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Abstract This paper deals with selection of sensor
network communication topology and the use of Un-

manned Aerial Vehicles (UAVs) for data gathering. The
topology consists of a set of cluster heads that com-
municate with the UAV. In conventional wireless sen-

sor networks Low Energy Adaptive Clustering Hierar-

chy (LEACH) is commonly used to select cluster heads

in order to conserve energy. Energy conservation is far

more challenging for large scale deployments. Particle

Swarm Optimization (PSO) is proposed as an optimiza-

tion method to find the optimal topology in order to

reduce the energy consumption, bit error rate (BER),

and UAV travel time. PSO is compared to LEACH us-

ing a simulation case and the results show that PSO

outperforms LEACH in terms of energy consumption

and BER, while the UAV travel time is similar. The nu-

merical results further illustrate that the performance

gap between them increases with the number of cluster

head nodes. Because of reduced energy consumption,

network life time can be significantly extended while

increasing the amount of data received from the en-

tire network. By considering the wind effect into the

PSO scheme, it is shown that this has an impact on
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the traveling time for the UAV but BER and energy

consumption are not significantly increased.
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1 Introduction

Unmanned Aerial Systems (UASs) technology has spread

widely and become popular in various military and civil-
ian fields. Some of the popular applications are radar
localization [1], wildfire management, observation sup-
port [2], agricultural monitoring, border surveillance

and monitoring, environmental and meteorological mon-

itoring, and aerial photography [3], as well as for search

and rescue missions [4]. The most noticeable benefits

compared with conventional manned vehicles are low
cost, improved safety for humans, and easy deployment.
There are also many applications in Wireless Sensor

Networks (WSNs) that employ Unmanned Aerial Ve-

hicles (UAVs) to extend the range of communication

[5], maximize the data communication capability of the

network by using vehicles as relay nodes [6], collect data

from a wide area network in remote or harsh environ-

ment [7], or aid node’s localization in mobile network

[8]. The key strategic research activities of the authors

of this paper are within oil spill response, ice moni-

toring, ship traffic surveillance, and marine monitoring

and operations. Many of the geographical areas of in-

terest are harsh, remote and also isolated due to lack

of communication infrastructure.

Building permanent communication infrastructure

may be considered too expensive and difficult to main-

tain. It is easier and cheaper to set up a network of

nodes on the ground or on the sea surface, and use
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UAVs to gather data from these nodes. Extensive stud-

ies on how to gather data from wireless sensor nodes

are surveyed in [9]. In these networks, sensor nodes

are condensed and usually connected to each other in

clusters. These nodes therefore communicate with the

base station (sink) via their cluster head (CH) node.

Hence, it requires multi-hop data communication be-

tween the nodes, which may consume a large amount
of energy due to heavy communication and overhead
messages exchanged among them for instance for clus-

tering and receiving as well as forwarding of data to

the sink by the cluster heads. This problem could be

reduced by mobile sinks [10]. Optimal strategies for the

mobile sink movements depends on the size of the WSN

and how frequently it receives status information from

the other nodes in the network [11]. However, the mo-

bile sink solution still requires significant energy con-

sumption when the nodes send information to the sink

during its movement. The energy burden on each node

could be further reduced when UAVs play the role of a

sink node, as it flies over the network and receives data

from as many nodes as possible [12]. UAVs are typi-

cally in line-of-sight (LOS) so they have better chan-

nel compared to surface vehicles. As with all moving

sinks, it can be controlled to improve performance of

the whole network. In [13], a new communication pro-

tocol (MAC) is introduced for the UAV and the nodes

to minimize their energy usage and maximize network
life time. Similarly, [14] proposed a heuristic algorithm
for the UAV to search and retrieve data from the nodes
by adaptively adjusting the UAV’s path with the as-

sumption that the UAV can only visit the CH node of

each cluster. In many cases, multiple UAVs are used

and coordination is necessary to find the optimal flight

path. Path planning for the UAVs under dominant con-
straints such as inter-vehicle communication, collision
avoidance and anti-grounding, is challenging and have
been studied using methods suitable for preplanning

[15], [16] and online methods suitable for re-planning

[17]. In the presence of multiple agents, the CHs can

be partitioned into subsets and allocated to each agent

such that the time taken by these agents in visiting all
the allocated CHs can be minimized. In [18] and [19],
efficient centralized and distributed techniques to form

clusters of CHs and allocation of these clusters to multi-

robot teams to minimize the global cost was addressed.

Our paper has a different approach from existing pro-

posed methodologies in data gathering. We use a UAV

as a data mule in order to gather data from a wide

area wireless sensor networks and it then can transmit

this data to a base station at its convenience. Our al-

gorithm aims to find the optimal WSN communication

topology and UAV path while taking into account en-

ergy consumption, bit error rate of all network nodes

and the UAV’s flight time.

2 Related Work and Contributions

The problem of optimal waypoint planning for UAVs
under different constraints has been a study for a decade
[20]. Depending on the applications, the objective func-

tions and optimization methods are different. In this pa-

per, the objective is to minimize the total energy con-

sumption of the nodes; maximize the quality of data

communication via wireless channel between any node

and its CH, and between the CHs and the UAV; and

minimize the flight time for the UAV. The target is to

provide a list of nodes, which are then to be visited

by the UAV. The optimization runs before every UAV

flight mission, and its solution provides a path for the

UAV to follow in order to complete one round of data

collection.

Regarding the communication quality for the WSN

and a UAV, [21] showed that lower Bit Error Rate

(BER) is obtained if the UAV communicates with fewer

sensor nodes at a time. However, the flight time will be

significantly increased if the UAV needs to fly over all

the nodes in the network. This issue was relaxed in [14]

where the nodes were grouped in clusters and only the
CHs were visited by the UAV. The clustering technique
in [14] was only depending on the communication abil-
ity or distance, and this may be inefficient leading to

poor communication quality or low energy efficiency.

The optimal number of CHs for minimizing the time

to visit all the nodes here is similar to the studies in

Covering Salespersons Problem (CSP). In CSP, the ob-
jective is to minimize the total traveling time or dis-
tance for the salesperson to visit at least one element
in disjoint subsets [22]. If the cluster is larger then the

energy consumption for data forwarding is very high

which is inefficient. [14], [21] and [22] have shown that

there is a relation between the communication quality

(BER) and the traveling distance or time of the UAV
in our network model. This can also be seen in Section
4 of this paper. The energy consumption in traditional

sensor networks is a challenging issue and it relates to

cross-layer design such as network topology, clustering

algorithms, transmissions method, and MAC protocol.

In our previous papers, an energy-efficient MAC pro-

tocol [14] and a network coding method [7] have been
proposed for wide area sensor networks.

LEACH is a clustering algorithm aimed at conserv-

ing energy of WSNs. It is a distributed scheme without
any central node. In LEACH, each node can indepen-
dently decide whether to become a CH or not depend-

ing on some probabilistic function [23]. The number of
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CHs may vary, and the independent decision of whether

or not to become a CH may lead to accelerated energy

drainage for some of the nodes in the network. LEACH-

C is a centralized scheme, which can improve the ex-

isting issues of LEACH. In LEACH-C, the information

about location and residual energy of all nodes are sent

to the base station (sink) at the beginning of each UAV

flight. The base station will then calculate the aver-
age energy level in the network, and only nodes with
energy above this level are considered for CH nodes.

The base station will randomly select some candidates

among these nodes and calculate the respective objec-

tive function. This procedure is repeated for a number

of iterations, and the objective function value is com-

pared in order to find the most suitable set of CHs.

In the WSN literature it is common that the objec-

tive function is based on the average distances between

CHs and their member nodes. The selected CH nodes

are broadcast by the UAV to all the nodes in the net-

work. Each node in the network finds the closest CH

node to initiate its data transmission.

In conventional WSNs, Low Energy Adaptive Clus-
tering Hierarchy-Centralized (LEACH-C) is popular in

various applications because of its efficiency and low

computational burden on nodes [24], [23]. However, in

large area sensor networks, the energy conservation is

far more challenging than for smaller WSNs and a bet-

ter optimization method is necessary. Taking the ad-

vantage of energy and computational capabilities of the

UAS (Unmanned Aerial System) compared to a normal

sensor node, a population based iterative optimization

technique, Particle Swarm Optimization (PSO), is used

to determine the set of CHs. The results are compared

with LEACH-C under the same conditions. In Section 3

we explain in detail how the PSO scheme is constituted

and modified in order to be applied in our network op-

timization problem.

A standing assumption in this paper is that the mis-
sion is carried out in an outdoor environment and that

the nodes are deployed over a relatively flat terrain,

therefore radio propagation path loss model used in

this paper is a circular model with a radius. For the

cases with deep fading and heavy reflections from the

objects or obstructions such as the complex models for

indoor or outdoor urban environments, these models
developed in [25] and [?] would be the ideal ones to be

implemented. We would still like to emphasize that the

same framework presented in this paper could be used

with more complex path loss models. The assumption

of relatively flat terrain could for instance be relaxed by

using the ’Longley-Rice Irregular Terrain’ model or the

’Irregular Terrain With Obstructions’ models, both of

which are implemented in the simulation tool SPLAT!,

[26].

The main contributions of this paper are (i) for-
mulation of a multi-objective optimization problem for

cluster head selection in a sensor network for UAV data

acquisition (ii) considering realistic models and con-

straints on bit error rate, energy of the nodes, flight

time of the UAV, and wind effects on the UAV (iii)

comparing with existing LEACH-C algorithm in opti-

mization for WSN data collection.

3 Particle Swarm Optimization Algorithm

Many applications in WSN use PSO as an efficient al-

gorithm for making clusters of nodes [27], [28]. The

idea behind PSO is to simulate the social behavior of

bird flocks and fish schools [29]. The PSO algorithm
is a computational method that iteratively tries to im-
prove a swarm of candidate solutions or particles, based

on a few basic rules. For each particle i ∈ {1, . . . , S},
where S is the number of particles, the particle position,

xi ∈ R
n, and the particle velocity, vi ∈ R

n, is updated
according to

xi ← xi + vi , (1)

and

vi ← ωvi + cprp(pi − xi) + cgrg(g − xi) , (2)

respectively. Here, rp, rg ∼ U(0, 1),i.e. they are drawn

from a uniform distribution between 0 and 1, pi is the
best known position of particle i, g is the best known

position of the swarm, and ω (inertia weight), cp and
cg (acceleration constants) are tuning parameters. The

fitness of a solution is calculated based on the value

of a function f : Rn → R, which is to be minimized.

A particle’s best known position is updated, that is,

pi ← xi, if f(xi) < f(pi). The swarm’s best known
position is updated, that is, g ← pi, if f(pi) < f(g).

The inertial weight (ω) balances between global and lo-
cal exploration. Typically, the value of ω is high at the

beginning of the simulation with enables the PSO to

explore the search space. As the number of iterations

increase in the simulations, the ω reduces thus explor-

ing the local search space[30]. The constants (cp and
cg) help in achieving convergence of the solution. The

random parameters (r1 and r2) maintain the diversity
of the swarm population which is essential in seeking a

good solution.

The initial positions of the particles are uniformly
distributed in the search space, i.e. xid ∼ U(bd, bd),

where d is the dimension of the search space and bd, bd
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are the lower and upper bounds, respectively. The par-

ticles initial velocities in any direction d of the search
space are vid ∼ U(−|bd−bd|, |bd−bd|). The algorithm is

terminated after a user specified number of iterations,

or some other criterion depending on the fitness func-

tion.

One of the advantages of PSO is that it does not

rely explicitly on the gradient information of the opti-

mization problem, unlike many of the classical methods.

The main disadvantage is that it does not guarantee

that an optimal solution is found. Some attempts at

analyzing the convergence properties of PSO exists in

the literature, for instance [31], [32], but oversimplifying

assumptions [33].

Each particle xi is a candidate solution containing
the position vector of a CH. Let NCH be the number

of CHs, and let N be the number of sensors in our

sensor network. We are furthermore concerned with a

two dimensional problem, and the position of each sen-

sor is known. Since xi contains a candidate solution
for the positions of all the NCH CHs, the length of

the vector xi is n = 2NCH. To force the CH posi-
tions to be chosen from the sensor positions, we intro-

duce the function h : R
2NCH → R

2NCH

, which takes

the particle position vector xi, and return the posi-

tion vector of the NCH sensors closest to xi. For in-

stance, if xi = (x⊤i1, x
⊤

i2, . . . , x
⊤

iNCH)⊤, then h(xi) =

(x̃⋆⊤1 , x̃⋆⊤2 , . . . , x̃⋆⊤NCH)⊤, where x̃⋆1, x̃
⋆
2, . . . , x̃

⋆
NCH are the

optimal CH locations achieved by solving an assignment

problem. Here, the assignment problem is typically un-

balanced since the number of sensor locations is greater

than the number of CHs, but can be balanced by intro-

ducing additional dummy variables. The solution can

be found efficiently by employing the Hungarian algo-

rithm, [34], or by numerical optimization of the linear

programming problem formally stated as:

min

N
∑

j=1

N
∑

k=1

Cj,kzj,k (3)

subject to the constraints

N
∑

k=1

zj,k = 1, for j ∈ {1, 2, . . . , N} , (4)

N
∑

j=1

zj,k = 1, for k ∈ {1, 2, . . . , N} , (5)

zj,k ≥ 0, for j, k ∈ {1, 2, . . . , N} (6)

and where for any j, k ∈ {1, 2, . . . , N}

Cj,k =

{

‖x̃k − xij‖ if j ≤ NCH

0 if j > NCH
. (7)

Here, x̃k is the location of sensor k, zj,k is the optimiza-

tion variable assigning the j-th position coordinate of

the candidate solution xi to sensor k, and Cj,k is the

corresponding costs.

The optimal CHs are chosen based on a fitness func-

tion,

f = α1f1 + α2f2 + α3f3 (8)

where α1, α2, α3 > 0 are scalar weighting constants

that reflect the priorities or expectations of optimizing

the sub functions f1, f2, or f3, respectively. f1 is the
energy consumption of all nodes in the network caused

by information exchange and data transmission with
the UAV; f2 is the transmission BER of data commu-

nication between the UAV and the nodes; and f3 is the

total travel time for the UAV to fly from the original

point, cover the entire set of CHs, and back to the orig-
inal point. Depending on the objective of the optimiza-
tion algorithm, the actual values of α1, α2, α3 would be

changed accordingly. The way of choosing these weight-
ing constants as well as their variations in different cases
of dominant sub fuctions are deeply discussed in Sec-
tion 4.3. These variations would lead to changes in the

result of the optimization and therefore system (net-
work) performance as well, which will be illustrated in
details in the simulation results, Section 4. Before that,

each sub function will be thoroughly explained in the

following sections.

The process of determining the CHs using PSO is
summarized in Algorithm 1. The main inputs of this

scheme are the known positions of the sensor nodes, the
upper and lower bounds for the search space optimzi-
ation, the number of iterations, the number of sensor

nodes, and the number of waypoints (CH nodes) for the

UAV.

3.1 Network energy consumption

The total energy consumption for a non-cluster head

node j transmitting information to CH i is calculated

as the sum of energy for transmitting a data packet,
and transmitting and receiving a control packet which
is

Ej = lEji + lctr
Pt0

R0

+ ERXlctr , (9)

where, l is the data packet length in bits, lctr is the

number of bits in a control packet, Eji is the energy

to transmit one bit from node j to the CH of the i-th

cluster, Pt0 is standard TX power, ERX is the energy

consumed to receive one bit, and R0 is the bit rate
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Algorithm 1 - PSO

Require: b, b, ω, cp, cg
for i ∈ {1, . . . , S} do ⊲ Start initializing

for d ∈ {1, . . . , n} do
xid ∼ U(bd, bd)

vid ∼ U(−|bd − bd|, |bd − bd|)
end for

pi ← xi
if i = 1 then

g ← x1
else if f(h(pi)) ≤ f(h(g)) then

g ← pi
end if

end for ⊲ End initializing
k ← 1
while k ≤ N Iterations do

for i ∈ {1, . . . , S} do
rp, rg ∼ U(0, 1)
for d ∈ {1, . . . , n} do

vid ← ωvid + cprp(pid − xid) + cgrg(g − xid)
end for

xi ← xi + vi
if f(h(xi)) ≤ f(h(pi)) then

pi ← xi
if f(h(pi)) ≤ f(h(g)) then

g ← pi
end if

end if

end for

k ← k + 1
end while

return g

used in broadcasting messages. The expression for Eji

is given by

Eji =
Ptji

Rji
=







Pt0

Rji
if Pr ji > Prmin

Ptmin

Rb
if Pr ji ≤ Prmin

, (10)

where, the transmit power is adjusted based on link

budget estimation between node j and its CH i. Ptji
and Rji are the transmit power and respective bit rate

of the communication channel between node j and its

CH node i. In the first case, Pr ji = Pt0+Gij −PLji >
Prmin, where PLji is the path loss between node j and

CH i, and CH i can receive data from node j with the

standard transmission power, Pt0. In the second case,

Pr ji = Pt0 + Gij − PLji ≤ Prmin, and transmisison

power is controlled to increase node j’s transmit power

to Ptmin = PLji + Prmin − Gij such that CH i can

receive data at a basic rate, Rb, according to receiving
strength of Prmin and Gij is the total gain of antennas

on node j and CH i. Under the assumption that the

sensor nodes are distributed in an outdoor environment

on a relatively flat surface or terrain and the distances

between the nodes are large compared to the heights of

their antennas, the actual propagation path loss PLji

between node j and CH i can be extracted from the

standard two-ray path loss model [35, Page 35],

PLji = 40 log dji − 20 log hi − 20 log hj , (11)

where hj and hi are the heights above ground or surface

of the node’s antennas, and dji is the distance between

them. In wide area sensor network, the nodes are not

close to each other so it is reasonable to assume that
CH i will receive and forward the data of its member

nodes to the UAV. Therefore, in the i-th cluster, the

total energy consumption by the CH to receive and then

forward its member node as well as transmitting its own

data is

Ei =
[

l(ERX + EDA) + lEiu + ERXlctr

+ lctr
Pt0

R0

]

(Ni − 1)

+ lETX + lEDA + lctrERX + lctr
Pt0

R0

,

(12)

where ETX , ERX is the energy to transmit or receive

one bit; EDA is energy for data aggregation per bit,

which is only applied to the CH nodes; Eiu is the en-
ergy consumption for sending one bit from CH i to the

UAV; Ni is the number of member nodes in the the i-th

cluster. The first portion of this formula describes the

energy for exchanging control packets, receiving data

from member nodes, and transmitting their data to the

UAV; the second part is the energy for sensing and

transmitting this data of CH node i to the UAV. Other
parameters are similar as in (9). Normally ERX and

ETX are the same, so (12) could be written in a more

compact form,

Ei =lNi(ERX + EDA) + lctrNi
Pt0

R0

+ lctrNiERX + l(Ni − 1)Eiu ,

(13)

where Ni is the number of sensor nodes in cluster i

including CH i, Eiu is the energy per bit to transmit
from CH i to the UAV (denoted with the subscript u).

The expression for Eiu is calculated similar as in (10),

Eiu =
Pt iu

Riu
=







Pt0

Riu
if Pr iu > Prmin

Ptmin

Rb
if Pr iu ≤ Prmin ,

(14)

where Pt iu is the necessary transmission power at node

i when communicating with the UAV. In the first case
the standard value Pt0 is large enough to maintain

communication without power control, that is, Pr iu =

Pt0 + Gij − PLiu > Prmin, where PLiu is the path

loss between CH i and the UAV. Under the assumption

that the UAV is flying over the nodes on a flat terrain

without significant obstructions, the propagation path

between the UAV and the nodes would usually be line of
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sight (LOS). In addition, the altitude of the UAV would

always be significantly high compared to the nodes, so

it is reasonable to apply free space path loss for PLiu.

Converting from a standard formula in [35, Page 32],

we have that

PLiu = −147.55 + 20 logF + 20 log diu , (15)

where F is radio frequency in Hertz, diu is the distance

between CH i and the UAV in meter. In the second case

of (14), Pr iu = Pt0 + Giu − PLiu ≤ Prmin, and power

control is used such Ptmin = PLiu+Prmin−Giu where
Giu is the total gain of the antennas at CH i and the

UAV. Similar as to the case between two sensor nodes,

Ptmin is also calculated for this case which is between

CH i and the UAV.

With the ability of calculating path loss function

between two nodes or between a node and the UAV, it

would be possible to estimate the energy consumption

by each node in any of those cases. Therefore, f1, the

total energy for data communication between all of the

member nodes and its CH node i as well as the energy
used for forwarding all of the member node’s data in

addition with CH node’s data to the UAV (by the CH

i), is described as in following equation:

f1 =

NCH

∑

i=1

Ni−1
∑

j=1

Eji +

NCH

∑

i=1

Eiu . (16)

where the first sum is the total energy used for com-

munication between the node j and CH node i, and

the second part is the total energy used by all of the

CH nodes for data communication with the UAV. The

expressions for Eiu and Eji are given in (10) and (14).

The total energy consumption depends on the de-

ployed environment. In a different environment the prop-

agation path loss model would have to be changed ac-

cordingly. In this paper we have assumed that mission

is in an outdoor environment and that the nodes are

deployed over a relatively flat terrain. This assumption

could be relaxed by for instance using the ’Longley-Rice
Irregular Terrain’ model or the ’Irregular Terrain With
Obstructions’ models, both of which are implemented
in the simulation tool SPLAT!, [26].

3.2 Bit error rate

The Bit Error Rate (BER) usually depends on data

modulation scheme and communication channel between

transmitter and receiver. In this sensor network model,

we are most concerned about saving the nodes energy

consumed by data communication. Therefore, M-QAM

modulation is used for all the nodes. Following [35, Page

190], the average symbol error rate of this scheme is es-

timated by

P s =
4

π

(

1− 1√
Q

)
∫ π/2

0

Mγs
(ω, φ) dφ

− 4

π

(

1− 1√
Q

)2 ∫ π/4

0

Mγs
(ω, φ) dφ,

(17)

where Q is the modulation rate, and ω = 1.5/(Q − 1).

Mγs
(ω, φ) is a Moment Generating Function (MGF)

which is used in performing analysis of modulation in

fading with and without diversity, and φ is the angle

variable of the integrals.

If the radio channel is between any two nodes on

the ground, then the reflection portion of radio paths on

the ground is significant. For instance, the symbol error

rate of the channel between a node j and its CH i, can

be calculated using (17) with the Rayleigh multipath

fading distribution [35, Page 189],

Mγs,ji(ω, φ) =

(

1 +
ωγs
sin2 φ

)−1

. (18)

Here, γs denotes the average Signal to Interference plus

Noise Ratio (SINR) at a fixed path loss over the chan-

nel. Basically, SINR is equal to S/(I +N0), where S is

the expected signal strength at the receiver, I is inter-

ference from all the sources located around the receiver

node, and N0 is the standard noise in the channel. For
the communication between CH i, and the UAV u flying

over it, the Line-of-Sight (LOS) signal strenght is usu-

ally the dominant portion compared to the portion from

other reflected signals, so (17) can be calculated with

Rician multipath fading distribution [35, Page 189],

Mγs,iu(ω, φ) =
(1 +K) sin2 φ

(1 +K) sin2 φ+ ωγs,iu

× exp

(

Kωγs,iu

(1 +K) sin2 φ+ ωγs,iu

)

.

(19)

Here, K is the Rice factor and denotes the dominance

of the LOS path over the reflection paths portion. From

our prior research on air to ground communication sys-

tem, the value of K could be varied according to the
incident angle constituted by the arriving signal and

the receiving node [36]. With the assumption that the

UAV and the node are setup with small array antennas,

so their relative distance and position would not affect

the actual value of K. In the case where the antenna

array is not existing on any of the node or the UAV,

this effect must be taken into account.

In order to evaluate the BER, the symbol-error prob-

ability P̄s is converted into average bit-error probability
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Pb as follows

Pb =
P̄s

log2Q
. (20)

Then the general BER of the system which describes

the sub function f2 introduced in (8), is calculated as

the fraction between the total number of error bits (for
both transmissions in the two cases: node to node and
the CH node to the UAV) and the total bits transmitted

by all of the nodes, as follow

f2 =

∑NCH

i=1

∑Ni−1

j=1
Pb,jil +

∑NCH

i=1
Pb,iul(Ni − 1)

(2N −NCH)
,

(21)

where Pb,ji and Pb,iu are the probabilities of errorneous

bits of the communication channels between node j and

its CH i, and between CH i and the UAV, respectively.

3.3 UAV-path and travel time

Another sub fitness function f3 introduced in (8) is for

the total travel time for the UAV which means the time
it takes from its original position to visit all the CHs,

and then return to the starting point. In the case of no
wind effect, the UAV ground speed could be constant,
and therefore the time spent is proportional to the to-
tal distance. [37] used the approximation algorithm to

the Dubins’ traveling salesperson problem of [38], in

order to estimate the flying distance of the UAV. The

wind is however a common effect that should be added

into this network model. The effect is dependent on the
wind speed and wind direction in the area. In order
to estimate the total flight time of the UAV, the UAV

kinematics can be be modeled as the dependence on the

current location, its own speed and heading angle, as

well as the wind speed and its heading, as follow

ẋ =va cosψ + vw cosψw = vg cosχ,

ẏ =va sinψ + vw sinψw = vg sinχ,

ψ̇ =k(χd − χ),
(22)

where (x, y)⊤ is the position of the UAV, χ = atan2(ẏ, ẋ),

va is the UAV air speed, ψ is the heading angle, vw is

the wind speed, ψw is the wind direction, χd is the de-
sired direction towards the goal, χ is the course angle,

χ̇ is the course angle rate, and the ground speed of the

UAV is vg =
√

ẋ2 + ẏ2, and k is the gain that depends

on system design and relates to the turn rate of the

UAV. Let TWi,Wi+1
be the time taken by the UAV to

traverse from waypoint Wi to waypoint Wi+1. This can
be estimated by

TWi,Wi+1
≈
∫

dt, until ||(x, y)⊤ −Wi+1|| < ρ (23)

Table 1 UAV model and controller parameters

Parameter Value Parameter Value
ρ 120m va 40m/s
vw 0, 9, 15 m/s ψ0 0
ψw π/4 Gi 10 dB
Gj 10 dB Gu 10 dB
hi, hj 20 cm hu 200m
Xu 2.5 km Yu −5 km
Xmax 5 km Ymax 5 km
Pt0 33 dB f 5.8GHz
B 1MHz Prmin −95 dB
M 8 K 10 dB
Rb 2 dB R0 1Mbit/s
ERX 50 nJ/s/bit EDA 5 nJ/s/bit
ETX 50 nJ/s/bit N0 −110 dB
l 800B lctr 200 bit
N 200 N Iterations 5000
α1 100 α2 105

α3 10−3 E0 1 J
Simulations 500 NCH 5, 10, 20

where ρ is the minimum turn radius of the UAV. For
data mule applications, we assume the UAV flies at a

constant height and changes its heading depending the

path and hence we assume the model of UAV to be a

Dubins car model [39].

Assuming that the UAV needs to start from its orig-

inal position (W0), visits all the waypoints Wi (i ∈
{1, . . . , NCH}), and return to its starting point, then

the total time taken by the UAV to complete one round

is

f3 = TW
NCH ,W0

+

NCH
−1

∑

i=0

TWi,Wi+1
. (24)

For a given path with waypoints, the UAV has to follow

the path under wind. There are several path following

algorithm that can be used for the UAV to follow the

path [40]. We use vector-field path following algorithm

for the UAV to follow the path determined the PSO al-

gorithm [41]. The model (22) is used in our simulations

since it is a very simple model. More accurate results
could be achieved by using a flight simulator including
the aerodynamics and flight control of the actual UAV,
at an additional computation cost.

4 Simulation results

4.1 Simulation setup

Monte-Carlo simulations are conducted for both LEACH-

C and PSO schemes with different number of cluster

head nodes (5,10, and 20), and wind effects (vw = 0

and vw > 0). The UAV air speed is 40m/s. The num-

ber of sensor nodes in the network is 200 at the begin-

ning of each simulation scenario and other assumptions,
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conditions are the same while simulating for LEACH-C

and PSO algorithms. The nodes are randomly (N (0, 1))
generated in a region of 25 km2 area. Initially, all the

nodes have the same energy E0.

Each simulation lasts for a maximum of 500 sor-

ties or until all of the nodes in the network run out

of power from the batter. For each sortie, the PSO al-

gorithm determines the CHs that need to be visited by

the UAV majorly taking the current energy levels of the

nodes into account. In the algorithm, the positions of
the nodes in the network also affects the solution which
needs to jointly minimize the energy consumption, er-
roneous bits, and flight time for the UAV. Since the

nodes are not movable in this assumption, it could be

said that the CH selection is basically based on current

energy levels of the nodes, and the selected CHs for the

current sortie can therefore be different from the pre-

vious sortie. After each sortie, the energy levels of the

nodes are reduced depending on the amount of data

communicated acting either as a CH or as a member

node. In the PSO algorithm that is called at the begin-

ning of each sortie, the number of iterations is applied

with N Iterations = 5000. Regarding to weighting con-

stants set in these main simulations, they are selected

with the priority orders as following: BER, Energy, and

then travelling time of the UAV. It is further discussed

in details how to select these constants in Section 4.3.

All other parameters related to UAV flight, data

communication and simulation conditions are shown

in Table 1. It is assumed that both sensor nodes and

the UAV are equipped with directional antenna sys-

tems (i.e. phased array), and the beams of both the

transmitter and receiver will point to each other during

their communication thanks to the shared knowledge of

their exact positions. This assumption is used in calcu-

lating the receiving signal strengths in equations (10)

and (14). These estimations are then used to calculate

SNR as well as the according transmission bit rate for

data transmission in a specific case. Such small phased

array antennas have been used in some UAV applica-

tions, for instance at [42]. The UAV is assumed to fly

at a constant altitude of 200m and ground speed of

40m/s with a minimum turning radius of 120m. The

simulations illustrate all the terms in the fitness func-
tion, which include average energy consumption in the

network, average BER, and travelling time for the UAV.

Additional results such as the total of alive/dead node

during simulation rounds, tracking of dead node’s time,

and the value of the fitness function returned from both

LEACH-C and PSO schemes are also analyzed.

4.2 Comparisons of LEACH-C and PSO Algorithms

without Wind

This Section will illustrate how the PSO scheme out-

performs LEACH-C. For its simplicity, we can con-

sider the case that BER is the highest prirority con-

cerned amongst the three constraints of energy, BER,

and time. In practice, there is a relevance between BER

and energy because BER would be improved when a

node and its CH node is closer; or when a CH node

and UAV is closer; and these situaitons always cause

less energy consumption. Otherwise, a high BER also

leads to a need for re-transmission, and hence more

energy consumption. Again, this comparison between

PSO and LEACH-C is conducted with the most expec-

tation is to reduce the BER, and the results are ref-

ered in following Figure 1, 2, and 3. The performances

for energy consumption and BER indicated that PSO
achieves a better performance compared to LEACH-C
under the same initial simulation condition and network

topology. With the common trend from these figures, it

shows that the higher number of CH nodes applied in

the network the lower the energy consumption, BER,

and therefore higher number of alive nodes remaining

in the network. In addition, the gap in performances of
the LEACH-C and PSO schemes will be more visible
when increasing the number of CH nodes. The improved

performance of PSO compared to LEACH-C could be

seen from Figure 4 where the fitness values are almost

kept constant with the PSO scheme at the beginning

and then start to decrease after a certain number of

rounds. However, with LEACH-C scheme, the fitness
values seems unpredictable, such as they increase a lit-
tle bit at the beginning, reduce at the middle, and then

increase again even when there are few number of alive

node in the network. This means that PSO has found

a better selection of CH nodes where returned a more

stable and lower cost in general. The plausible reason

of why the PSO’s fitness value is gradually decreasing

and become very small at the right edge is that, at that

moment many of the nodes are dead but the number of

CHs is still unchanged; hence, the ratio of nodes that

have direct communication with the UAV is increased.

This makes the BER and the traveling time for the

UAV decrease. However, this trend is difficult to pre-

dict in the case with LEACH-C because of the random

selection of the CH nodes.

Further analysis is shown in Figure 5 and 6 where
the positions of the nodes and tracking of their time-

of-death are simultaneously depicted. The figures show

that all the nodes in the network are dead after run-

ning nearly 300 times of data collection in the LEACH-

C case, while there are still many alive nodes in the
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Fig. 1 Total energy consumption by the nodes as a function
of the number of data collection rounds for NCH ∈ {5, 10, 20}
and vw = 0.

network with the PSO scheme even after running 500

rounds of simulation. The colors of the nodes are asso-

ciated with the round or iteration when the nodes died

due to energy drainage. In Figure 5, with LEACH-C,
the nodes with the same colors are usually located in
the same areas, and they are not as evenly distributed

as the dead nodes in Figure 6 where the PSO is ap-

plied. The LEACH-C algorithm may attempt to select

many CHs from one of these areas in the same round

because they are close to each other and therefore can

reduce the values of the fitness function. The differ-
ence between the dead nodes distribution in LEACH-
C and PSO could be the answer to why the traveling

time for the UAV with PSO is not better than with the

LEACH-C scheme, as shown in Figure 7. These results

show that the UAV requires even a little longer time

to collect data each round with the PSO scheme, but

the PSO scheme always provides a better overall fitness
value compared to LEACH-C.

4.3 Effect of Weighting Factors on Performance

This Section will illustrate more results only for PSO
algorithm. This shows the differences in performances
when energy, or time is set at the highest priority to
the optimization process (as BER was considered in

the results above).

As introduced in the fitness function (8), the weight-
ing factors are α1, α2, and α3, associated with the three

sub functions f1, f2, and f3. These sub functions are

representative for the energy consumption, bit-error-

rate, and UAV travelling time, respectively. We can de-

fine the three cases in which energy consumption, BER,

or time is the most prioritized in the optimization. For
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Fig. 2 The number of nodes alive in the network as a func-
tion of the number of data collection rounds for NCH ∈
{5, 10, 20} and vw = 0.

Table 2 Different Weight Factors in Fitness Function

Three scenarios α1 α2 α3

Case 1 (Energy) 105 102 10−3

Case 2 (BER) 102 105 10−3

Case 3 (Time) 10−1 102 1

the case i, the according weight factor αi would be se-

lected with the condition that αifi is significantly larger
than αjfj , j 6= i. Table 2 provide example values for αi

in those cases (i = 1, 2, 3).

The changes of weight factors would directly affect

the fitness function. The most visible factor that could

affect the general network performance is the energy

usage. The results in Figure 8 are based on the sim-

ulation conditions as in other cases (with parameters

in Table 1) except (i) the weight factors which are se-

lected from the three cases in Table 2 and (ii) only the

case of 5 waypoints is simulated and plotted. From the

variations in Figure 8, the number of dead nodes in
the first two cases (cases 1, 2) are quite similar and
much lower than the one in the third case. It means

the nextwork lifetime is extended when energy or BER

is the most concern for PSO algorithm. The travelling

time periods for the UAV are not emphasized here as

it is not as highly concerned as energy and BER in

this paper. However, the time in the third case would

theoretically be much lower than that in the other two

cases. When travelling time is mostly concerned, the

PSO scheme would try to find the set of CHs that the

UAV need the least time to fly over them. In this case,

there would be a high possiblity of suffering high energy

for message exchange and data communication, espe-

cially amongst the nodes as its large propagation path
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Fig. 3 Bit-error-rate as a function of number of data collec-
tion rounds for NCH ∈ {5, 10, 20} and vw = 0.

loss. As mentioned above, there is a close relation be-

tween BER and energy, as a result, the performance in

term of the dead node numbers is quite similar in these

two cases. Further analysis in simulations show that the

priority orders in cost function for the first case are en-

ergy, BER, and travelling time; for the second case are

energy, BER, and travelling time. The travelling time of

the UAV is just a minor cost in the main cost function

of PSO for the first two case; hence, it does not affect to

the overall performance. It would be clearer to see this

effect of weighting constants changes on how the UAV

was flying over the waypoints for data acquisition. For

the simplicity of graph, one example data is plotted in
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Fig. 4 Fitness value f for NCH ∈ {5, 10, 20} and vw = 0.

Fig 9 when there was 50 alive nodes in the network and
all other parameters are same as the ones used for plot-
ting Fig 8. From these discussed results on both Figures
8 and 9, this Section provides insight explanations on

how to select the most reasonable weight factors base

on the most expectation for the network, as well as how

this selection affected on the network performances.

4.4 Evaluation of PSO under Wind Effect

In Section 4.2, the PSO scheme outperforms LEACH-C

in terms of energy consumption, BER, and total fitness

value under the no-wind condition. This section will

therefore only show the impact of the wind using the
PSO scheme. Other conditions and assumptions are the
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Fig. 5 Node distribution for NCH = 20 and vw = 0 using
LEACH-C. The color represents the iteration number when
each node ran out of energy. After approximately 300 rounds,
all nodes are dead.
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Fig. 6 Node distribution for NCH = 20 and vw = 0 using
PSO. The color represents the iteration number when each
node ran out of energy. After 520 rounds, there are still nodes
alive (denoted by a red star).

same as implemented in Section 4.2. For simplicity we

assume that the wind is steady and uniform; hence, the

wind speed and direction is the same for all the points

of the flight. With the wind effect, as shown in (22),

the ground speed of the UAV could be decreased or in-

creased depending on the relative direction of the UAV

and the wind at each moment. When the UAV is fly-

ing against the wind, its ground speed is decreased and

needs more time to visit the waypoints (CHs). When

the wind is from behind, the UAV speed is increased. In

these simulations, total energy consumption and BER

are prioritized in the fitness function (8), and these fac-

tors are not much affected by the windy environment.

This result could be seen by the similarities of the pairs
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Fig. 7 Travelling time for the UAV to finish one round of
data collection for NCH ∈ {5, 10, 20} and vw = 0.

of lines representing the cases of wind at 0m/s and

15m/s in Figure 10, Figure 11, and Figure 12. However,
the effect of wind on the traveling time for the UAV is

more visible as shown in Figure 13. In the windier envi-
ronment, the the UAV needs more time in order to visit
all the waypoints. The results in Figure 14 also agree

with this trend, that the optimal fitness value returned

from PSO scheme in a windy condition is slightly larger

than that with no wind effect condition.

In order to show the effect of wind on the UAV

flight, Figure 15 shows in details how the UAV was

flying over the selected waypoints under the constraint

that BER and energy were the most concerns. The UAV

route in the windless case is reused from the result of

case 2 that was shown in Figure 9, so there would be
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Fig. 9 The UAV paths in the cases energy, BER, or time is
in turn the most priority of PSO (with 5 CHs and 50 sensor
nodes).

5 waypoints (CHs) and 50 alive sensor nodes; other as-

sumptions are similar as being used for plotting Figure

9 . Also, the same algorithm was applied for the UAV

movements in both the cases of windless and windy.

The results from this Figure 15 show that these flight

routes of the UAV might be not the shortest ones but

they would minimize BER and energy consumption as

the travelling time was not the highest concern in this

case. Due to the effect of the wind at a certain wind

direction (π/4 this case), there is some difference in the

flight path when the UAV changes its direction at some

sharp angles. In Figure 15, the stars represent for the

waypoints and the squares are for the sensor nodes in

the network. The red and green dots are for the move-

ments of the UAV in windless and windy (at a speed
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Fig. 10 Comparison of energy consumption in PSO scheme
with NCH ∈ {5, 10, 20} and vw ∈ {0, 15}m/s.
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Fig. 11 Comparison of alive nodes in PSO scheme with
NCH ∈ {5, 10, 20} and vw ∈ {0, 15}m/s.

of 15m/s) conditions, respectively. In Figure 15, we can

also see that the UAV is far away from the location of

the nodes. This assumption is based on a practical sit-

uation where these nodes are located on a remote area

that is quite seperated from initial location of the UAV.

4.5 Discussions

As in any multiobjective optimization problem, the rel-
ative weighting of the objectives is difficult. Some rule-
of-thumb exists in the literature, such as scaling each

objective by the optimal value of this objective when

known. Another recommendation is to scale the initial

guess, such that the cost of each individual objective is

1 at start-up. These rules are not alway easily applica-

ble, and for similar multiobjective covering salesperson
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Fig. 12 Comparison of BER in PSO scheme with NCH ∈
{5, 10, 20} and vw ∈ {0, 15}m/s.
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Fig. 13 Comparison of travelling time of the UAV in PSO
scheme with NCH ∈ {5, 10, 20} and vw ∈ {0, 15}m/s.

problems we encourage the reader to make the rela-

tive weighting based on simulation studies and practical

judgement of the resulting performance. For instance,

one can consider what is truely the benefit of reduc-

ing the travel time in our path planning problem. The

main reason to reduce the traveling time would be re-

lated to the operation cost in the UAV operation or

the endurance of the UAV. One of more human oper-

ators may need to supervise the operation. However,

when the purpose is to collect as much information as

possible in a continuous operation, it is apparent that

reducing the time of each individual run can be less

emphasized. A second argument for reducing the travel

time, is the want to reduce the latency from the obser-
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Fig. 14 Comparison of Fitness values in PSO scheme with
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Fig. 15 How UAV flies over the waypoints in windless and
windy conditions when BER is the most constraint (with 5
CHs and 50 sensor nodes).

vation until the data is received by the user requesting

the sensor information. Obviously this is depending on

the process to be observed by the sensors, but due to

the latency already experienced while data is stored on

the sensor nodes, we believe that decreasing the travel

time of each individual run will have limited impact on

the overall delay.

For a practical implementation of the proposed al-

gorithm the following should be considered. The au-

topilot will need to be equipped with a Global Nav-

igation Satelite System (GNSS) receiver, a computer,

radio system, and a directional antenna. Most UAVs

for outdoor flying have a GNSS receiver as part of their
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navigation system, and will be used to update the infor-

mation about the UAV’s own position. The computer

will do the datalogging, and control the communica-

tion. Regarding to waypoints optimization, the model

for estimating the UAV travelling time in this paper is

simple and it would be straightforward to replace with

a sophisticated flight simulators at the expense of addi-

tional computation time. For the antennas on both the
sensor nodes and the UAV, they could be attached with
a standard dipole or patch antenna, or a patch antenna

on each node and a phased array antenna on the UAV.

The assumption of using directional antennas in this

paper is to provide the beam-forming function, capa-

bility of extending the communciation distance, as well

as saving energy or maximizing the network lifetime.

In the case of using dipole antennas on the nodes and

the UAV, the energy on the node would be running out

much quicker; hence, the network lifetime would sig-

nificantly reduced. The location of the nodes need to

be known by the path planning algorithm, but since

we consider static nodes it is reasonable to assume that

this information can be uploaded to the UAV before the

mission starts. As already pointed out, we also assume

that sensor nodes are equipped with a suitable radio

and antenna, in addition to a battery, a computer and

one or more sensors appropriate for the process to be

observed.

5 Conclusions

In this article, we have evaluated the performance of
two algorithms for optimal selection of the cluster heads
(wide area WSNs) which are transfered to the UAV as
the waypoints for its data acquisition. In our objective

function, the energy consumed by the network, com-

munication quality, and traveling time for the UAV are

optimized with the PSO algorithm. Any or all of them

could be the dominant factor to the optimization al-
gorithm, and the effect of these variations have been
studied. In the main simulations for comparison with

LEACH-C, we have given the highest priority to the

average BER, and lower ones for energy consumption

and traveling time of the UAV. PSO has shown that it

outperforms the LEACH-C scheme when applied to op-

timization for wide area sensor networks and UAV data
acquisition. Our simulations also show that the life time
of the network can be significantly extended using the

optimization scheme. Furthermore, performance evalu-

ations of the scheme have also been further developed

and examined under the effect of the wind. In the case

we contiune to keep priorities for BER and energy con-

sumption, these criteria are not significantly affected

by the wind. The traveling time, however, is affected

by the wind speed.
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