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Abstract—A gate driving for power devices is a key technology
to further improve switching characteristics. With the help of
digital gate driver IC, the switching behavior of power devices can
be enhanced even under high-speed switching. In this paper, an
evaluation platform for determining the optimal switching pattern
of an active gate drive control is proposed for an inverter circuit. A
high speed optimization system is built up to search for an advan-
tageous switching pattern that reduces total switching loss of two
power devices in an inverter circuit and constrains surge voltage
simultaneously. The proposed online optimization demonstrates its
feasibility for the full-bridge inverter circuit, which is rated at 500 V
with digital active gate drive control. Experimental results show
that the proposed optimization system is able to obtain optimal
switching pattern from 6460 possible combinations of switching
patterns within 15 min, which is 6 times faster than the previous
study. Optimizations can also conducted under different load cur-
rent conditions. Eventually, the obtained optimal pattern yields up
to 42% reduction in the total switching loss when it constrains
surge voltage to minimum compared with the conventional driving
pattern.

Index Terms—Active gate drive, automatic optimization, particle
swarm optimization (PSO), surge voltage, switching loss.

I. INTRODUCTION

P
OWER converter circuits are introduced in a wide range of

applications including managing energy flow and applying

in motor driving. Regardless of power ratings, power devices are

one of the dominant components in power converter circuits. By

virtue of the progress on semiconductor power device [1], [2],

high power density has become feasible because of high-speed

switching operation. In fact, switching transient characteristics
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of power devices has a direct impact on the efficiency and

reliability of power converters. The overall performance of a

power converter is not only dependent on the properties of power

device itself but also on the gate drive control circuit [3]–[5].

Active gate drive techniques were developed to improve the

switching behaviors of semiconductor power devices such as

MOSFETs [6], Si or SiC IGBTs [7], and GaN FETs [8]–[10].

Unlike the conventional gate drive technique that uses a fixed

gate resistor, active gate drive control allows adjustment of the

driving current/voltage to shape the switching trajectories. With

the active gate drive technique, it is possible to manage the

tradeoff between energy loss, device stress, and electromagnetic

interference in the switching transient [11], [12].

As the progress on high-speed and low-latency DSP or FPGA,

digital control circuits are attractive to realize active gate drive

control due to its control flexibility and adaptability [13]–[15].

One programmable gate driver IC proposed in [16] provides

transition control in the gate voltage. Another digital active

gate drive IC with closed loop gate current control is shown

in [17]. A digital active gate drive IC developed in [18] provides

an adjustable switching waveform using full digital control.

However, the high flexibility in the switching pattern provided

by the digital gate drive IC makes the searching for the optimal

switching pattern a challenging task. Manual trial-and-error and

exhaustive search shows no benefits due to high-dimensional

searching space defined by the problem itself. The fact of high

computation cost and time consuming is also reported in [19]

when automatic optimization based on simulated annealing was

applied. A similar issue in determining the gate drive profile

was also addressed in [20]–[22]. A systematic approach to

demonstrate the effect of digital active gate drive waveforms on

an IGBT switching operation was proposed in [20]. As a basis

to develop online pattern optimization, substantial experiments

were conducted to figure out the number of decision variables

that describe the optimal gate waveform. In [21], the searching

time for the optimum gate resistor values is reduced because of

less experimental tests, which were followed by an analysis of

the measured waveforms and losses. In [22], a profiled optimum

gate drive waveform is able to adapt to load current variations

using driver frequency adaption. Moreover, [23] reported that

the resulting optimal pattern is dependent on circuit stray in-

ductance. Different circuit topologies or layouts may result in

variations on optimum switching profile. Until now, the design
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Fig. 1. System diagram for optimizing the switching pattern of the digital active gate drive.

of gate drive waveforms remains a key issue in the application of

digital active gate drive circuits. In particular, more variables are

involved when it is implemented in a practical inverter system

rather than a dedicated testing circuit. To apply this technology

and make use of its advantages to maximum, a general and high

speed optimization system is required [24].

In this paper, an online optimization platform with high-speed

data acquisition and validation of the obtained optimal pattern

is proposed for optimizing the switching pattern for a digital

active gate drive circuit. This optimization platform is identified

to bridge the gap when applying active gate drive IC to an inverter

circuit. It is noted that an optimization result from a dedicated

testing circuit might fail to perform the identical switching be-

havior when applying in an inverter. In addition, the time-varying

output current of inverter also corresponds to different optimal

driving pattern. The proposed online optimization platform is

featured by efficient searching algorithm and the integration

between circuits and evaluation system. Hence, the proposed

optimization platform is regarded as an important preparation

work when looking into the relation between active driving

pattern and switching behaviors. Experiments were performed

with a 500 V, 20 A full-bridge inverter circuit. Specifically, this

system can be used to find the optimized gate drive pattern in less

than 15 min from entirely 6460 possible gate driving patterns.

The results show that surge voltage and switching loss were

reduced simultaneously.

II. SYSTEM CONFIGURATION

A. Full-Bridge Inverter Circuit

The investigated full-bridge inverter consists of four Si-IGBTs

(2MBI150VH-170-50, 1700 V, 150 A) and the inductive load L

as illustrated in Fig. 1. The left leg of Q1 and Q2 is connected

to an active gate driver circuit, respectively, while the right leg

IGBT Q3 and Q4 are driven with conventional gate drive circuits

using a constant gate resistor. The inverter circuit and the driving

pattern for active gate drive IC are controlled with an FPGA.

Fig. 2. Illustrative figure to show the adaptability of gate driving waveform
using the active gate drive IC.

With a focus on left leg Q1 and Q2, the gate signals works

complementary to each other and a deadtime is inserted as a

turn-ON delay of pulsewidth modulation (PWM) operations. Soft

and hard switching are classified depending on the direction of

inductor load current and commutation events as shown in [23].

Among them, two hard switching operations are discussed in

this paper: first, the turn-ON event of Q1 when i > 0 and second,

the turn-ON event of Q2 when i < 0. To evaluate the switching

performance, the total switching loss from Q1 and Q2, and the

surge voltage are considered. As shown in Fig. 1, an iterative

evaluation loop includes updating switching pattern, voltage and

current measurement, and the evaluation of switching behavior.

Each switching pattern and its resulting waveforms are mon-

itored and input to computation system for updating the new

switching pattern.

B. Digital Active Gate Driver

Fig. 2 shows a conceptual figure of the effects when applying

active gate drive technique and a schematic diagram of the

employed gate driver IC. The clock signal in the active gate drive
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Fig. 3. Conceptual figure of switching patterns for gate drive in (a) the
conventional method and (b) an arbitrary method.

IC is set to 50 MHz, and 63 PMOS-NMOS pairs provide the

capability of shaping gate waveforms. Since each driver MOS

transistor can be tuned from 3 to 80 mA. In this way, the peak

driving level 63 can output the maximum rated gate current at

5 A (63 × 80 mA). Therefore, the digital gate drive IC allows

control over the gate current with time intervals as short as 20 ns

and up to 64 levels of drivability. To turn on the power device, the

number of turn-ON PMOS is determined during the switching

transient. The number of turn-ON NMOS is determined to turn

OFF the power device. Given an IGBT turn-OFF operation for

example, the NMOS turn-ON sequence is regarded as a certain

switching pattern, as shown on the top of Fig. 2. This exemplary

switching pattern shapes the gate voltage waveform vge and

results in the corresponding transient behavior, i.e., surge voltage

and switching loss. It is noted that, Fig. 2 is a conceptual figure

to show the adaptability of gate drive waveform using double

pulse testing circuit [1]. The actual optimization platform is

carried out on full-bridge inverter circuit and connected with

active gate drive IC. The switching performance can be managed

with an active gate drive circuit, as the switching characteristics

in each individual switching period can be adjusted whenever for

turn-ON or turn-OFF operation of power devices. In this paper,

considering two hard switching events (Q1 turn-ON operation

and Q2 turn-ON operation), the switching pattern indicates the

PMOS turn-ON sequence for an individual active gate drive IC.

Fig. 3 illustrates the difference between the conventional driving

technique and the active gate drive technique with switching

patterns. In contrast to a constant driving voltage in Fig. 3(a),

also known as the conventional driving pattern, the active gate

drive IC can be configured with an arbitrary pattern, as shown

in Fig. 3(b), which generates the corresponding gate driving

waveform. Hence, the online optimization system is proposed

to determine the most advantageous switching pattern for active

gate drive applications.

C. Data Acquisition System

Currently, it is difficult to derive analytic functions describing

the switching performance in terms of the driving voltage due to

the lack of accurate mathematical models for IGBTs. An online

optimization system is proposed to remove numerous uncer-

tainties. To find out an optimal switching pattern, the on-line

optimization system aims to automatically update trial switching

patterns, instantaneously measure the corresponding transient

behavior, and eventually converge the patterns to the most ad-

vantageous one. However, the optimal gate switching pattern

might vary with operation conditions (e.g., dc voltage and the

load current). Moreover, the case temperature of power devices

will rise along with operation time and cause variations in its

characteristics. Thus, the searching process must be completed

as soon as possible under any circumstances. A high-speed and

real-time data acquisition system is required for an automatic

online optimization system and to ensure that the resulting

waveforms are collected instantaneously for evaluation.

As shown in Fig. 1, the required functionalities for data

acquisition and computation are provided by a PXIe-8880 PC

controller module and PXIe-5162 oscilloscope module from Na-

tional Instruments (NI). All the voltage (vce1, vce2) and current

(ic1, ie2) waveforms are measured at a sampling rate of 1.25 GS/s

and are fed to the optimization system as performance indicators.

The National Instruments LabVIEW platform is used for control

and monitoring. A flowchart of the LabVIEW program is shown

on the left part of Fig. 1. Three main blocks are constructed

in the proposed system: a) NI-SCOPE enables oscilloscope

configuration, b) NI-VISA (Virtual Instrument Software Archi-

tecture interface) provides simple programming for serial data

transmission between instruments, and c) event detection is used

to initiate PWM signals and then starts to determine the trial

pattern. As for evaluation and pattern update, an optimization

algorithm is programmed in a MATLAB script and integrated

into the LabVIEW program. The system carries out each trial

switching pattern every second. Once the trial switching vector

is generated for next implementation, this switching pattern

command will be delivered via NI-VISA to the main FPGA.

Commands or patterns are processed to the transmission port by

passing a queue reference between blocks.

III. OPTIMIZATION

The possible number of switching pattern combinations has

significantly increased by using the digital active gate drive IC.

One must determine the most advantageous switching patterns

for the investigated circuit to fully utilize features provided by

the digital active gate drive IC. Based on the turn-ON time from

the datasheet, 60 time slots are determined in advance to cover

the switching transient period. As a result, there are 6460 possible

switching patterns provided by active gate driver. Due to such

high degrees of freedom for the shape of the switching pattern,

exhaustive search is infeasible for finding optimal pattern. As-

suming the switching pattern is represented by a vector

xm = [xm1, xm2, xm3, ...xmn] (1)

where m is the index of the possible switching vector and n is

the number of elements in one switching vector. As there are

a large number of variables (xm1 to xmn) to be determined,

particle swarm optimization (PSO) [25] is utilized to explore

the high-dimensional searching space due to its properties of

simple implementation and high searching efficiency. Unlike

a trajectory-based algorithm, such as simulated annealing or

tabu search, a single solution is used to describe the exploring

trajectory in the searching space. Therefore, high number of
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Fig. 4. PSO flowchart and actual measurement for evaluation.

iteration is usually required. A population-based algorithm PSO

uses multiple particles/agents, so it is capable of giving a quicker

convergence toward the optimum [26]. From the viewpoint of

online optimization with an inverter circuit, the high efficiency

searching is particularly desired because long time operation

might cause temperature rise and change the characteristics of

the searching space. In addition, the variants of voltage or current

also has impacts on optimal results. The shorter searching time

can increase the feasibility of substantial online optimization

experiments. In PSO, each particle is regarded as a possible

solution in a 60-dimensional space with ranges from 0 to 63

individually. The goal is to reduce switching loss ELoss in (2)

while constraining surge voltage Vsurge in (3). Fig. 2 shows the

definitions of these two evaluation indicators graphically

ELoss = EQ1 + EQ2

=

∫

vce1ic1 dt+

∫

vce2ie2 dt (2)

Vsurge =

{

max(vce2)− Vin, when Q1 turn-on

max(vce1)− Vin, when Q2 turn-on
. (3)

To quantify the performance of the switching behavior, the

objective function is formulated as (4). The evaluated indicators

Vsurge and ELoss are normalized using (5) and (6), respectively,

to prevent an unbalanced term while searching

fobjective = V
′

surge + E
′

Loss (4)

V
′

surge =
Vsurge − Vsurge,min

Vsurge,max − Vsurge,min

(5)

E
′

Loss =
ELoss − ELoss,min

ELoss,max − ELoss,min

. (6)

The subscript max/min indicates the maximum/minimum of

the corresponding quantity. The maximum Vsurge and minimum

ELoss are obtained by applying full constant driving levels

x = [63, 63, 63, ...63]. The minimum Vsurge and maximum

ELoss are obtained by applying low constant driving levels

x = [3, 3, 3, ...3]. The fitness value of each trial switching vec-

tor is calculated using (4). To approach toward better fitness

value, there is motivation, known as velocity in PSO, attracting

particles to move in the searching space. As defined in (7), the

velocity vector is determined from the historical experience

of each particle denoted as pBest and the best in the group

represented as gBest. In order to accelerate convergence, the

inertia weight ω is decreased with each iteration using (9). The

PSO algorithm was implemented to demonstrate the feasibility

of the proposed system at the first place

vmn(k + 1) = ωvmn(k) + c1r1[pBestmn − xmn(k)]

+ c2r2[gBestmn − xmn(k)] (7)

xmn(k + 1) = xmn(k) + vmn(k + 1) (8)

where k is iteration counter, m is the particle counter, n is the

element counter of a particle,ω is the inertia weight parameter, c1
and c2 are acceleration constants, r1 and r2 are uniform random

values in [0, 1], vmn(k) is the velocity of particle m at iteration

k, and xmn(k) is the current position of particle m at iteration k

w = wmax −
wmax − wmin

itermax

× k (9)

where wmax is the maximum inertia weight, wmin is the min-

imum inertia weight, k is current iteration, and itermax is the

maximum number of iteration. Fig. 4 presents the optimization

flowchart including the update of trial switching patterns and

actual measurements for evaluation. Particles would eventually

converge to the optimal solution through iterative update and

adjustment.

IV. EXPERIMENTAL RESULTS

Fig. 5 shows the proposed optimization system and Fig. 6

shows the interface to set the optimization parameters and moni-

tor the resulting switching waveforms. The new trial pattern and

the most advantageous pattern in history during optimization

are also given in Fig. 6. The configuration in Table I is used
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Fig. 5. Picture of the experimental system.

Fig. 6. LabView user interface.

TABLE I
PARAMETERS FOR CIRCUIT EXPERIMENTS

in the actual experiment. In the searching process, each eval-

uation loop generates a trial switching pattern every 1 s, then

measures the resulting waveforms, and computes the next trial

switching pattern. At the end, the total consuming time is less

than 15 min to obtain the optimal switching pattern. Compared

to the previous research [19], searching time is shorten from

1.5 h to 15 min, which is 6 times faster and becomes beneficial

to conduct many times of optimization. Though the investi-

gated circuit and the number decision variables are different,

the reduction of searching time helps substantial optimizations

under various current conditions and increases efficiency. Three

certain switching conditions are demonstrated with conventional

and optimal switching patterns: first, turn-ON event of Q1 when

i = 8 A, second, turn-ON event of Q2 when i = −8 A, and

third, different load current conditions when i = 2.5 A and

i = 5 A. Multiple optimization results are presented to ensure

Fig. 7. Convergence history.

TABLE II
COMPARISON OF CONVENTIONAL SWITCHING PATTERN AND OPTIMAL

SWITCHING PATTERN FOR Q1 TURN-ON EVENT WHEN i = 8 A

the searching capability under various PWM operations of an

inverter circuit. In other words, for a sinusoidal output current

of an inverter, the proposed platform is able to collect all the

proper switching patterns corresponding to each load current

condition. In addition, all of the optimizations are carried out in

the actual inverter circuit rather than a testing circuit. Individual

optimization is carried out for each case and the results are

presented as below.

A. Turn-ON Event of Q1 When i = 8 A

Fig. 7 shows the convergence history and validates the effec-

tiveness of the proposed online optimization system. Hereby, to

compare with conventional driving technique, switching wave-

forms using constant driving level 63 and constant driving level

3 are given in Fig. 8(a) and (b), respectively. Fig. 8(c) shows

the switching waveforms when applying the optimal switching

pattern. The gate voltage for Q1 is shaped using the optimized

switching pattern. The surge voltage of vce2 is suppressed to 1 V,

which is nearly the minimum surge voltage as using low con-

stant driving level 3. Fig. 9 shows the corresponding switching

loss of each driving pattern. Most of the switching losses are

derived from Q1 due to hard-switching operation. The duration

of switching transient has great impact on the switching loss.

Therefore, constant driving level 3 defined the maximum ELoss

and minimum Vsurge, while constant driving level 63 defined

the maximum Vsurge and minimum ELoss. The tradeoff relation

between Vsurge and ELoss is given in Table II. Compared to

switching performance of constant driving level 3 where the

similar minimum surge voltage has been achieved, the optimal

pattern yields up to 42% reduction in the total switching loss.

B. Turn-ON Event of Q2 When i = −8 A

Switching pattern optimization was also carried out for the

turn-ON event of Q2 when i<0. The conventional driving pattern
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Fig. 8. Implementation of two different driving patterns for Q1 turn-ON event when i = 8 A. (a) Constant driving level 63. (b) Constant driving level 3.
(c) Optimal switching pattern.

Fig. 9. Switching loss breakdown for Q1 turn-ON event when i= 8 A. (a) Constant driving level 63. (b) Constant driving level 3. (c) Optimal switching pattern.

Fig. 10. Implementation of two different driving patterns for Q2 turn-ON event i=−8 A. (a) Constant driving level 63. (b) Constant driving level 3. (c) Optimal
switching pattern.
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Fig. 11. Switching loss breakdown for Q2 turn-ON event when i = −8 A. (a) Constant driving level 63. (b) Constant driving level 3. (c) Optimal switching
pattern.

Fig. 12. Demonstration of (a) conventional switching results with full driving level and (b) optimization results under different load currents when i= 2.5 A and
i = 5 A. (a) Conventional switching pattern. (b) Optimal switching pattern.

TABLE III
COMPARISON OF CONVENTIONAL SWITCHING PATTERN AND OPTIMAL

SWITCHING PATTERN FOR Q2 TURN-ON EVENT WHEN i = −8 A

was applied as shown in Fig. 10(a) with constant driving level 63

and in Fig. 10(b) with constant driving level 3. Fig. 10(a) shows

that there is a 324 V vce1 surge voltage. With the optimized

switching pattern shown in Fig. 10(c), Q2 gate voltage is shaped

according to the optimal switching pattern and 9 V of vce1 surge

voltage is obtained. Fig. 11 shows the corresponding switching

loss of each driving pattern. Most of the switching losses are

derived from Q2 due to hard-switching operation. The tradeoff

relation between Vsurge and ELoss is also given in Table III. The

optimal pattern strikes a fine balance where Vsurge is suppressed

to 1.8% and ELoss is also reduced to 4.71 mJ compared to

conventional driving.

C. Different Load Current Conditions

To validate the capability of collecting optimal driving pat-

terns under different load current conditions, optimization re-

sults are demonstrated in Fig. 12 when load current i = 2.5 A

and i = 5 A. Fig. 12(a) shows the variance of switching tran-

sient under different load current conditions. With identical full

driving level, waveforms of load current i= 5 A presents higher

surge voltage in vce2 and higher surge current in ic1. Though

the searching space alters with circuit operations, the proposed

system can perform optimization regardless of the load current

conditions. It can be observed from Fig. 12(b) that surge voltage

in vce2, surge current in ic1, and reverse recovery current of ie2
are successfully constrained when applying optimal pattern. In

addition, from Fig. 12(b), optimal patterns have some features
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in common. At the first 120 ns of pattern profile, there are high

driving levels. Then, it is followed by low driving level or even

zero level. Generally, the obtained optimal patterns have this

characteristic. Hence, it is deduced that the certain shape of

profile is critical to suppress the surge voltage.

V. CONCLUSION

This paper has realized an optimization platform to search

the optimal switching pattern for a full-bridge inverter circuit

with a digital active gate driver. In the case of using the digital

active gate driver, the individual controllability of the driving

waveforms results in an extremely large number of possible

switching patterns. To extract the maximum benefit from the

digital active gate drive control, an optimization system that

searches for the proper switching pattern is proposed. The pro-

posed optimization platform is identified to assist product devel-

opment to fully apply the active gate drive IC in actual inverter

circuit.

A 500 V, 20 A full-bride inverter circuit is implemented and

served as an investigated circuit for optimal switching pattern.

In addition, the proposed optimization system is able to obtain

optimal switching pattern from 6460 possible combinations of

switching patterns within 15 min. Eventually, the obtained opti-

mal pattern yields up to 42% reduction in the total switching loss

when it constrains surge voltage to minimum compared with the

conventional driving pattern.
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