PSO for generating units

Scheduling of thermal units is a binary optimization prob-
lem. A continuous searching space can be converted to a valid
binary searching space by a probability distribution. To extend
the real-valued PSO to binary space, the authors calculate
probability from the velocity to determine whether xijt will
be in on state or off (0/1).

vijt = 4.0, if vijt > 4.0. (16)

Pr(vijt) =
1

1 + exp(−vijt)
. (17)

xijt =
{

1, if U(0, 1) < Pr(vijt)
0, otherwise.

(18)

D. Balanced PSO for V2G vehicles

Vehicles are presented by signed integer numbers (posi-
tive sign indicates discharging state and negative sign indi-
cates charging state) instead of 0/1 to reduce the dimension
of the problem. At each hour, optimal number of chang-
ing/discharging gridable vehicles is needed to determine so
that the operating cost is minimum. In the proposed balanced
PSO, changes of velocity depend on iteration. To make a fine
tuning (balance) in complex searching space, initially velocity
changes rapidly for global search and then velocity changes
slowly for local search. A balancing factor is included in
velocity calculation (at the end of (19)). Signed integer number
of vehicles is formulated by rounding off the real value of a
new particle location in balanced PSO.

vijt = [vijt + c1 ∗ rand1 ∗ (pbestijt − xijt) + c2 ∗

rand2 ∗ (gbestjt − xijt)] ∗ [1 +
−Range

MaxIte
(Ite − 1)]. (19)

xijt = xijt + vijt. (20)

xijt = round(xijt). (21)

xijt = Nmax
V 2G(t), if xijt > Nmax

V 2G(t). (22)

xijt = −Nmax
V 2G(t), if xijt < −Nmax

V 2G(t). (23)

Start

Stop?

Yes

Calculate ELD and fitness

No

End

pbest gbest

Print results

Binary PSO for generating units on NxH martix

Merge outputs of binary PSO and balanced PSO

Balanced PSO for gridable vehicles on Hx1 column vector

Update           and 

Repair (N+1) xH martix

Fig. 1. Algorithmic flowchart of the proposed binary PSO and balanced

PSO for V2G scheduling.

E. The proposed algorithm

In the same algorithm, binary PSO is applied for the
optimization of generating units and balanced PSO is applied
for the optimization of gridable vehicles as below. Flowchart
of the proposed method is shown in Fig. 1.

1) Initialize: Initialize a (N + 1) × H matrix for each
particle randomly. Set parameters of binary PSO and
balanced PSO. Select pbest and gbest locations. Take
some temporary variables.

2) Move: For each particle in the current swarm, calculate
velocity and location in all dimensions. Apply binary
PSO (14, 16-18) on N ×H binary matrix for generating
units and balanced PSO (19-23) on H×1 column vector
for gridable vehicles in the same model. Merge the
outputs of binary PSO and balanced PSO.

3) Repair and calculate ELD: Check each particle for all the
constraints (5-13). Repair each particle location if any
constraint is violated there. Then, calculate economic
load dispatch of feasible particle locations (solutions)
only. It accelerates the process.

4) Evaluate fitness: Evaluate each feasible location in the
swarm using the objective function. Update pbest and
gbest locations.

5) Check and stop/continue: Print the gbest solution and
stop if maximum number of iterations (MaxIte) is
reached; otherwise increase current iteration number and
go back to Step 2.

F. Constraints Management

Stochastic random PSO particles (solutions) may not always
satisfy all the constraints. Constraints may be handled in two
ways - direct repair and indirect penalty methods [8].

G. ED Calculation

Load demand is distributed among generating units and
gridable vehicles. It is the most computational intensive part
of V2G scheduling. Lambda iteration is used to calculate
economic dispatch (ED) here. An intelligent method may be
used to improve the solution quality.
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TABLE I
SCHEDULE AND RESERVE POWER OF 10-UNIT SYSTEM WITH 50,000 GRIDABLE VEHICLES

Time U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 Vehicles Max. capacity Demand Reserve
(H) (MW) (MW) (MW)
1 1 1 0 0 0 0 0 0 0 0 -47115 1210.4 700.0 510.4
2 1 1 0 0 0 0 0 0 0 0 -44824 1195.8 750.0 445.8
3 1 1 0 1 0 0 0 0 0 0 +25110 1200.1 850.0 350.1
4 1 1 1 1 0 0 0 0 0 0 +18424 1287.5 950.0 337.5
5 1 1 1 1 0 0 0 0 0 0 -46054 1463.6 1000.0 463.6
6 1 1 1 1 1 0 0 0 0 0 -4723 1362.1 1100.0 262.1
7 1 1 1 1 1 0 0 0 0 0 0 1332.0 1150.0 182.0
8 1 1 1 1 1 0 0 0 0 0 0 1332.0 1200.0 132.0
9 1 1 1 1 1 1 1 0 0 0 +15080 1593.1 1300.0 293.1
10 1 1 1 1 1 1 1 1 0 0 -581 1555.7 1400.0 155.7
11 1 1 1 1 1 1 1 1 1 0 +32701 1815.5 1450.0 365.5
12 1 1 1 1 1 1 1 1 1 1 +26199 1829.0 1500.0 329.0
13 1 1 1 1 1 1 1 1 0 0 +17208 1661.7 1400.0 261.7
14 1 1 1 1 1 1 1 0 0 0 +274 1498.7 1300.0 198.7
15 1 1 1 1 1 0 0 0 0 0 +4247 1359.1 1200.0 159.1
16 1 1 1 1 1 0 0 0 0 0 -4439 1360.3 1050.0 310.3
17 1 1 1 1 1 0 0 0 0 0 -324 1334.1 1000.0 334.1
18 1 1 1 1 1 0 0 0 0 0 +13076 1415.4 1100.0 315.4
19 1 1 1 1 1 0 1 0 0 0 +16839 1524.3 1200.0 324.3
20 1 1 1 1 1 1 1 1 0 0 +20719 1684.1 1400.0 284.1
21 1 1 1 1 1 1 1 0 0 0 +1014 1503.5 1300.0 203.5
22 1 1 1 1 0 1 0 0 0 0 -47890 1555.3 1100.0 455.3
23 1 1 1 0 0 0 0 0 0 0 -4055 1065.9 900.0 165.9
24 1 1 0 0 0 0 0 0 0 0 +9109 968.1 800.0 168.1

Total running cost = $554,737.84

Notes: ’-’ indicates charging from the grid and ’+’ indicates discharging to the grid.

TABLE II
SCHEDULE AND RESERVE POWER OF 10-UNIT SYSTEM WITHOUT GRIDABLE VEHICLES

Time U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 Vehicles Max. capacity Demand Reserve
(H) (MW) (MW) (MW)
1 1 1 0 0 0 0 0 0 0 0 0 910.0 700.0 210.0
2 1 1 0 0 0 0 0 0 0 0 0 910.0 750.0 160.0
3 1 1 0 0 1 0 0 0 0 0 0 1072.0 850.0 222.0
4 1 1 0 0 1 0 0 0 0 0 0 1072.0 950.0 122.0
5 1 1 1 0 1 0 0 0 0 0 0 1202.0 1000.0 202.0
6 1 1 1 1 1 0 0 0 0 0 0 1332.0 1100.0 232.0
7 1 1 1 1 1 0 0 0 0 0 0 1332.0 1150.0 182.0
8 1 1 1 1 1 0 0 0 0 0 0 1332.0 1200.0 132.0
9 1 1 1 1 1 1 1 0 0 0 0 1497.0 1300.0 197.0
10 1 1 1 1 1 1 1 0 1 0 0 1552.0 1400.0 152.0
11 1 1 1 1 1 1 1 0 1 1 0 1607.0 1450.0 157.0
12 1 1 1 1 1 1 1 1 1 1 0 1662.0 1500.0 162.0
13 1 1 1 1 1 1 1 1 0 0 0 1552.0 1400.0 152.0
14 1 1 1 1 1 1 1 0 0 0 0 1497.0 1300.0 197.0
15 1 1 1 1 1 0 0 0 0 0 0 1332.0 1200.0 132.0
16 1 1 1 1 1 0 0 0 0 0 0 1332.0 1050.0 282.0
17 1 1 1 1 1 0 0 0 0 0 0 1332.0 1000.0 332.0
18 1 1 1 1 1 0 0 0 0 0 0 1332.0 1100.0 232.0
19 1 1 1 1 1 0 0 0 0 0 0 1332.0 1200.0 132.0
20 1 1 1 1 1 1 1 1 0 0 0 1552.0 1400.0 152.0
21 1 1 1 1 1 1 1 0 0 0 0 1497.0 1300.0 197.0
22 1 1 0 0 1 1 1 0 0 0 0 1237.0 1100.0 137.0
23 1 1 0 0 1 0 0 0 0 0 0 1072.0 900.0 172.0
24 1 1 0 0 0 0 0 0 0 0 0 910.0 800.0 110.0

Total running cost = $563,741.83

IV. RESULTS

All calculations have been run on Intel(R) Core(TM)2 Duo
2.66GHz CPU, 2.96 GB RAM, Microsoft Windows XP OS
and Visual C++ compiler. A 10-unit system is considered for
simulation with 50,000 gridable vehicles. It is assumed that
there are no renewable sources in the system and power
electronics modules on the gridable vehicles can control bi-
directional power flow between the vehicles and grid. Vehicles
are charged from the grid at off-peak loads and they discharge
at peak loads so that the total running cost is minimum;
however, the load demand and constraints are fulfilled. Load
demand and unit characteristics of the 10-unit system are col-
lected from [14]. In order to perform simulations on the same
condition of [7, 9-11, 14], the spinning reserve requirement

is assumed to be 10% of the load demand, cold start-up cost
is double of hot start-up cost, and total scheduling period is
24 hours. The proposed method is stochastic and convergence
depends on proper setting of parameter values.

Parameter values are SwarmSize = 30; MaxIte = 1,000;
trust parameters c1 = 1.4, c2 = 2.6; total number of vehicles
= 50,000; balance of search, Range = 0.6; maximum battery
capacity = 25 KWh; minimum battery capacity = 10 KWh;
average battery capacity, Pv = 15 KWh; maximum parking lot
capacity at each hour, Nmax

V 2G(t) = 50,000 vehicles; multiple
charging-discharging facilities; scheduling period = 24 hours;
departure state of charge, SoC = 50%; efficiency = 85%.

Randomly selected results with and without gridable vehi-
cles are shown in Tables I and II, respectively. Running cost is
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TABLE III
POWER FROM GENERATING UNITS DURING 24 HOURS CONSIDERING 50,000 GRIDABLE VEHICLES

U-1 U-2 U-3 U-4 U-5 U-6 U-7 U-8 U-9 U-10 Vehicles
With V2G (MW) 10920.0 9225.6 2574.7 2547.9 769.6 256.6 225.0 50.0 20.0 10.0 0.0

Without V2G (MW) 10920.0 9679.5 2210.0 2080.0 1524.7 331.7 225.0 62.9 30.0 20.0 0.0

V2G Effect (MW) 0.0 -453.9 364.7 467.9 -755.1 -75.1 0 -12.9 -10.0 -10.0 0.0

Notes: V2G Effect = Results with V2G - Results without V2G.
A negative value of V2G effect indicates an expensive unit and a positive value of V2G effect indicates a cheap unit.

TABLE IV
TEST RESULTS OF THE PROPOSED PSO FOR V2G SCHEDULING (10 RUNS)

Total cost Execution time
Method Best Worst Average Std. Diff. Maximum Minimum Average

($) ($) ($) ($) (%) (sec) (sec) (sec)
With V2G (using balanced PSO) 554,509.53 559,987.85 557,584.44 2087.17 0.988 31.42 23.81 28.91

With V2G (not using balanced PSO) 557,180.67 561,593.56 558,917.58 1319.86 0.792 29.67 25.55 27.224
Without V2G 563,741.83 565,443.39 564,743.51 646.65 0.301 23.47 19.22 21.24

$563,741.83 without V2G and it is $554,737.84 considering
V2G. There is no free renewable energy source in the system.
Therefore, total running cost is reduced by $9,003.99 for
only gridable vehicles that are charged from the grid at off-
peak hours and discharge to the grid at peak hours; however,
other constraints are the same during the schedule 24 hours
for Tables I and II. Minimum reserve is 132.0MW at 8th
hour using V2G technology and it is 110.0MW at 24th hour
without using V2G. Average reserve is 291.96MW using V2G
technology and it is only 181.54MW without using V2G.

Fig. 2 shows that the load curve has both peaks and valleys,
and maximum capacity of the system is always higher when
V2G is considered. In the system, spinning reserve is 10%.
Fig. 3 shows reserves with and without considering V2G. The
system with V2G is more reliable than traditional system with
only generating units. The system with lower spinning reserve
(e.g., 5%) has lower running cost; however, it is less reliable.
Operators expect that large cheap units will mainly satisfy base
load and other small expensive units will fulfill fluctuating,
peak loads. Gridable vehicles of V2G reduce dependencies on
small expensive units.

A negative value of V2G effect indicates an expensive unit
and a positive value of V2G effect indicates a cheap unit.
Table III shows that U-1 and U-7 produce same constant
powers, as they are cheap and generating maximum power.
U-2, U-5 to U-6 and U-8 to U-10 produce less power when
gridable vehicles are connected in the system, as they are
expensive units; however, U-3 and U-4 generate more power
when gridable vehicles are connected, as they are relatively
cheap and the proposed PSO method makes balance between
the increasing and decreasing power generations.
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Fig. 2. Maximum capacity with and without V2G.

Number of vehicles connected to grid is not directly pro-
portional to the load demand. Fig. 4 shows that vehicles are
connected to grid and the number of vehicles connected to
grid is changing at each hour. Positive number of vehicles
indicates discharging to the grid and negative number of
vehicles indicates charging from the grid. It is frequently
changing to obtain balance for optimization. Maximum num-
ber of vehicles is connected to discharge batteries to the grid
during peak load hours (11th, 12th, 13th hours). On the other
hand, most of the vehicles are connected to charge batteries
from the grid during off-peak load hours (1st, 2nd, 5th, 6th,
22nd, 23rd hours). It depends on load curve, non-linear price
curves and constraints. Parking lot capacity is considered here.
An optimization method is therefore essential to solve this
complex system.

Regarding the optimization algorithm for V2G, balanced
PSO solves V2G scheduling problem efficiently. Stochastic
results are shown in Table IV. The best, worst, and aver-
age findings of the proposed method are reported together.
Balanced PSO generates better results when balancing factor
is applied. Average result is $557,584.44 when balancing
factor is used. On the other hand, it is $558,917.58 when
balancing factor is not used and other conditions are the same.
However, balanced PSO needs slightly more time. The system
always converges. The variation is tolerable. Results are not
biased. These facts strongly demonstrate the robustness of the
proposed PSO for V2G scheduling.

Table V shows the comparison of the proposed method
to the most recent methods, e.g., integer-coded GA (ICGA)
reported in [7], Lagrangian relaxation and genetic algorithm
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Fig. 3. Reserve power with and without V2G.
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TABLE V
COMPARISON OF TOTAL RUNNING COST - ICGA, LRGA, GA, DP, LR, EP, AG, HPSO AND THE PROPOSED PSO

Total cost ($)
ICGA LRGA GA DP LR

Best Worst Avg. Best Worst Avg. Best Worst Avg. Best Worst Avg. Best Worst Avg.
Without V2G - - 566404 - - 564800 565825 570032 - 565825 N/A N/A 565825 N/A N/A
With V2G - - - - -

Total cost ($)
EP AG HPSO Proposed balanced PSO

Best Worst Avg. Best Worst Avg. Best Worst Avg. Best Worst Avg.
Without V2G 564551 566231 565352 - - 564005 563942 565785 564772 563741.8 565443.3 564743.5
With V2G - - - 554509.5 559987.8 557584.4

(LRGA) reported in [9], genetic algorithm (GA), dynamic
programming (DP) and Lagrangian relaxation (LR) reported
in [10], evolutionary programming (EP) reported in [11], and
hybrid particle swarm optimization (HPSO) reported in [14]
with respect to the total cost. “-” indicates that no result is
reported in the corresponding article. The proposed method
is working properly, as results are comparable with existing
methods when only number of gridable vehicles is assigned
to zero in the algorithm keeping all other resources and
constraints the same.

The proposed method is superior to other mentioned meth-
ods in Table V, because (a) DP cannot search all the states
of a large-scale problem such as the V2G scheduling and it
does not have information sharing and conveying mechanisms
[28]; (b) it is very difficult to obtain feasible solutions and
to minimize the duality gap in LR for a large-scale problem
such as V2G scheduling; (c) most of the cases, SA generates
random infeasible solutions in each iteration by the random
bit flipping operation; (d) PSO shares many common parts of
GA, EP, etc.; however, (i) it has better information sharing and
conveying mechanisms than GA, EP; (ii) it needs less memory
and simple calculations; (iii) it has no dimension limitation;
(iv) it is easy to implement. The proposed PSO generates little
bit better results than HPSO just for proper parameter settings,
swarm size (in the proposed method, swarm size is 30 instead
of 20 in HPSO), ED calculations and efficient programming.

Table IV shows execution time of the proposed method.
Execution time depends on algorithm, computer configuration
and efficient program coding. The proposed method is imple-
mented efficiently in Visual C++ and run on a modern system.
Execution time is acceptable, as it is in second. Scheduling
with V2G spends more average time because size of the
problem increases when gridable vehicles are considered.
Execution time is not exponentially growing with respect to
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Fig. 4. Vehicles connected to the grid.

the number of gridable vehicles of V2G, as vehicles are treated
as a cluster of integer number of vehicles in balanced PSO.

From the authors’ prior experience, typical integer version
of PSO has less balance between local and global search-
ing abilities to optimize the number of charging/discharging
gridable vehicles in the constrained system. Balanced PSO is
therefore applied for the optimization of gridable vehicles of
V2G in the constrained parking lots. Fig. 5 shows an instant
of the internal optimization process at peak hour (e.g., 12th
hour). Initially it is random and it gradually updates with less
fluctuation for the balanced PSO. Fig. 6 shows the convergence
of the proposed method. In the beginning, it converges faster,
then converges slowly at the middle of generation and then
very slowly or steady from the near final iterations. Therefore,
the proposed PSO holds the above fine-tuning characteristic of
a good optimization method.

V. CONCLUSION

The authors have introduced V2G scheduling in constrained
parking lots for the success of the V2G research. In this
paper, they have solved the V2G scheduling using a modern
intelligent method. Gridable vehicles are mainly charged from
the grid at off-peak load and discharge to the grid at peak
load hours. In this paper, the contributions are the timely
introduction of V2G scheduling in constrained parking lots,
and an effective optimization of the problem using binary and
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balanced versions of PSO in the same algorithm. From this
study, it is clear that the effective V2G scheduling reduces
operational costs; however, it increases profit, reserve and
reliability. Finally, this study is a first look at V2G scheduling.
In future, there is enough scope to include other practical
constraints of gridable vehicles and parking lots for real
applications of V2G technology.
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