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ABSTRACT In this work, the process of adhesive stamp mass-transfer of micro light-emitting diode
(micro-LED) is optimized by a Support Vector Machine (SVM) model. The pick-up experiments have
been performed repeatedly for hundreds of times from which the separation speed and the force between
the stamp and the donor substrate are extracted as signal features. The SVM model with a Gaussian
kernel function is designed to classify pick-up results into success and failure. In addition, the optimal
cost parameter C as well as the Gaussian kernel function parameter gamma (γ ) has been optimized, leading
to the improvement of the classification by Particle Swarm Optimization (PSO) algorithm. Finally, an 85%
classification accuracy is achieved based on the SVM model, implying that more sophisticated definition
of signal features is demanded in future work.

INDEX TERMS Adhesive stamp, mass-transfer, micro-LEDs, support vector machine model, particle
swarm optimization.

I. INTRODUCTION
In recent years, micro light-emitting diode (micro-LED) has
attracted a lot of attentions for its vast potential applica-
tions in various fields, such as micro-display [1]–[3], visible
light communication [4]–[7], biomedical [8] and wearable
devices [9]. Compared to LCD (liquid crystal display) and
OLED (organic light-emitting diode) display, micro-LED
display is advantageous for some unique features, including
excellent light properties (e.g., contrast, hue and bright-
ness), fast response time, high power efficiency and long
lifetime [10]–[13]. However, the mass transfer process has
become the bottleneck, thus hindering the mass production
of micro LEDs.
A variety of mass-transfer techniques have been

proposed to assemble Micro-LEDs, such as laser-Assisted
mass transfer [14]–[17], fluidic self-assembly [18], [19],
electrostatic mass transfer [20]–[22], micro vacuum-
based transfer [8], elastomeric stamp or roll-based mass

transfer [23], [24] and the adhesive stamp mass transfer
adopted in this work [25]–[28]. Laser-assisted mass transfer
is developed for selective micro-LEDs printing upon laser
irradiation on the light-reactive layers [14]–[17]. Though
good performances on the reliability, throughput, success
probability as well as selectivity, this complex technique
is limited to small area transfer. Fluidic self-assembly uti-
lizes hydrodynamic interactions to achieve the assembly
between the chips and the substrate [18], [19] and owns
high throughput and the scalability of fluidic self-assembly.
However, the reliability and the success probability are
not satisfying. Electrostatic mass transfer makes use of
voltage-induced electrostatic adhesion to pick up micro-
LEDs from a donor substrate and release them onto a target
substrate [20]–[22]. The throughput of electrostatic mass
transfer is high, but LED is put at the risk of break-
down under high voltage. The micro vacuum-based transfer
method picks up and releases LED chips by changing
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a vacuum pressure of the transfer module, which con-
formally contacts LED surfaces [8]. Individual vacuum
pressure control of each device enables large-scale and
selective Micro-LED transfer without any adhesive and heat-
ing/compressing process. Roll-based mass transfer which
developed from elastomer stamp transfer enables a large-
scale, high yield and rapid transfer process for micro-LEDs
display [23], [24]. However, the cost of device is high
and the process is complex. Adhesive stamp mass trans-
fer can be described as a process where a stamp picks
up the ink from the donor substrate and prints the ink
into the receiving substrate [25]–[29]. The stamp is typi-
cally made of molded polydimethylsiloxane (PDMS) and
patterned with posts. The adhesive stamp mass transfer
printing process can be achieved by utilizing the viscoelas-
tic rate-dependent adhesion at the stamp-ink interface to
enable either retrieval or printing by controlling the separa-
tion velocity [30]–[32]. Notably, the adhesive stamp mass
transfer shows good reliability, high throughput, success
probability, scalability of stamps and low cost, making it
one of the mainstream transfer techniques. The complete
transfer printing consists of the pick-up stage and the print
stage. Most researches focus on the optimization of print
stage. For instance, a new mode of transfer printing that
utilizes a laser to supply the energy to drive a thermos-
mechanical delamination process has been demonstrated by
Saeidpourazar et al. [33], [34]. In specific, the ink is released
from the stamp and then transferred to the receiving sub-
strate. Whereas, the parameters that influence the results in
the pick-up stage are rarely studied. In this work, we propose
a SVM model to classify the pick-up results and optimize
the pick-up stage of the adhesive stamp mass transfer
technique.
In the pick-up stage, the two feature signals, namely the

separation speed and the force between stamp and donor
substrate, are two critical parameters that determine the suc-
cess or failure in picking up chips from the donor substrate.
The SVM algorithm has played an important role in the
field of machine learning and attracted lots of attentions
since proposed by Vapnik et al. for pattern recognition and
data classification [35]–[37]. In this work, to distinguish
whether the pick-up stage of the transferring process is suc-
cessful or not, a SVM-based classifier model is demanded.
We introduce Gaussian kernel function as the kernel function
of the SVM based-classifier model to identify the feature sig-
nals. In order to optimize the performance, firstly, training
data should include plenty of separation speed, force and the
pick-up results. Based on the training data, the optimal cost
parameter C as well as the Gaussian kernel function param-
eter gamma (γ ) can be obtained with the PSO algorithm.
Finally, the classification accuracy can be achieved based on
the SVM model. The transfer process can be optimized by
adjusting the transfer parameters of the model. In addition,
both transfer yield and efficiency can be improved with the
model.

II. SVM MODEL FOR MASS-TRANSFER PRINTING
PROCESS
A. NORMALIZATION OF SAMPLED DATA
Signal features in the pick-up stage differ in both quantity
and quality. Thus, to obtain uniformed and convergent input
or output data, the sampled data should be normalized as x′,
varying in the range of [0, 1].

x′ = x− xmin

xmax − xmin
, (1)

where x and x′ are the inputs before and after normalization
respectively. xmin and xmax correspond to the minimal and
maximal inputs respectively.

B. SUPPORT VECTOR MACHINE
The standard SVM algorithm is a binary classification tool,
which has solved many quadratic problems with linear
inequality constraints. Its explicit criteria is to find and
maximize the hyperplane, which separates the two classes
and minimizes the upper bound of generalization error.
When SVM is used to address non-linear inseparable

samples, the original dimensional space data can be firstly
mapped to a higher dimensional space, which is created by
a mathematical method called kernel trick. Given a training
set of S:

S = {(
xi, yj

)∣∣xi ∈ RN, yj ∈ {−1, 1}}, i = 1, . . . , l, (2)

where xi and yj are the input and output vectors respectively.
Our goal is to find an optimal hyperplane so as to separate
the two classes and minimize the misclassification errors as
possible. The most common way to address such problems
is to transfer the original problem to a dual space using
Lagrange multipliers.

L(α) =
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiαjyiyjk
(
xi, xj

)
, (3)

Equation (3) is subject to the restraint as below:

n∑

i

αiyi = 0, αi ∈ [0,C], i = 1, . . . , n, (4)

where α1, α2, . . . , αnare n non-negative Lagrange multipliers
and α1, α2, . . . , αn ≥ n. k(xi, xj) is defined as the kernel
function. In this work, Gaussian kernel function is chosen
as the kernel function.

k(x, xi) = exp
(
−‖x− xi‖2

/
2σ 2

)

= exp
(
−gamma ∗ ‖x− xi‖2

)
. (5)

The SVM with a Gaussian kernel function has two training
parameters, namely the optimal cost parameter (C) and the
Gaussian kernel function parameter (γ ). The former controls
overfitting of the model and the latter determines the degree
of nonlinearity.
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C. PARAMETER OPTIMIZATION
According to Equations (4) and (5), the classification
performance of the SVM model depends on C and γ . To
improve the classification, the PSO algorithm is employed
to optimize the parameters of the SVM model. The PSO
algorithm searches for the optimal solution by iteration and
evaluates the quality of the optimized value based on the fit-
ness function [38], [39]. The global optimal can be achieved
by utilizing the local optimal value. Normally, the velocity
(v) and position (x) of each particle can be indicated as,

vi,d(t + 1) = w× vi,d(t) + c1 × rand1 × (
pbestd(t) − xi,d(t)

)

+ c2 × rand2 × (
gbestd(t) − xi,d(t)

)
,

xi,d(t + 1) = xi,d(t) + vi,d(t + 1), (6)

where vi,d(t + 1) denotes the velocity of the particle i at
the d-th iteration and xi,d(t + 1) denotes the position of
the particle i at the d-th iteration. w is the inertia weight
that controls the impact of the velocity at previous step.
t is the iteration number. c1 and c2 are the non-negative
learning factors. rand1 and rand2 are random numbers in the
range of [0, 1] as the remembrance ability. pbestd and gbestd
respectively denote the position of the local optimal solution
and the global optimal solution of the particle i after d-th
iterations.
In this work, the separation speed and the force between

stamp and donor substrate have been selected as signal fea-
tures after hundreds of pick-up experiments and therefore
the input vector in Equation (3). The pick-up result can be
regarded as the output vector. Random sets of vectors were
employed as the training sets for the optimization of cost
parameter C and the kernel function parameter γ , the other
sets of vectors as the testing sets. Given the signal features,
the Libsvm toolbox in MATLAB was used to optimize C
and γ of the SVM model. During the optimization, the par-
ticle swarm optimization algorithm code was invoked. The
steps of optimizing the C and γ by the PSO algorithm are
as follows:
1. Initialize the particle population as well as PSO param-

eters. According to Equation (6), set the learning factors c1
and c2, the inertia weight w and the max iteration number.

2. Update the positions along with the velocities according
to Equation (6).
3. Evaluate the quality of the PSO optimization value by

the fitness function. Then calculate the fitness value of the
particle, with which the position of the local optimal solution
pbestd and the global optimal solution gbestd in Equation (6)
are updated correspondingly.
4. Exit the process when the maximal iteration number or

the convergence accuracy is satisfied and achieve the global
optimal solution gbestd. Otherwise, continue the process by
restarting from step (2).
The flow chart of employing the PSO algorithm to

optimize the cost parameter and the Gaussian kernel
function parameter of the SVM model is shown in
Figure 1.

FIGURE 1. The flow chart of obtaining the optimal cost parameter C and
the Gaussian kernel function parameter γ , using the PSO algorithm.

FIGURE 2. The apparatus of the mass-transfer printing system.

III. EXPERIMENTAL DETAILS
As shown in Fig. 2, the mass-transfer printing system con-
sists of a XY-stage, a Z-stage, an orientation stage and an
optical camera. The positioning resolution of XY-stage is
0.625µm. The stamp moves up and down along the Z-stage
so as to touch or detach the LED chips. The GaN-based filp-
chip LEDs used in the transfer experiment are supplied by
Xiamen Changelight Co. Ltd, an LED fabricator. The LED
wafer was grown on sapphire substrate with InGaN/GaN
multiple quantum wells and the emission wavelength is about
460nm. The flip-chip LED chips were fabricated and pack-
aged by regular chip process with size of 100 × 200µm2.
The force between stamp and donor or receiving substrate
is controlled by the separation speed. The orientation stage
plays a key role in obtaining parallel alignment between the
stamp and the donor or receiving substrate.
In the pick-up stage, the picking results are affected mainly

by two factors, namely the separation speed and the force
between stamp and donor substrate. The former is controlled
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FIGURE 3. The normalized training data include the separation speed data
and force data between the stamp and the donor substrate.

by the motion controller and the latter is indicated by the
pressure sensor. In our experiment, a self-developed software
is applied to control the motion controller of the transferring
system, including the displacement of XY-stage, the Z-stage,
the orientation stage and the optical camera. In details, a LED
chip is placed on the donor substrate each time. The distance
between the stamp and the camera is adjusted to focus on the
post. Then the print head moves down along the Z-stage till
the LED chip is focused and touched. The motion controller
adjusts the XY-stage to parallelly align the post and the
LED chip and governs the Z-stage to separate the LED chip
from the donor substrate by the post. The stamp and the
donor substrate are subjected to a certain pressure, being
recorded by a pressure sensor. The forces and separation
speed are selected and recorded as the pick-up results. Here,
1 denotes a successful pick while −1 a failure. The entire
process presented above is monitored by the optical camera.

IV. RESULTS AND DISCUSSION
Signal features in the pick-up stage could differ in both
quantity and quality. Thus, to obtain more uniform and con-
vergent input or output data, the separation speed data and
force data between the stamp and the donor substrate are nor-
malized. The result is shown in Fig. 3. The training data in
Fig. 3 are used to build SVM model. Then the classification
was improved with the PSO algorithm where parameters C
and γ are set 27 and 1 respectively. The visualizing classifi-
cation result of the training data set is shown in Fig. 4. From
Fig. 4, it’s found that there is one data point considered as
a failure during the training being classified as a success
after the SVM classification, which is possible since the
achievable prediction accuracy is lower than 100%.
To classify the result of the pick-up stage, the decision

boundary is marked as 0. As illustrated in Fig. 4, 1 and
−1 mark two curves locating at the up and down side of
0 respectively. According to the SVM algorithm, the larger
the margins of the two curves are, the better the decision

FIGURE 4. The visualizing classification result.

boundary is. Here the support vectors determine the mar-
gin. The testing data set is brought into the SVM model
and the resulting predictive accuracy is 85%. The predictive
accuracy less than 100% can be used to explain why the
failure point should be under the decision boundary zero
whereas above one in Fig. 4. Referring to the predictive
accuracy and adjusting experimental signal features to fur-
ther improve the accuracy accordingly, the predictive results
are able to optimize the transferring process and will ben-
efit the mass production of micro-LEDs and the automated
mass-transfer printing significantly.

V. CONCLUSION
The SVM model employed in this work has been demon-
strated to be able to improve the process of mass-transfer of
micro-LEDs. Here the SVM model is constructed to classify
the pick-up results. The signal features in the pick-up stage,
including the separation speed and the force between the
stamp and the donor substrate, are extracted as key parame-
ters for SVM model building. Then the PSO algorithm was
used to improve the classification, optimizing the cost param-
eter C and the Gaussian kernel function parameter γ . An
85% classification predictive accuracy implies the capability
of SVM model for the optimization of automated mass-
transfer printing process. Thus, a very large database of the
mass-transfer signal features would be able to monitor and
improve the mass-transfer printing process significantly.
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