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. ABSTRACT

The theory _of symbolic mati:ix‘de_rivatiyes is conmnected to
the theory of different;'.als. It is shown that s:}mbolic' matrix de-
rivatives are nothing but linear trénsformati_ons of the represen--
tations of certain differeﬁtials. Representations of various dif-
ferential rules are obtained and compared withl.those "c;]:')tained by
various- authors. 4s illustrations, particular attentio; is given
to the product rule. The theory of monotone operators is use.d to
find the optimal solutions of various o;ﬁtimization ;Jroblems in
statistics. Some algebraic results which might be of interest- by
themselves are obtained to prove the main results. Optimal control

models of regression experiments are.presented to illustrate optimi-

zation problems with solutions on the boundary of the region of

concern. : s i 'b

iid.
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' CHAPTER ZERO

Introduction

Symbolic matrix .derivatives emerge as means to handle
rstatistical and mathematical problems when the variables in a
ﬁypothesized model‘ are many. 4As modern science and technology'
advance, the need to take more factors thaﬁ'oﬁé'into consideration ®
while setting up any mathematical or -statistical model becomes .
increasingly pronounced. Multivariate analysis, originated with the
paper 6£ Hotelling f1931, sée, e.g., Anderson (1958)), has become
the ceatral and one of the most important branches of statistics and
data analysis. Though multivariate models are usvally simple in.
form, the éomputation of test statistics and estimates is ofﬁen dif-
ficult. Estimation, for inmstance, is usu#lly confined to either
maximum likelihood or Bayesian methods depending, partially, on
one's‘philosophical belief. The maximum likelihcod estimates are
values which maximize a given likelihood function. The maximum
likelihood methqd is more familiar to the practitioners in the field
presumably because Bayesian methods are more recent and less known,
~and because it is employed in the classical book by Anderson (1938},

or more recently, in the book by Kshirsagar {1972). The maximum_

likelihood method has the additional advantage that it is confected

s
e TN

difectly to ﬁypothesis testing. A third and the oldestvmethod,mtpé\
least square method,.which'is préminent in the theory of liﬁeér
models, ié equivalent to the maximum likelihood method under the
normal theory. This might be another reason for the dominance of

the maximum likelihood method in multivariate analvsis.
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The ﬁeed fdr_matfix'differentiation Gaé pointed out in

- the paper by Dwyer and MacPhail (1948). In this papér, the authors
define two kinds of derivatives symbolically, and apply.it to the
problem of least'Equares, cangnical corre;ation§ and orthogonal re-
grassion. They also give two Fables to illustrate various deriva-
tives of real-valued functions with matrix variables or vice versa.
Following the above approach, Dwyer (19§7) explores further appli-
~cations of .matrix derivaﬁivegxagd\worgftout various formulée which
are useful in multivariate énalysigfﬂﬁThe connection between.matrix
derivatives and Jacobians was -examimed. Results similér to those of
Deemé? and Olkin (1851) koriginaneﬁ by P.L.-Hsu) are also obtaine&.
Later om, ifacy and-Dwyer (1969) consider the derivatives éf vectors
with respect to vectors and use it to represent dgrivatives of
matrix-valued functioms with regpect to matrices. This also leads
to the second order derivatives of real-valued functioms with res-
pect to vectors or matrices—" They give several applications in
multivariate éﬁalysis with an attempt-to justify that the critical
values of the matrix-valued functions they find give the absolute
minima (maxima). Following these presentations, Tracy aad Siagh
(1972) and Singh (197é) generalize certain results to the case of
partitioéed matrices. \I%/ﬁﬂhx\periﬁd between the ﬁublication of

these papers, the nee& fo; matrix diffe;entiation is- now well

recognized and is referred to by Anderson (1958), Rao (1973) and
Gravbill(1969).

-

Econometricians also need ‘matrix differemtiation in th
development of their theory. For example, Neudecker wrote three

papers in the pefiod_ of 1967 to 1969. 1In the investigation of
s

£



matrix differentiation, he uses the differential notions algebrai-
cally. In the 1969 paper, he also puts certain elemeats of a matrix
in vector form to represent the derivatives of matrix-valued func-

tions of matrix variables.

Th; pap;r by Vetter in 1970 is worth mentioning. Iﬁ the
paper, he derives a chain rule and differential rules for matrix
product and Kronecker product and gives several exaﬁples to illus-
trate the applications of his differential rules. His work is aimed
at the applications of matrix differentiatioa to system and coatrol
theory (see, for examples, Athans and Schwepée_(l965), Athans’ and
Tse (1967) and Athans "(1967)). In 1973, McDonald and‘Swdminath.'an
preseﬂﬁé@ a system of matrix cglculus and labelled them as McD.-S.
calculus. In thei£ paper, the§ give‘ their own definit%ons of
matrix derivatives aqd derive a chain rule amd various product
rules. Later, MacRae (1974), HcDBnald (1976), Swamirathan (1976)
and Beﬁtler and Lee (1975, 1978) all %rv to formulate anq devéiop

matrix derivatives: further in this direction’

However, while the techniques of matrix derivatives are
applied’ to‘ various 0ptimizatigﬁ problems in statistics or other
disciplines such as econometrics, therg\}s a lack of justification
for the optimality of the solutions obtained by using matrix derivd-
‘tives. The formulae given by various authors are long, complicated
and difficult to remember. Another disadvantage with the existing
methods is that there is no unity-in the matrix calculus developed
by wvarious authors. -Each researcher has his own basic definitions

and formulae. Sucf a situation could lead to confusion and jeopar-



dize thelﬁeﬁelopment, undersﬁandiﬁg aud.apliéations\pf the theory.
One purpose of ;his'dissertétiou is .to connect the theory of matrix
calculus tdlthe familiar ﬁheorg of.multidimgnsional ca;éulus (see,
e.g., Apostal (1957) and Fleming {(1977)) and_iinéar glgebra which
can be treated\ and referred to as  finite dimensionmal functional .
ana;ysis. We shall show that the symbolic matrix déri;atiées_men-
tioned above are agothing but linear transformations of thg_repré;enJ
tations of certain‘differentials. The theory of monotoné oggfatori
developed in the sixties "(see, fbr example, Opial (1967)) will ‘be
_used to find the qpéimqi soiutious of various optimization préﬁlems
in statistics (Wong (to appear), Wong and Wong (19%9, to aggegr)).
We obtain some new algebraic results which arq.interesting iﬁ’their
own right. Optimal control models of regréssion experiments related
to Chang (1979), Dorogovcev (1971) and Kiefer (1974) are presented
here to illustraté optimization problems with sﬁlutidns on the
boundéry of the region of concern. A ﬁroblem raised in Chang and

Wong (1979) in this connection is solved. ;

Chapter one will be devoted to matrix differentials and
.its representations. Chapter two will be devoted to the applica-
tions of differentials to the maximum likelihoo& theory and certain.
other optimizatibn problems in statistics. Chapter Fhree will be
dévoted to the solutions of certain-problems of optimal éon;fol of

a regression experiment.

For the sake of completemess, we include certain related
results of Dr. Chi Song Wong, some of which are published and some

to be published.

&
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Representations of Differeptials

‘-13;-_

1.1 Prelimiparies

Let L, L I‘Z’ e ey, I.:1 be vector spaces over the real

1!
_ . -
field R. Recall that the product ML; of L;"s is the linear space Q

of all functions (xi) on {1, 2, ..., n} such that x, eL,i= 1;
2, . .n. Each Li will be considered as a2 linear.subspace of
Q by i&quing each x. ¢ L, with :fi(.\:i).'in Q, where f. is

the isomorphisrm of I.i into Q such t'.hat (fi(xi))(j) =0 if j #1i,

. = . . - . - :
fi(xi)(l) X, T];us Q }s “ﬁ'h& direct sum I.1 =] I.2 g ., .01 of

o

Ly, Ly, .. ., L. Let A be 2 fuaction of Q into L. A\ is said to

44

pd

be multilinear (hilinear when 2=2) if A is coordinatewise linear on

each I‘i’ i.e., A is lipesr in x,.' when all other xk's are fixed.

—

A((x;)) will be written as _x, Axy AL LA X, -

Let I be a nomempty fipite set. R will denote the family

of all functions of I into R and will be equipped with the uswal

pointwise scalar multiplication and addition. RI is a2 finite
dimensional vector space over R. When I = {1, 2, ..., o} x
{1, 2, . .- ., o}, RI 1s the linear space M of all mxa matrices

(over R). When n = 1, me# will be danoted by'Rm. In gereral, f in

R X5 s called 2 sx X matrix. {u], _ I(L)’ {ug j}j ¢ 1(L))

CHAPTER ONE - -

Iy *



ﬁill;be bases of L, L; respectively. Let x € L. Then x = Exiui for

_somé'unique xi'é in R. The function [x] = {xi} on I(L) is called

the linear representation of x with respect to {ui}ﬂ

o+

‘Theorem 1.1.1. [ ] above is an isomorphism of L onto rI(L)

Q will be equipped with the basis fug idj e I(L,),

£=1, 2,3 - - -, 0. . Suppose that A is multilinear. Then there

exists a function [A] = (a.

.. . ) of the Cartesian
17.]1’-]271 - - "J .

n

23 S.

N .
product I = I(L)x I(LE) into R such that for any u i

"£=1

Aw, . A...Au . = . u..

u., . 2 a, . .
1:31 2:.]2 n}Jn lSI(L) 1’.]1?.]2’ - ',le

[A] is called the linear representation of A (with respect to the

given bases).

Theorem 1:1.2. [ ] above is an isomorphism of the family of all

multilinear functiens of Q into L onto RI.

Suppose that o = 1. Then A Sgi(LI, L), i.e. A is a linear

IxJ J»K

transformation of I.1 into L. For any f EIR , 2 €R ® , the

(matrixjproduct fg of f,g is defined as an element in RI x K

such

that each’

(F2)((1,5)) = Z £((i,5))s((,K)).

jed



Theorem 1.1.3.
N

(&) (M1 = (8] [x], =6 15 A 20, A,

{b) For any > I(T.,I.z) and 'Az € I(Ll,L) ,
. N :

[/\10 1\2] = [Al] [1\2],
where o is the composition for functions.

(e [ ] is an isomorphism of the linear - space Qf(Ll,L) onto
RI(L) X I(LI}. Hence RI x 1 is an algebra which is isomorphic

to S(L,1).

Theorem 1.1.4. Let

(£,8) = I £(i)g(i), ¢, g & R .
iel

Thez ( ,‘) is 2n inner product and RI with ( , ) is a Hilbert space.
Every Hilbert space will be equipped with an orthonormal °

) ‘ . I.
basis. The usual orthonormal basis for R~ is {ei}:

e (1) 56, , 4,5 ¢ 1,

—

whers 5ij’s are the Kronmecker signs. When I.= J x J, {, ) above is

called the trace inner product for RI and the norm induced by ( , )

is called the trace norm for R,



1,2 Differentials

Let L,M be nontrivial finite dimensiomal Hilbert spaces

(over R).. Let {ui}i ¢ I(L) be an orthonormal basis of L. Let C be

an open set of L and f be a function of C into M. Let x ¢ %. f is

said to be differentiable at x and has differential df(x) if there

exists a line;r tzansformation df(x) ¢ L(L,%) such that
Iim f(x + k) - £(x) - dfF{x) (k)
h+o Lhil

=0 (1) .

Here .ft is.the corm irduced by the inmer product in L. Let

: _ . . . -
{vj}jSI(M) be an o;tponormal basis of M. Then f(x) ng(H) fj(x)vj

for some unique fj(x),s. f(x) will be deroted by (fj(x)) apd £ will

8?.(3} wil; dencte

be depoted by (£f.).
T <q
’ axi - ‘

iim fj(x S tui) - fj(x) (

£R)
T*o dt ! '

and is called the partial derivative of fi at the point x in the

AN

direction of u.. Suppose that df(x) exists. Then

(@) (u),v;) = 25

_axi
and so thé represéntatién [df(x)] of d&(x) is C
3£, (x) 7
[4£()] =( )(j,i) £ 10D x I(L) -

9% .
l .



Let A be a2 subset of C. We say that £ € A(l) if all partial deri-

-

éf.(x)

" vatives i _of‘ £ are contimuous for all x/€ X £ ¢ ACZ) if
- 'xi . . ’ »
" (1) 2 . -
df ¢ A*"Y. d(df) will be denoted by d7f.

1.3 Differential Rules

Iz the following, we shall™present a series of rules
which are direct gemeralizations of the corresponding ones in real
variable calculus. With the usual calculus, we could prove easily

all of the following rules algebraically.

Theorem 1.3.1.. (Linear rule). Let L,M be nontrivial finite dimen-
4 .

sional Hilbert spaces. Let A be a subset of L, £,g be fuactioas

into M such that f,g ¢ A(l). Then, for evervy x ¢ 4, dx ¢ L, o,8 'R,

’, d(ef + Bg)(x)(dx) = adf(x)(dx) + Bdg{x)(dx).

Theorem 1.3.2. (Chain rule). Let L,M,E be pontrivial finite dimen-

siopal Hilbert spaces. Let A be 2 subset of L,B-be a subset of
M,2,f. be functions intc H and M respectively such that f ¢ A(l)

¥

g ¢ B(l). Thern, for every dx ¢ L, x ¢ Awith v = £(3) ¢ B,

d(g(£(x)))(dx) = dg(y)(df(x)(dx)).



74

-

Theorem 1.3.3. (Rule for ligear funcr.i‘ons).' Let L,M be nontrivial
finite dimensional Hilbert spaces and f be a linear transformation
of L intb H.- "_Then, for evefy x, dx ¢ L, . §

M ) [ - - -

-
-

(@) = f@. | .

Let L, Ll’ Ly, « -4 Ln be montrivial finite dimensional

Hilbert - spaces, Q = L, ®'L2 & .- . 6Ln, A Q, f be a 'function

into L such that fe A(l).- Let x = (xil) be an element of the domain

of £,

i

8i(u) = f((x1$ LI | xi_l’ u, xi+1’ L xﬂ) )'

The differential of 8; at u = X, will be denoted by 8\: f(x).
, X,

Theorem 1.3.4. (Leibniz's rule). Let L, L, ..., L Dbe non-

trivial finite dimensional Hilbert spaces. let A<Q=

inap
[

~—
1t

]:.1 & Lze. .. @ Ln) and f be a fuaction imto L such that

A(l). Then, for every x = (xi) £ 4, dx = (dxi) s Q,

H
[ 4]

, n
Cdf(x) (dx) = ‘Z 8x f(x) (dxi).

i=1 71

The follovwing result follows <£rom Theorems 1.3.3 and

1.3.4.

-10
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Theorem 1.3.5. (Rule for multilinear functioms). Let L, Ly

. I‘u be- nontrivial finite dimensional Hilbert spaces. Let

. z .
A be a multilipear function of Q= 11 L, into L. Then for every

i=1
(=), (ax;) € Q,
o
d(x AN .. Ax ) ((éx,)) =-i§1 XA L f\JCi_ll\dxif\xi:+lj\ e M
The' following rule follows from Theorems 1.3.2 and 1.3.5.
Theorem 1.3.“6. (Multivariate product rule). Let ¥, I"l’ .o ?"I‘n

be noatrivial finite dimensional Hilbert spaces. ILet A be a multi-

. o :
linear fuactiom of Q = I Li into L. Let A< Y and £; be functions
‘ | i=1

3

into L. such that fi g A(l), i=1,2, ..., 0. Then, for every

. n
d(fl(x)/\'. - AM_(x))(dx) = £ fl(:c)/\fz(x)f& C o AEg L (RIA(AE, (x)
) i=1 : . .

(dx)')Afi+1(x)A . /\fu(:-:).

The following result is 2 special casa of Theorem 1.3.56.

Theorem 1.3.7. (Product rule). In Theorem 1.3.6 , suppose that

n =2. Then

dfl(x)/\fz(x)(dx) = dfl(x) (dx)/\fz(x) * fl(:§)Adf2(x)(dx).



~ We shall now generalize the usual Hadamard ﬁroduct * and
the Kronecker product @ for matrices: * is nothing but the point-
.

; @ is. 4 function of R KxL

IxJ xR into

wise lproduct for R

R(I xX)x JxL) IxJ XKxL

such that for amy f £ R + B ER x , each

(£ ® &) (((1,3),(k,2))) = (£(1,5)g(k,2)).

T

* and @ are obviocusly -£>ilinear. The products (£ and @ defined in
Singh (1972), Tracy and ‘Singh (1972); the product 3 defined in
lKhatri and Rao (1968):and the product ** defined in Swaminathan
{1976) are all bilinear. The usual matrix product, imner product
énd mauy others are also bilinéar. So the ayove product rule can

be applied to all of them.

1.4 Quadratic Differential Forms

Let L be a nontrivial finite dimensiomal Hilbert spate

“and A be an open subset of L. Let f besé real-valued function such

; o |
that f ¢ A(“)l Let X ¢ A. We can calculate d7f(x) from df(x}.

‘However, as we shall see in Chapter Two, it is more coavenient to

calculate dzf(x) through the quadratic form Q(T) of T = dzf(x}:

QT (dx) = (dx, T(dx)) , dx € L.

Theorem lﬂé;l. Let" L be a nontrivial finite dimemsional Hilbert

space, A be an open subset of L. Let £ be a real-valued function

such that f ¢ A(z). Let {ui}iEI(L) be an orthonormal basis. for L.

Let x ¢ 4, dx ¢ L. Then
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1.3 Representations .

2 - . .
) . [dzf(x)]'= (é_ﬁﬁil) and [dzf(x)] is symmetric,
axiaxj .

20" '
L) gegores 2 2 -
dx.9x. ‘ ax. = 9x.
LT i J

where aach

() Q) () = 8, (d£(x) (@) (ax).

[dzf(x)] above is called the Hessian matrix qf,f at x with

. respect to {ui}.

Eheérem 1.5.1 (Linear rule). In Theorenm 1.3.1;
[eCef + Bg) ()] = afdz(x)] + Bldg(x)],

i.e.,

3

[d(az + Bg) (x)(dx)] = a[df(x)][ax] + Bldg(x)][dx].

VTheorem 1.5.2. (Chaiz rule}. In Theorem 1.3.2,

[dg(£(x))] = {dg(y)][d£(x)],

[dg(£(x))(dx)] = [dg(v)l[df(x)][dX]o_

-‘:i" -

13
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Theorem 1.5.3. (Rule for linear fﬁnctionﬁ)_. In Theorem 1.3.3,

-~

- [d£(x)] = [£],
il.a,,

fag() ()] = [fi[dx]“-'

Théorem.l.s,.ﬁ. (Leibnié's rule). Iz Theorem 1.3.4,

m.mmwNmm_;“.- f_""m;w" ]”mfdf($)JTE"IIBx:fo)Jjw”m""m”_m

1

: a
(a partitiomed I(L) x (T I(I‘i-)) matrix), i.e.,
i=1 ’

(3, £(x)] [ax,]. -

. a
Cldfx)(dx)] = Z
' i=1 i

1

Theorem 1.5.5. (Rule for multilinear fuactions). Iz Theorem 1.3.5,

[d(xIAxZA...Axn)] = [ xlﬂsz...Axi_lﬂ.ﬂxi+1A...Axn]]

a _ .
(a partitioned I(L) x (0T I(I.i)) matrix), i.e.,
i=1

’ o
CldGe Ao AR J(dx)] = 2 [xA L Ax

: Z A.Axi+1A...Axu][dxi]. -

1

.14
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]

Theorem 1.5.6. (Hultivariatef‘product rule). Io 'Tﬁeorem 1.3.6;'

o .
[d(fl(x)Afz(x)A...Afn(x))] = 151 [fl(x)A.f:Afi_l(x)A.ﬁfi+1(x) |

AL ‘.I\fn(!{) ] [dfi(x) ] H

- . P
[&(fl(x)Afz(x)A...Afn(x))(dx)J = 151 [fl(x)A...Afi_l(x)ﬁﬁAfiéi(gz

.A...Afﬁ(x)][dfi(X)][dx].

Theorem 1.5.7. (Product rule). Ia Theorem 1.3.7,

208, (A, (] = [A5,()](6E; ()] + (£, (A 165, ()],

(405178 (x) (@0)] = [.A%, () 1148, (0 T [ex] + (£ (xIA 1 [eg, () ] [ax) .

Let us use the term "theory of differentials” to denote
the usual theory:of'differentials and.the related topics in linear
‘algebra, and use the term "theory of matrix derivatives" to desote
:hosé results oo wmatrix derivatives obtaimed in various papers in
statistics, such as Dwyer énd MacPhail (1948), Dwyer (1967), Dwver
énd_ Tracy t1969), - Neudecker (1967, 1968, 1965), Vetter (1970),
MacDonald and Swamin;than (1973), ﬁécRae“(197&1. Some.;esults in
the theory of differentials have been présented'in section 1.1.1 -
1.5.7. Host of theée reéults are reformulations of familiar results
from umdergraduate analysis (Theorem 1.3.5 is exercise 2-14 of

Spivak (1965))



. /

-

ail

and-- " are presentea in suck a way that all of thenm appear &o

be trivial. Our main comtsiburion he'e 1s To coonect the cneory of

differentials ho the theory of matrlx dc:1vat1ves. Such 2 connec-

tien justifiss, corzects, siaplifies and generalizas the theory of

matrix- derivatives. As an illustration, we shall pay Darticular -

attention to Theorem 1.5.7. B

Lezma 1.5.8. Let A be a bilinear fusction of M x ¥ into

."’1_‘“1 2%y

RIxJ. Let [A] = (a(?’é) )= (a

(£,3),(k,2) (r s),((4,5), (k. g))) be the re-

preseatation of A with respect to the usual basis. Then

. (r 5) - = e 3 o wal - -y

(1) LA, (x, Z) = o:iéjkogs, if A is the usual matrix pro
' duct with a_=p
: 1727

. . (1 1) —_ ~ ) 5 : 2 - - 4 v -

(ii) (1,3} (k,8) = oikojef if A is the trace izper pro
duce . .
(For simplicity, we shall write a,. 3 (1,1) )

(£,3),(k,&) *°F *(i,3),(x,2)-

L(r,s) . s e ' .
(ii1) 305,k 0) = rk°£séir°sj’:l‘ A is the Hadamard product.

(iV) . (—'ak') (J -')_ =

b

- ~ -~ Er i - : -:'
(l,J) (k Z) o"'ojj'ékkfoza’a XA is 5he Kronecka

product.

16



Proof.

(1)

.2,...,nﬂ?€

respectively.

Let

=1, 2,.

Llet

usual basis of M

m.X It

1

So

o

On the other handg,

B 34

So

6riéjkGZS

(ii) Let {e(i’j)} i=1, 2,..

basis of M Then
mx

ey, 5=,
ses By

{g
)

z

L,s

17

2,000y my, 371, 2,000 0y, (g0 f)y ey

‘be the usual ‘bases of M,

and Mn c o
1

1 1% %2

(r,S)}

, =1, 2,..., mi;'s=1, 2,...,,:12 be the

Then

ilrys) (r,S)..- . T
(1,1) (k,&)8 :

,(z,8) (r s)
(1,0, 0k, )8 o

2

5 (7,8) 5
31,1, (x, 4) ra s

2

(2, 5)
(1,1) (k,2)"

(l,J) (k,7)

an uB

6. 06

i jk§a5 :

,(T:8)
(1,J)(k Z).

., m, j=1, 2,..., & be the usual



(i,3),(k,2)
1, (k,2) T et
- (1,3) (k,2)
Q?B ) ;BJ ©ap

1]

™ %10%58%a%8

aikéjﬁ‘

(1ii). "Lat (e®:3)y 421, 2,... @, i=1, 2,..., 0 be the usual

. basis‘gf men' Then

e(trd) « e(k’@)as - etéé;le(géz)

1]

%10 8%a8,
-agd

(1,5) « (&8, _ (r,s) (r,s)
(e e eg T T30k, of

r,s

(z,s)
3057 3) (k,2)%re®sp”

N

(z,s) P
2017330k, 2) = %1855%:0s

(iv)  ler fel3y =1, 2,..., m, 371, 2,...

) A ' L] En .
2:\"7 mz) J=17 2!"'7 nz and'{ggi":k"%} "=

-

@ 5 i"=1, 2,... 31, E"=1, 2,... 2, be the usual basis of M

m,Xxn

272

”
2,.04, 05}) respectively. Then

-
4

P

i"=1, 2,.

o, {f(k’e)} i=1

¥

cmy, KU=1, 2,0

T -

2% 8y

- ~

b

H‘ " and R({lr 27-°-rm1 } X ({1’2:---1m2}) X ({11 25-"331} x‘{lj

18 .
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(1,3) (£,2)
.(e ® f i )((ir,kf),(j.!,zv))

- z a(in',k'nl,(jn,z-!) (in'kn)’(jr;,zn
G7EM, G702 B, k), TG, 2M)
= A0k G20)
(1,3)(k,2)
and

(1,7} o (k2D =5,
R I I IR I IR P EL IS AR I

The required result follows. qg.e.d.

Before presenting the representations of the differentials

of various matrix products, we shall rewrite Theorem 1.5.7 in such

a2 form that Lemma 1..5.8

can readily be used. Let

2]
¢
]

sRY, A@B=( 3z a,. . b L)
5ol Gyrdgs---0d )7 34

H
bt
"
!
=4
"
L]
-
H
—t
+)

11 - Y3y T2,
221
=1, 2 with by =1, B, =-1. Thea B @ a

-~
2
[
3
8]
1
V=)
(e7)
1}
o
o
Ly

P
(g}
.
o
s
X
.
n
—
[
1l
)
Fo



¢y = -8,'c21 = -4 and €y = 15. Also B @ A= (dik) with dll = -2

N

d12 = -2, d21 = -2, d22 =1. B (i) A and B 2) A could be put into

matrix form as follows:

;=4 =8
BJA= !
v=4 =5
- and
-2 -2
B2iA =
=2 1

_ IiXIz I3xI4
Lemma 1.5.9. Let A Be 2 ‘§ilinear functipn of R x R

I.xI

I.xI
"2 3¢ R34 7pep

iato ®1% . Let aegr ! 2

[AAJ:A@MI, [. A B] = [A] BB.

Pfoof.

I xI

b

Let i% = {dki , f% = {ers},'£3= {g"'] be the usual bases of R . ?

I3xIa ‘

'R agquIXJ respectively. Write

(u,v)

(Al = (a(u,v),(k,Z),(r,s)) ) (a(k,i)’(r’s))’

; ke rs
A= 2 a,.d"™, B= 3 b a s
k2 ‘kl r,s IS

where 2y brs &R. Then

20
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RS 3 kD, s\ *
o dYEAB = r?s b (47 Ae™) :
_ (u V)
=z brs 2 3kg), (s, SE
_ 4L, v uv
= I (3 b Jg .
v e s2(k,£), (z, s) &
So
. _ (u,v)
[-AB]--_(rfs Prs?(k.g), (r,s)’ ((u v), (k,&))
= [A] @s.
Similarly,
AneS = 3 akn[dkg A ers]
k,g
- (u,v) uv
T Wl EDACOL
= 2 (X a 2 {8 | g™’
LI. v k 2 L.Q (k,c,) (r,S)
So )
[a7.] = ( 2 s 2(8:7)

ke2(k, 2, (2,80 ((u,v), (k,&))

=1 @ [A]- _ | ' ‘q.e.d.

Theorem 1.5.10.  (Product rule). In Theorem 1.5.7, suppose that

I.xI
, L1 =R , L2 =R 3 4, L= RIXJ. Then with the usuval bases,

[8(£, AL, G = (1N @ £, (a5, (0] + (5,(0) 2 [A])

—

[a£, ()],
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We close this section with a series of corollaries showing "

certain specializations of Theorem 1.5.10. The usual basas for.RI's

~ will be assumed.

Corollary 1.5.11. (Imner product rule). In Theorem 1.5.10, sup-

pose that A is the trace inner product. (Whence LI = L2 and L = R.)
\ Then
[d(fl(X)'fz(x))] = £ ([, (x)] + £,(x){df, (x)].
Proof.

_ Let Y ¢ Ll' By Lemma 1.5.8,

NQT = (2 7,68,5,)

<,
=T .
similarly,
T = (I 7,:6,6.,) )
,]
= ()
= 1.

Therefore, by Theorem 1.5.10,

[d(£, 3£, (=) = £, (0 [dE,(x)] + fztx)[dfl(x)]. g.e.d.



] ‘(. .
" an equivalent version of corollary 1.5.11 can be found in

Bentler and Lee (1978).

Corollary 1.5.12. ° (Matrix product rule). 'In Theorem 1.5.10, sup-

pose that A is the matrix product on Howm Y, Then

1% 1%,

"

LEEEEN1= A, 6 EHENIRLE] =+ (5@ 6 1)

[dfz(x)]'

Let Y ¢ Hm VAR | . Then by Lemma 1.5.8,

o]

©

>
n

(sz Ykisriajkais)

(Yjséjf)

I ¢ I,

Ty

[}
®
L
-
—
I

=(Z Z,.6..6..6,)
i3 ij7ei7ikes

1l

(2867

Z Q9 Inz. o
So by Theorem 1.5.1b,
(45,5 GN] = (I @ (5NN ] + (£,(x) ® T,

[af,(x)].
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An equivalent version of corollary 1.5.12 can be found

in McDonald and Swaminathan (1973);.

2}
1 i I
For any Ae¢RJ, BeR _, the Hadamard product A *j B

o
O, I

. (or write as B*jA) is defined as the element in _R]'"'1 * such that

A*, B=(

b
i %

).

Lpdprsess 1 prigdsggse-on
For exdﬁple, let
I = {52} x 1,2}, I, = {1,2} x {1,2,3},

leI

- =2
= (01,5), (x,2)) € R

with

S (k,2) T RIKG

iy T el
lThen
I.xI

D ¥ €= ((i+5)(ijke)). e R 1 2

"and can be written as tﬁe following &4 x 6 matrix by arranging the

indices of the rows and columns of D *1 C in lexicographical order:



x2 2x3 "2x2 2x&4 2%6

f+ ]
B
—
(48]
"

6 x 1 5x2 . 6x3 6x2  6xb 6x6
6 x1 _ .6 x 2 6 x 3 b x i 6. x4 8 x6

16 x1 166x2 16x3 16 2 16 x & 16 x 6

2 & 6 4 5 m
6 12 18 12 2% 36
6 12 18 12 2% 36
16 32 48 32 6k 96

Corollary 1.5.13. (Hadamard 'produét rule). In Theorem 1.5.10,

suppose that A is the Hadamard product on men X ﬂmxn‘ Then

£,00%, [¢6, (0] + £, *,[d5,G0)],

[aCe; Goy*e, (x))]

.

[a(g, ()*£, 0] = 1€, {dg, ()] + § fzgx)ﬁ[dfl(x)],'

where fAl is defined to be the mn x mn diagonal matrix
. diagonal elements dii=ai’ the entry of a 1 x mn vector A = (4.

the position i. (See Beatler and Lee (1878)).
Proof.

‘Let Y ¢ men' By Lemma I1.5.7,

(7] @ 1= (lfg T1e29:1%32%: 5647



B St

(Y..6

ij ir5§j)((r,s),(i,j))'

Similarly,

T2 (M = (g6, 6450

So by Theorem 1.5.10 ,

. [d(fl(x)*fz(x))] = fl(x)*l[dfzfx)] + fz(x)fl[dfl(x)]. q.e.d.
s

(I.xI.)x(I.xI )° . I.xI .
Yor any A ¢ R 12 34 , BeR > -, define’

R((IIXIS)X(IZKIG))X(IBxIA)

[y

b

B CHE SN CIERLICHE MY

\ |
_ ) (Ilxlz)x((l3x15)x(léx16))
8837 G i), (0,100,100 S ] | ’
& 10327003353, 0 Lig,2g
&
£ . .
- _ . ((stll)xflsxlz))x(ngI&}
B‘bl A= (a(i BN )b(. . )) R .
¢ 1’12 H 1331A 15916 3

R(leiz)x((ISxIB)x(IéxI&)).

[g]

S ST NE I S LICIE R

Corollary 1.5.14. (Kronmecker product rule). Ia Theorem 1.5.10,

I1x12 stI

suppose that A is the Kronecker product oz R x R 4 . Then

5 @ (] = (4, 6 1) 8 5,61 -

(f,(x) @, (Imz' & Inz))[df?_(:c)]-
' {(1.5.1)
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s
Proof.
: ijy i N k€, . _ e
Let {e™-} i=1, 2,... my, §=1, 2,... 2y, {h™) k=1, 2,... m,, <=1, 2,
I sz I,xI : .
n, be the usual basis for R and R respectively. :
Then from the proof of Lemma 1.3. 7,
(r s) k¢ )
(1,3, 0k,2) = SET s
. P i <n

I.xI. L.xI

N @2= (2 2, 6,6 6.6,
CJ k,Z kk'¥72
- =‘( k£r6ii|6JJ )
=(I_ §1 1)®1 7
A\ )
Similarly,
@M =Ye I(imz & I (s8]

By Theorem 1.5.10 , we obtain
e R @ £00] = (T, ®1, )8 £ [0, +
(£, Gx) & (Imo & Inz)) [df, (x)].

g.e.d.

We shall now compare the Kronecker product rule obtained
. by Bentler and Lee (1978) with corollary 1.5.14. It can be proved

that the derivative of a matrix-valoed function f with respect to



a matrix variable x given by Bentler and Lee’(1978) is, in terms of

our notations, the transpose of [df(x)]. The Kronecker product
[ 4 .

rule in Beatler and Lee (1978) states that, in terms of our nota-

tions in corollary 1.5.14

¥

(402, (x) @ £,(x0)] =(lag, (] (T,,

lu

| @f.,(:;:)) + [dfz(:c)]
1 = .
A 3 gy,
(£, (x) @I I @QE QI ,
T ey, ey BT
(1.5.2 )

yhere A is the 1 x mn row vector [Al', Agyenn, .-\m]‘witb. each A, the

.th - . ~OF . . -
i~ row of an mxn matrix 4, E° is the mr x mr matrix such that,

for 1&8g38 or and 1§h £ .ox, egbl =1, if g = r(j-1) + %,

E=alk-1) +j (0<jS€m; 0<ks$c), "and egh = 0 otherwise. E°F

is calied a commutation matrix in Magnus and Neudecker (1979) and

A ]

also appears in Tracy and Dwver (1969) and MacRae (1974)° where the

cotafion I(m ) is used. As an example, let m =2, r = 3. Then
L) " ' .

OO OO0
SO OO0
O OO OO
OO OO
-0 0O 00

e

In order to éompare (1.5.1 ) with (1.5.2 ), we consider

. l a.m ’
(zm1n1 ® 51, ®E° @I ) and 1, ® R TACE



Since
(T @13 500" = O 1002082 (5,2, (1, 0) (0,8)))

and .

-

i —— i R
(Iml Q.sztx))(lml KE , & J.nz)

= 5 fa s ) (G0 2, (B )

008 e Sag e (G2 ) (080, (%) ()

e o3 Cee Faa g Sy P B X0, (1,0, T )

ke f2a 8 )
i} . o B
((-'-ml ) Inl) ¢ f,(x))" = (xm‘ @_fztx))(lm ®= @I ).
1 1 2
(1.5.3)
Similarly, e
. By
(£, (x) @1(Im2 ® Inz)) = (e Imzan(Iml @E Q Inz).
(1.5.4 )

- N \ .
{(1.5.3 ) and (1.5.4) give a shorter-and rigorous proof of the re-

sult (1.5.2 ) of'Béhtier Lae (1978{% It is more importaat to
L / = ‘
realiZe that althoﬁgh (175 agiiﬁifg.z } represent the very same

product rule, our (1.5.1 ) is simpler than (1.5.2 3.
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In this section, we have used various product'rules, es-
pecially the Kronecker product rule to illustrate the simplicity of
our general, rigorous and practical approach. We can carry out

similaxr conclu§£§ﬁs for many rules. other than the Kromecker product

rule.

1.6 Examples . N

Example 1.6.1. Let X,dX ¢ uptq’ £(X) = X'. Then-
df(X) (dX) = (&)

and _ ) AN

48T = Bys83) (2,0, (1, 07—

Example 1n6.2. Let ¥,dX ¢ ¥___,
pPXPp

£(X) = [X]. Then,

T GE(X)(dX) = tr(adiX)'dx.

Hence if X! exists, then
GE(X) = [ ¥X] exX Ty
Qnd
[a£o] = 13} (.

The above result can easily be proved by Leih;;g's rule
and the rule for linear fuactions. The main result in Golberg (1972)

follows from Example 1.6.2 and the chain rule.



e

PN
~2

-

Example 1.6.3. lLet dX e¥

axp Ase prq’ B Enpxr‘ Then, since
X » AXB is linear, .
'd(AXB) (dX) = A(dX)B.
Now by corollary 1.5.12 ,
[a(axB)] = (1, ©3") [&(ax)]
= B' AQI
;qu ) Q o) (XD
= (Iq @B') (A® IP)
=A@®3B'.
Example 1.6.4. Let X, dX SMDtp such that X! exists. Then
(1) . dlla x| )(dx) = exx™l(ax)
b - -
and
-1
[dim [x] ] = (X",
.. -1 - -1 -1
(1) & (&) = -X (&)X B
and
a1 =xt e &
Proof
We shall prove (ii). By Cramer's rule, it is easy to see that
the inverse function is differentiable oo its domain. Since



0 = 40X 1) (dx) ‘
PR x(ax~1(ax))
= (dx)x“1 + X(dx-l(dx))."
Hence

‘axleax) = -x"T@xt

/. -
© By Corollary 1.5.12 ,

0= (Lgx[& ] +xT g I,

Hence 2

el

_ O PSS
(IP®K.) (X ,\/Ip)

- ) ¥ -1 '-1 -
(Ip gX)NE® Ip)

xlghe. o g.e.d.

-

The fumction f in the following example is mentioned in

Bentlery—and Lee (1978 to cHillenge thHe existing matrix differen-
- tiation methods which had been developed up to that date.
Example 1.6.5. (Bentler and Lee (1978, p.225)). Let

X= (%, X, Xy, X, %), vhere X ¢ Mmimi,i =1, 2,...5,

Y= (X, & X,)%(£,*X) such that vl exist. et £(X) = tr¥" . By

Leibniz's rule,



k 4 -
- )
df(X)(dX) = = 3y f(X)(dXi).
RS S :
By the rules for linear functions and inverses,
- = eyl -1
3Xif(X-)(dX1) = -tr¥ aXIY(dXI)Y
_ -1 ) ok ‘ . '1‘
@ = ~urf (&, @ 2%y (XY
Likewise,
axzf(_x) (&,) = -trY-ICXIG €, )%, (X, #5077,
: o ool o el
- ._ -1 ‘ LA . -1
S| v N v ay wenl
8XSf(X) (alxs) = -tr¥ (Xl & .{2333(1{& dXS)'z .
. -

.“

3,
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" CHAPTER TWO

Maxima And Minima in Linear Models .

and Multivariate Analysis

2.1 _Introduction

~ Optimization problems in statistics can be divided up into
two types: one whiﬁh has thé‘OPtimal solutions appeared.in the in~
terior .of the region of concern and the other‘onerwhich has the
optimal solutions appeared on the boundary of the region of con- -
cern. For the first type, matrix differentiation is an important
tool. In this chapter, we shall illustrate how matrix differen-

tiation could be applied in various situations.

2.2 Preliminaries

In order to prdve the optimality results in the following
sections, we need several results which are of interest in their

own right.

Ph will denote the set of all opxn positive definite

matrices; Sn will denote the Hilbert space of all-axn symmetric
matrices over R; SpA will denote the rarge of the spectrum, i.e., -

the set of all eigenvalues of A. It is well-known that A ¢ P im-

’

plies that  SpA cf(o,ﬁ). Moreover, Sp{AB) < [o,m)r if As Pn

A

i i inite.
B e Mnxn and B is nonnegative definit



Theorem 2.2,1. Let &, B ¢ P such that A # B. Then _

-

1) se(a-3)(a - e (0],
(1) splGB ) £ o).
Heace , .

te(a-B) (2”137 < o.

Recently,” Ky Fan generalized the above result to the following:

Let A be a non-singular Hermitian matrix of order z, with
P positive eigenvalues and q negative eigenmvalues, p + q = n. Let

B be a positive definite Hermitian matrix of order m, azd let
¢ = (a"t-37H(a-3).

' o . . o
Thea all the elgenvalues of C are real, p of them nom-positive,
. . =

and ¢ of them are positive. Furthermore, if exactly r of the

T -1/2 _=1/2
eigenvalues of B 1/“33 2

to 1, then 'C has exactly r eigenvalues equal to zero.
Theorem 2.2.2. -Let A4, B, W ¢ Pn. Thea
NN B
tr(AWA-BWB)(A “-B ")} < 0.
Hence

er(a®-39) a7 1-37h) <o

.. R =1 .
(or the similar matrix AB °) are equal

3



" .Proof.

Since A, B are positive definite, there exist a non-singular matrix P

and a diagomal matrix D such that

A= PP

- B = PDP".
Se
-1
tz{AWA-BWB) (A™*-371)
= tr{AW-BWBA ™ *-AWAB 1+3W)
- ) -1 -1
= Tr AW(I-aB “)-trz3W(B “A-I)

o~

P2 W(I-BD"'2"!)-tr BDP'W(PDP" -1

tt
H

=t

H

P'W(I-2D" P yp-ez prw(enp i-1)ED

= tz[2'wp~2'weD " -2 wPD%+2 WpD]

-

1

' -1 .2
= tr P'WP(I-D “-D7+D).

-1 _2 '
1-D"+D. Then E is diagonal. "let 2, be the ent%y of D

at (i,i}. Thea the extry bi of E at (4,i) is

b. =1-—-a7+a2
i a,
i
=1 (a? - a? -a. + 1)
a; i i i

- E% (1 - a;)z(l +a.) 20,

36
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At least one of bi < 0, otherwise all a, = 1, i.e., 4 = B, a con-

tradiction to A # B. Since (cij) = P'WP is positive definite, all

c..~> 0, So
1l

- et - - n
tr{aWA-BWa) (A"1-B"1) = T ¢, b, <0, : © q.e.d.
i=1 11 1 .

The following result is important in justifying the dif-

-

ferentiability of certain useful functions in statistics and is

overlooked by various authors.

- Theorem 2.2.3. Pn is open in Sn.-

Proof.

| - . - - a | -my - . '
Let C, = (coij) < Pn,rB = {Z ¢ R. :iZi =1}, x & B. anslder
fx : fx(A) =x Ax, As Sn' ?hen fx is linear on Sn and is therefore

continuous. . .

| £, (8)] =‘i:::jxiaijxj —
‘ D o o
s hA_\L jzl iill x X;1
< al 2% .
.
/ |
iét M= n2. Thenlfx(A)! SMIiAT for allx ¢ B and A ¢ Sn' Since

[+-]

1

. . oo ap .
X = x'Cox 1s continuous o2 R” and B is gompact, m = min {x’Cdx :



-

{,

. _ o
X £ B} exists. S%nce C, ¢ P ml> 0. Let e= 59> C €8S with

a

o _ - | - _. - o - - .
i C Collm <e, x¢ B. Then fx(C) = fx(C Co) + fx(co) 2 Mic Colim +

m> -Me + m>0. -So C¢ Pn'and hence'Pn is open in Sy-

q.e.d.

=
2.3 Contingency Tables

Consider the problem of maximum 1i£elihood estimation
and testing using likelihood ratio procedures regarding contingency
tables. For simplicity, we demonstrate the case of rxk tables.
The case of highef dimensions can be done similarlf. The maximua

likelihood function based on a sample {xij} that formsa rxk table is

. b L
L® =c 0. 1 . CHRIE
i=1 j=1 J]
where
- a! ’
c = _"—"———.r K
00 (x..1)
i=] j=1-
= £06..),. .\ - P 6.. < 1},
8¢ g £ 1.])(1,.])7- (r,k) elJ % (i,j)i(r,k) 1] }
r k :
z Gi. = 1.
is] j=1 *J

Here'xij i1s the number of‘sample values belonging to the cell'Iij

and neij is the theoretical number of sample values belonging to

-
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Iij' We wzsh to find the maximum likelihood estimate 8((x )) of

8, i.e., a((x )) e@wz.th L(e((*: ))) =max£(®). It can be

proved that 8((xij)) exists if and only if-all iij’s are positive.

We shall assume that all xij's are positive. Note that 2 x; is
. v y _‘j

equal to the sample size n. Let f = -ln(%). Then f(e((xijJ)) =

mia £{® ). ® may be coasidered as an open subset of R:k-l. Let
8 €® . Then
r k
£f@) =~ 2z = X; ; lns
i=1 j=1 ]
Let 48 = (d6..) ¢ R‘k 1 Thea by Leibniz's rule
%ii 0, Yok
£ — - &
d£(8)(de) = (g;l + é—;) - (a8,),
b Tk
where . is the usual ipmer ﬁroduct. Let 81 = (elij)’ 62 = (ezij) :
@ such that §, £ 6,. Then '
‘ X, s Xy
(d£(8,)-d£(8,)) (8,-8,) = z (- g2+ 57 -
: (1,1)#(r,k) i Clrk
X, ; }
(-é_lZij E——Zr ))(6“_J Zij)
2
= b3 350815760507

(1,303(,%) T B, 8y,



1

1
x_, (3= = ) 3 (8, .~8,..).
8 U (1,5)(z,k) 123 2id
r k r k v
Since I I 6, = I I 8, =1,
i=1 j=1 N = = M
o - 2
(4£(8,) - d£(8,))(8,-8.) = 3 1381157950 +
' SR CI EI 'S B S ‘
1JIFLES 143724
8, 8,07
'xrkc lrk™ 2::‘.-:)
e)./:ke 2rk
. /
T . - 2
=103 Ry
S S N :

Thus, df is strictly monotome on (@ (see, e.g., Opial (1967), p.84).

<

So £ is strictl

i.e:, é‘t(xij))

We now consider the

independence,”i

against

v coavex oa{§) . Let d£(8) = 0. Thean

problem of testing the hypothesis of

.., we want to test

i for all



H1 i » 6.8 for some i, j, /’\)
ﬂ{‘
where
k r
ei_ = .E 15 B.j = I B{j.
j=1 i=] *©

X.. -
Extend 3 such that g((xij)) = (-%l) for all nonegative intergers

y - rk-l e £3 y - t
with 2 xij S n, (xij) e R . -‘We first assume that all ‘ij s are

positive. Then, under Ho’ the likelihood function I. is:

1
r k xij
L@=e T (8
=1 j=1
where d
- - r~1 k-1
a = ((8?[),(8_j)) € @% = {(a,b) R xR a; 2o, bi >0,
=1 k-1
2 a; <1, I b, <1},
i=1 * j=1 3
- ok
z Gi. =1= Z 6.
i=1 j=1 4

s {
Note that ® is open and convex in R% 52, | et f = -ln(El),
- c

de = ((d8;),(e8,.)) < @),. Then

df(e)(da) = ((- %o+ Fr) , (- Xop + Ry L (s, ), (a6 ).



&2

. . >

Let o = ((911-)(61-1'))' a, = ((eﬁ‘)(ez.j)) e@ with o Fa, .

Then

' ‘T 2
(d£ (o)) (a,)) (ay-0,) = 5 %1 (15895 0" .
. i=1 ali 82i-
2
s %08
j=1 81 jea_j .
> 0.

1

Therefore f is strictly comvex, L is strictly concave and (Bi_)
('e‘_J.) with : | )

(I

9, ({x, ) ; .

X,
T n

are the maximum likelibood estimates of (Gi_), (B_j) under Hd. Ex-

tend (gi_), [g-j) such that

-~ x'.
(€, )((x;. ) = (=29,
. X5
(8= 1)) = D,

~for all X: . x_j e {0, 1; 2,..., ;} suck that in. g o, Zx.j g a.
Let
A R ClICOD) '
Ll((ei_)((x,i_)),(S-j)((x_j))) '




Then _

X..
i=l j=1 xi_x_j

It is'in:uitively clear that we shall rejact Ho when A((x;j)) is

large, say larger thap a _coastant c. -The test with the above ra-

gion of rejection will be denoted by ﬁc. The first type risk of éc

is determiced by ¢ (but not vice versa). éc 15 oftena referred to as

a maximum (supreﬁum) likelikogd ratio procedure (Lehman {1958), p.15).

2.4 Maximum likelihood estimates of multivariate normal model

£(C) = 1/2 Nln}'C[ - 1/2 trCD, Cep.

In finding the maximum likelikood -estimate of (y, Z) based on a ran-

dom sample (de of 2 normal population of mean M and dispersion

matrix 2, it is necessary to prove that the maximum value of f(Pn)

is £(3D°1) (Andersbg {1958)). Let

-

g(C) = /2 N1n|C| - 1/2 veCD, C ¢ Moqr 1CF >0,
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]
]
]

Let b be the identity function on Sn’ as a function of Sn into

Mnxn'- Thgn ) _

£(C) = g(a(C)), C e B,

By Theorem 2.2.3 and the chain rule

"

d£(C)(dC) = 1/2 tx(NC 1-D)(dC), C ¢ 2, dCes

Let C,, C, ¢ Pn such that C1 = CZ' Thez by Theorem 2.2.1

' N el L amlyoa
(df(Cl)-df(Cz))(Cl-Cz) =3 u-(Cl C2 )(CI-CZJ

< 0.

So f is strictly coacave on P . Since dGE(ND™ ") = 0, gD =

——
max f(Pn).

The role of h is important because Pn is open in Sn but
bas ewmpty interior in M . One may compare the above proof with

that of Andersen (1958, p.45-47), Smith (1978) and Watsom (1964).
Our proof is constructive, rigorous and simple. Note that by the

~

result of Dvkstra- (1871}, the maximum likelihood estimator X of I

exists if and only if N 2 n.

2.5 Muitivariate regression models

The likelihood ‘function based om 2 sample x, £ N(BZ.,Z 3
: . J ] onxn



-

No

. ———

h . 2 g2 N
L(B,%) = (2m) |27 exp [-1/2 Z
i=1

|5

. RNCS
(x BZi) .z_ (x;-32,31, .

where B £ Mnx Z & P_ are unknown parameters. We want to find the

q’ o
maximum likelihood estimate of (B, ). (See, for example, Anderson

(1958), Chapter 8). -

Let

- 1
£(3,0) = 1n (L(B’C )) , BeM ., CeB.
I}n . )

(ZR) 2

We proceed to find 3 first. Fix C ¢ Pa and let fC(B) = £(B,C). Then

n
=+

A . N '
= E - i ; - - .
(8 =3 lafC[- /2 I (x;-B2,)C(x, ?ZJJ’ B

’
_]=1 oxaq

-

and

oy
d£.(8) (dB) = j£1 (xy782,)" €Iz,
2

Let B., B, € M _ . Since C is positive definite,
17 72 o0xq

. ' N
(¢£(3))=d5(3y)) (3, -3,) =~ 2

: ,ij(Bl-Bz)’C(Bl-Bz)Zj

1

s C.
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So fc is' comcave om P.  Let dfc(B) =0,dBe¥__ . Then
axp

N B T
dfc(B)(dB)'= 0, i.e.,

N N. )
'z .=BZ.)’ . = (x.-BZ.,)")e( = 0.
' i (xJ BZJ) C(dB)ZJ tr(jzl ZJ(YJ B j? JC(dB) )
.Hence 4
.
2 Z.{x.-BZ.,)'C=o0.
i=1 J 3 J

il -

- N hS . X
Since Ce 2 ,B=(Z% x.2.")(-2 z.Z.") 1 is the solution for
. a P A imq J 3
3=l j=1 -
dfC(B) = 0. Since fC }s concave cn Pnf fc(g) = max fC(Mnxq)' Let

-

g(C) = £(5,0),
N - -~
D = % (x.-BZ.)(x.-BZ.)'.
j=T(TJ JJ(J J)
, ~,
?_Then, by the result in -section 2.4, g(ND-l) = max g(Pn). Thus

W
[

(g,% D) is the maximum likelihood estimate of (3,C).

2.6 Multivariate Ligear Hypotheses

-

It is well known that the model discussed in section 2.5
includes certain models in regression analysis as well as analysis
of variance which have various applications, especially in econome-

trics and psychometrics. The following related problem assumes



patterns in the dispersion matrix me of the populat__i;on. It could

be viewed as a general - approach to the 'problem of analysis of
variance components (see, for example, Rao (1973)). For details
of the problem, aﬁe could comsult Roger and Young (1978) and the
references there. The log-likelihood fdhctign L based on the data

3 -

Y is given by
1,0 = L (o taametaf £ o e T
y - 2 a - "‘R tx--(E HB) (Y HB)Z }:

m m . : , .
where 2= X @G, I l - 2 ¢ G, G 's are fixed, known, sym-

metric,. linearly independent oxn matrices such that tzG_ G_ =8
81 8y 818

for all 81189 ;Sﬁ (‘_138), tl:—=-(tlig) belong to an open subset G of

) +1) . . . o . -
R s om 5‘1-1—(3-—-1—-)- i B e Ha‘m y & is positive definite; X,, X,,..., Zau
3 e - - -

-

are independent n dimensional onormally distributed random vectors

with common dispersion matrix I and E(Y) = EB ; ¥' = (X,, ..., k\{)

X
. ‘ ~ A
The problem is to fizd the maximum likelihcod estimate {B,9) of

(8,0). Let
£,(8) =L(3,0), B

qxn’

Let d§ ¢ Mqﬁm‘ Then

4z, (B) (48) =tz (¥ - H) '} (B(eB))'

-
EF A

47



Let Bl’ 52 3 qun' Siﬁce E-; is positive definite, d

- — ) ‘1.. 1
EERRCRCORENCYY (BI-/ﬁZ)’-’N::_Cﬂ(fL;BZ)) I (E(ByB,))
: - S <0 | : .

<

Hence fqJ is concave on qun' dfmﬁﬁ) = 9 * is equivalent to

H (7-38)' £l =g
or
H'ER = H'Y

-

which is called the normal equatiom for g .

Since K ='(H'H)+ H,
~ + S
B.=FT+ (1 -89z,

. : . + . . . : -
wbere Z is any g¢xn matrix and ¥ is the Moore - Penrose inverse of

H. As before, let fg (¥) = L(E,¢). Note that ¢ -~ ¢ is a one-to-

. . . . . R 3
one mapping and hence the maximum likelihood estimate 9 of ¢ cor-.

responds to the maximem likelihood estimate @ of ¢. Now, let

dys = tdwg) S G. Thea, by Leibniz's rule,

-1 < -1
$ET(E = I3y IT(ay)

g=1 LL’g

n

Mg

| 7 B
0]

[N

=

48

oy
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&.

and sbo

a£5 ), () = - 3 [er I ( : Gy @) - § & B ( G KB}
: ; g=1 : g=1
~where
B= (7 -HR) (T - ) : ‘
. \‘ AN ) l/-\
TN . « .
=Y (I -E) Y. N
ﬁet_wl = (wlg) y Uy = (wzg) ¢ G such that wl-# ¥, and (//f_k
m ' - .
= ! ~ = e
Ei gzl Qig g = 1, 2.. Then

e

1]
i

(e55(,) - digly,)) (4 - &) [22(2,-5,) ¢ 2 Gy (U103

g=1 -8

5] A

(22(3;-L,) (21‘1-22'1))

So fé is strictly concave. Let ‘Bﬁw) = 0. Then a‘ﬂ(u) (aw) =0,

for every db £ G and

tr 2 ( : 6, dy.) = w tr B ( 6 av,),
© =T gl : =1 8

- :
1
tr (2 ¥ G )G =3 tr BG forall g=1, 2, ...
h=1 “h b g N g



" 81 '— 5 R . i i
_Smce_ .otr Gh Gg = ohg » g LT BGg s the solution of

df-é'- (4} = 0 and, heace, is the ﬁ:aximum likelihood estimate

It

b= @ ot u. N - T

Quadratic Estimates

>
.
-~

Consider the regrassion model ¥ = X8 + €, where ¥ is
a known. oxp matrix of rank P> £ 1s a pormal rapdom vector with

mean (¢ aad dispersion matrix O'ZI. We wish to find a quadratic

. o)
estimate Y'AY of 6% that has the smallest mean square error

ol

&

9 ' ‘
EL(Y'aY - 0"')2), Acg S,- Theil and Schweitzer (1961) showed that

¥ _

it is equivalent to finding 4 ¢ Sn such that A minimizes

2 - ki
£(A) = 2 tr A° + (1 ez 8) , acs
e

ks

4r & =0,

Calvert and Seber (1978) found the desired 4 using zearest point
projections in Hilbert spaces. We shall obtain the desired A in

a simple, comstructive and rigorous wav. Letr
g(a) = £(A) - tr N'aX,

where N' is a Lagrange multiplier. Let dA ¢ Sn' Then

"dg(A) (da) = & t:A(dA)' - 2(1-trd) trdA - teN'(dA)X

It

tr (GA - 2(_1-r.rA)In-XN')dA.



-

. . ) - . . < . - - . -
Let Aps Ay € Sn such that AI # Az.. Since A1 A2 is symmetric,

tr [4(4,-A,) + 2tz (4,-4,)] (4,-a

(dg(a;) - dglay)) (A -4,) = a,)
= 4er (4,-8.)% + 27 (er(a,~A N2
B T A 1 72
> 0.
Therefore g 1is stfictly convex on Sﬁ. Let dg(A) = 0. Then
ba = 2(1-txA)I_ - NX'= 0. S L2701
Multipling X on both sides of (2.7.1), we obtain, by imposing AX=0, ”,’\x
N=-2(1-trd) X (X'X)°. ‘ (2.7.2)
Substgng (2.‘7.2) ir (2.7.1), we have
4= 2(1 - exa) [1- ) =o.
So by taking the trace,
wor - D=D
Lra — _‘—n_p+2 .
Therefore
A _ _ P, ’
A= T [In g(g X) " X']
. + ’ * -:'b;‘:“-‘:
satisfies dg(4) = 0. Since g is convex on Sn,'g(A) = mig g(Sn). ' BRI 3

Now by the theorvy of Lagrange multipliers (see, for example,
3 grazag P > 2

Lehman (1959), »p. 87), f(g) = min f(Sn): " Note that A ‘is ;npver

positive definite.



2.8 Minimum Distance and Principal Components

-

Let A e Ph. We want to find the “.‘ 2bsoclute maximum

(minimum) value of £f(x) = x'x, x ¢ Rh subject to T:he side condition
| ' -

Xx'Ax = a, where a is a fixed, positive real numBer. This problem
is a mathematical abstraction of the principal. component method

in multivariat_g» analysis (Anderson (1958, Chaptér 11}). In sta-

e -1 . : . : ol
tistics, 4 = 2 °, where Z is the dispersionm matrix of a normal ran-

dom vector. The problem is to. compare the. Euclidean norm

with the porm | l]}:' of the reproducing kerpel Hilbert space

’

associated with . Euclidean norm is the norm of a reproducing
' i
kernel Hilbert space associated withk an identity matrix. In gene-

ral, let C be an oxu nomnegative definite matrix, |

-

(X,y)c =x' c' v, X,v & R-. .

Then ( , )C is 2 pseudo inmer product, i.e.,{ , )

is’ bilinear, sym—

metric and (x,x) 20 for 2ll x ¢ R ¢, )C is an ipmer product

. . - . - o Nt . .
i1f and only if C 1 exists. Let B=C(C . .erhen B is nonnegative

definite. Now to compare ﬂ ]] c with U HE’ we copsider

?

i(x) =x'" B x , subject to x'Ax = a.

/

The problemr raised earlier is this problem with B = IB' lising

the method of Lagrange multipliers, we consider
g I ’

-



g(x) = £(x) + A (a - x'&x) -

x'Bx + A (a - x'Ax) |,

o~

where A is a lagrange multiplier. Let dx s Rh. Then

idg(x)(dx) = 2x'Bdx - 2Ax'A(dx) -

2x' (B~A4) (dx)

Let dg(x) = 0. Then Bx = AAx or A-'le'= Ax. Suppose that we are
interested in finding the absolute max:}hum value of f subject to

_1 .
x'Ax = a. Let Amax = max Sp (4 °B), e x be a2 nonzexo eigenvector

ma

- - s L a2
of A correspo A = e Ae %« = (2 )
b4 B ponding to max’ © = © pax nax’ Smax (c) e .y
hen x' Ax = B = A4 x a - A : _
Tk . max max = 3 B Ep SAAdx  and B-A A is connega

tive definite. Let x,v ¢ _Rh.' Then

(dg(x)-dg(y)) (x-y) = 2(x-y)' (B-A ax) (x-F}

m

. bk T - h i
Thus g is coucave o.n R® and g(;max) = max g( R7). So X ay Baxi
mizes x'Bx subject to Xx'Ax' = 2, x & Rh. Similarly, we may use

Am’in = min Sp (A-IB) to *find the absolute minimum value of £ subjectr

“to x'Ax = a.



-

The above argument can be cgrried out for some other
problems. For example, Bush and Olkin (1959), Rao (1973) and

Goldberger (1964) considered the problem of minimizing x'Ax subject
to B'x = u, where A ¢ Ph agd u bélpngs to the colume space of

B'. As before, let

f(x) = x"Ax + A" {u~-B'x)

h

>

with A a Lagrange multiplier. Then, for every dx ¢ R

df (x) (dx)

1l

2x'A(dx) - A'B'(dx)

2x'A - A'B')(dx).

Let x, v ¢ % such that x z v Since A is positive definite,
(A£(x) - 4£(7)) (x-7) =2 (x-5) ' Alx~y) .

> 0.

So £ is strictly comvex on _Rh. Choose k=2(B'A-lB)-u,

X = A-lB(B“A_lB)-u. - Then df(x) =0 and B'x = u. _Hence x above

minimizes x'Ax subject to B'x = u.

In addition to principal componments, we shall give
| e

another applications of the ;i'esult g(xmax) = max g Rh) obtaized

above. Using ‘earlier notations, let us consider
D i -0t

'Bx

_ X
h(x) - x'Ax

Oom—

54
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Then
max h(x) = max max X Ex
x & Rh‘\{O} a >0 x'Ax=a .
_ 1 '
= — e B e
e max a cmax max max
' -1
. _ e AATB € .
e '

max A emax

L T
e AM .
™\ _ _ max max max
. =

=X
max
Hemce for x ¢ RE\ {0},
x'Bx <
min - x'Ax® - "max

and the inequalities are sharp.

2.9 TFactor Amalysis

In the following,” we shall give an example that the

likelikood function -of parameters in a given model is not con-
cave and heace the method of monotone operators fail. This pathe-
logical example shows that statisticians have to find some other

method to make sure that the maximum likelihood estimates. they

v

[

35



find are indeed the absolute maximum value of the likelihood func-

tion, especially when the estimates are obtained numérically by

iteration methods.

- Consider a data matrix x = (xai) of N observations on P

response variables. x is given to be an observation of a random

matrix X = (xai) with N independent rows, each having a multi-

variate normal distribution with the same dispersion matrix 2 of

the form

I=M 4y,

where ¥ ¢ PP and is Eiiagonal. This -model is a familiar factor

analysis model (see, for example, Lawley and Maxwell (1963)). We

want to estimate ¥. The log-likelihood function I‘l’ as 2 function

of ¥ ozly, is’

-

- N N -1
Ll‘(‘!’)=c~§lnl2.|—§tr(.&£ ),

where ¢ is a comstant, 4 is nonnegative definite a;d, does not

\

. N
depend on Z. Let ¥ = -(aijl!’i). Then ¥ can be regarded ‘as (‘Fi) in

‘\L,J
RP. Let av ¢ RP. Then
N .14 N .1
dI.l(‘i') (d¥) = - 5 tr 2 4z {dy)- 5 trAdZ “(d¥)
=-Ne

1 qwy+ g traz”l(ayysTl

rt
4]

I
ro| =

-z s Yy )

56
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T~ 57
©Let ¥, ¥, be two_distinct values for ¥. Then
EEICRIAEE NUNRESERS: [crczl‘lfzz'f)(wi'-ﬁz)
-0 . - ex(z, ha RS A 22'1)(w1-¥ )]
| n | = - JleeE, "5, )
o | | -er(z, a5, 7hE T zé‘l)(zl-zz)].‘ =

By Theorems 2.2.1. and 2.2.2,

(3,75, (35, <0

and

' S R S G| :
- tr [z1 A zl "I, AL, ) ;21-22)] > 0.

“Since A is continuous im A, A > 0 for A mear 0. Thus with probabi-
lity greater tham 0, L is not concave.

2.10 Growth Curve Models

Consider the data matrix x = (xui)

in Section 2.9. In-

stead. of assuming that the dispersfon matrix X

is in some structural
form, we assume that

E(X) = 4 £ X,



where A is an Nxb magrix of rgmk h and X i§ a gxé matrix of rank
g, both being fixed matrices with b <N and g < f. £ is the un-
known hxgiﬁarémeter mggrix we wish to.estimate. We also assume
;hat'Z is Qnéwn. This &s the familiar growth curve mod§i c§n§idered
by Potihbff and Roy (ﬁ96h), (See also Joreskog (1970)). The log-

likelihood fumction, af a function of £, is R
. L(g) = ¢ ; g 1n hZI - g trA Z-l,
where c is 2 constant‘and
ATg(x-aER (x-afK). .

Let &£ S'thg‘ Then

W@ = - Jesaa@nz? - :
| . | e
N tr (x-AERK)' & (éO)Kz L. - ;

Since Z is positive definite, ' ' -’

P | |
Q(A®L(£)) (at) |

= - Nt (AGEEK)" A (BT}
<o0.
Thus L is concave on.Hh#g. Then
B (x-AE)' 4 = 0 s

or

-

atA IR = ars g

58



-

Hence.(A'A)_I_AxZ—IK'(K'Z_IK )-1 is the solutioq of dL(£) = 0 and
is, therefore, the maximum likelihood estimate E of £.

-

2.11 Simultaneous Equation Models

P Let U= (uij) be .an Nxt matrix of .mormally distributed

-

random variables uij with E(U) = 0 and E(%UU') = 2. Consider the

model
BY + 2= U,

where B and I are NxN and NxA matrices of parameters.‘ Assume that
2 is known. The probiem is to obtafn the maximum likelihood esti-
mators of B and [. This is the familiar problem of full information

maximum likelihood estimatiom of -the structural parameters of a

59

simultaneous limear structural equation model considered by Fisk °

(1967, Chapter 4), Neudecker (1967), Koopmans (1950) and Tracy and -

Singh (1972).  The log-likelihood function of (B,I) -is given by

LB, =c+tln B +51n 571 - trs lamar,
where

- 1 4 ' '
M—E[Z] (Y,ZJ,

s
u

. (B! F-) £ MNX(N+A), o

¢ is a ¢onstant and 2, B are positiﬁé definite. Note that Neudecker

(1967) and Tracy aad Singh (1972) do not assume that B is positive
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definite and théy do not prove that the optimal solution they found

.are indeed the maximem likelihood estimate of B.

- -

- T; . Let da %)ﬂNxtN+A)’ da # 0, dB = P(dA). Since projection

P of A'to B is linear,

¢ tr3 N(dB)'-t oS laM(da)'

dL(a) (da)
Since B, M and I are ‘positive definite,

Q(a%L{A))(da) = -t tr B 'dBB™I(dB)' - t tr I l(da)M(da)®

< 0.

Thus L is strictly ceonovex on HNx(N+A)' Let dL(4) = 0. Then (and

‘only then) ' -

Cehoy =t IR . (2.15.1)

The solution of (2.11.1) is, therefore, the maximum likelihood

-
Y

estimate of (3,).

For simplicity, let us use the above example to demon-
strate certain advantages of our approach. Ome reason that.our

approach is so simple is because the functions A - L(a), dA - dL(a)

(da), da -+ Q(sz(A))(dA) we.are'dealingjwith aré real-valued.

e e Neudecker shows, in terms of

our notations, up to one-to-one linear tramsformations,
14 - .
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&
‘ ' [(B')r;_,‘_f)] o 3,7 -
W) = - t.‘._ - : e g 5t
| : o _[-(B,h)_lf] @' -B;I

Il oo purly,
o | B - -1
t ) . -t @ ",

Il @ {m'z'l}q . +
Tracy and Singh shows.that, in terms of our notations, up to one-to-

one tramsformatioms,

t @0 @ ol
reeert s Sl -t g oy

nere‘Ci is the i7 -row of C and A © B is defined in Tracy and

Singh (1972). One can see fx;om ‘the 'aboﬁ'e results that their
approaches are t;_v 2¢ meapns simple. Also, they use the usual f.h.eory
of calculué withﬁu; connecting it ﬁ-o their own theories of. matrix
calcglus. 'Mofeo'ver, we show that L is strietly éoncave:. So (2.‘11;1‘)"
cannot have more than one solution.‘._ Thus one carn use the- c'ci‘r_'xven4
tional numerical methods, sulc_h 25_ the niethod of Fletcher and Powell

(1963), to solve (2.11.1).



. CHAPTER III

P

~
-

Optimal Control of a Regiession Experiment

3.1 Iatroduction

‘We have seen in the preceding chapter that using the

- first énd second order differeniials, many optimization problems in
statistics can be solved practi&ally-and rigorously. However, for
~optimal problems of .the secoﬁd type, often; some other methods-
are needed. Linear programming techniqugs_may be used to eptimize
a linear functipn with linear inequality constraints. Variational

techniques mav be used to optimize a functional with linear or

nonlinear ineguality conmstraints. In this chapter, we shall use a-

linear regression model to illustrate certain methods of solving the
optimal-problems of the second type. .

3.2 Optimal Control of 2 Regression Experiment

Consider the regression model m(f):

:

-~ '
Y(t) = £(z) 8 + () , teT, : (3.2.1)

where T is a nonempty topological space, Y(t) = (yl(t),...,yn(t))?,

() = (fij(t)) son;xk, ét;) =b(81(t);...,sn(t))', 6 = (6

~,

1!"'!ek)'_

¢ RS {s{t)},cT is a vector stochastic process on some probazbility
(ST .
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space '(Q,Q,P)-su-ch that éac_h i’:‘.(s(t)) =0 Rn, each r(i,s,j,t) =

. E(Ei(s)sj'(t)) is i:nown and each r(i,",j,’) is continuous on TxT.

We shall be interested in the cantrol problem of choosing £ in
some chosen set X to minimize a certain functional ¢('_) ofs the

dispersion matrix I(f) of the least square estimator © of 8.
Chaﬁg and_ﬁogg_(po appear) consider this: problem -for the ca;e ﬁ=1
and Dorqgovcev (19?1)‘consider; this problem for the case n=1 and
=2. Related éroblems also appear in Chang (@979),'Chang and Woag
(tf appg?r) and Mehra (1974). When T is a sinéle;on,Jthe above pro-~
biem is familiar. in optimal design theory. Seé, for example,

P(ederov (1972) and Kiefer (1974).

In practice, n represents the number of observations. It

turns out that -the geheral case (n>1) can be reduced to the case

a=1 S0 that the optimality results in Chang and Wong (to appear)
‘and Chan "and Wong (to appear) can be applied. - For simplicity, we

"shall assume that T = {a,b], where a,be R and a<b. We can easily

generalize the obtained results to more general settings. Let W

be an m~dimensional ligear subspace of‘&fz('l') and ml’”Z""’nm} be
an orthonormal basis in W. We shall assume that each s is conti-

auous on.’l‘, and in (3.2.1), f = (fl”"’fk) , where each fj = (fij),

f..eW., Thus £.. =3 ¢

(a,1),] Ny for some umique lf(a,i),j s.

Unless otherwise stated, we shall keep all notations. Note that

all f e H = W,
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" M(f) will demote F'F,“ where F' = {cj,(a,i)} with each ¢

] 62

Theorem 3.2.1. {fj}l is -independent iz H if and only if
; = {f(a,i),j}j is }ndependent 1n'men

We shall assume that {fj} is independent in H. F above will

) ) . . 9 '

be treated as an element in R({I,Z,...,m}x{l,g,...n})}{l,_,...,k}_
Let g, h ¢ X, "
Then E with (, ) is a Hilbert space. || || will denote the norm
induced by the above inper product , ). {,) is the usual
Product imner product for H. ¥ will denote {(fij): all £.. e W,
fj's are independent in E, | ij $1,j=1,2,...,k}, 1>0. For simpli-

city,-we shall take 1°= 1.

t

-~

~ Let w'e Q. Then the least'square_estimate of 8, denoted

i~ ' °
by 6 (w), is defined to be ghqu\which ninimizes

I TCy@-F8 32, g g (3.2.2)

, (a,1)
IxJ

_ 2 & - — . .
= Mg,i),jc Thus M(£) eM . Each U (tij) € R™™" can be considered

as a linear tramsformation [U] of R° imro R} such that [U](xj}z



U(xj)(=(2tisﬁj)£ RI), (xj)a RJ. Thus the theory of linear trans-

formations can be applied to rIXJ Now r(M(£)) = r(F) = k. .So
M(E)"! exists.
Theorem 3.2.2.m

8w =M THECI@,E)), weo _ (3.2.3)

Proof. Let w e Q. Let j=1,2,....k, ¥ = Y(")(w). Then - .

(¥ - £ §(m),fj) =0

(T,£;) = (£ 8(w),£,) . | i

= 5 Ch) Rw. -

~
Fh
-
Hh
=1
s
|

= IT fiE(t)fij(t)dt

R CRINAICRINE
‘n

.((Y,fj))-

(F'F)B(w)
Therefore
) = 'H7HE,E))
| LIGRI(¢ XS’ q.e.d.

S

Z(f) will denote the dispersion matrix of B.
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Theorem'3.2.3. - IR
28 = me  Eremen T,

"
where N

"R = (r(a,i),(B,j))‘=‘FITIf rfi,S,j,t)ﬁuCS)né(t)dsdt) ¢ 3L
witp. S | :
L=1{1,2,...,a} x {1,2,...,m}.
-Proof.l
2(£) = u()7lz, w7,

where 2. is the dispersion matrix of Z with Z(w) = ((Y(')(m),f;\}\\\__’//

Since each E(si(t)) =0, by Fubini's theorem, E((s('),fj)) = 0. Thus
by Eubini's'theorem,

%

(EC(£(7),£,) (), £)))

= (3 E(Ce 0,5, 30 2,0),5, )
i,4 - "

(ifz E(ITITsi(s)szft)fiu(sqfﬁv(t)dsdt))

(i’2§“,BITIfE(Si(S)Sﬁ(t))fauifsvzqafs)qs(t)det)

(i,£§a,sfcui(foTr(i’ ,2,t)na(s)nﬁ(t)dsdt)fﬁvg)

= F'RF.



Therefore —

16 = men LErnum g.e.d.

~ * -
| With the above estimator 6 of 6, our objective is to

choose an f 'in X such that for a .certain function ¢, ¢(Z(f)) =

min ¢(Z(gi). The following are three important ¢'s .in-optimum de-
geX ' -

sign theory. These and together with some other criterioms can be

found 'in Federov (1972).. Let ¢ be 2 convex functional on Pk‘
Then m(f) is called a ¢-optimal model.if $(2(£)) = min o(3(g)). a
o geX

¢-optimal medel m(f) is said to be
(i) D-Optimal model if

~

o) =1¢17! , Ce B, : (3.2.4)

(ii) A-Optimal if
6(C) =er ¢t o (3.2.5)
(iii) Ds-Optimal model if

- . :
o(C) = ICsi - Ce P (3.2.6)

where Cs i1s obtained from C. by deleting the last (k-s) rows and

(ii) and (iii).

>

columns. 05 ¢2,¢3 will denote respectively ¢ in (i)

Lemma 3.2.3. Let h be a function of Pk into R such that h ¢ ( Pk)(z)

(Pk < Sk). Let

h,(A) = exp(<(a) + h(A)), Ac Prs



L

£ L Skk, the conjugate space of Sp- Then b following two condi- |/

tioas are equivalenii
(1) & is (strictly) cd&vex.
. JI :
(ii) B, is (strictly) convex for all { ¢ st.

Theorem 3.2.4, ¢1, @2 are strictly coavex.

dd £ S.. Then

Proof. Let\A £ Pk* K

40, (A)(d4) = - t= A Teamyat

-9
- tr A “da.

1]

So for any distinct A, B ¢ 'Pk, by Theorem 2.2.2,

(do (a) - do, (8)) (a-B) = - tx(a™2-37) (a-3)

. > 0.
Hence ¢1 is strictly coavex on .Pk' Let
8(A) = ~la |A] ; A Py -
let A ¢ Pk’ dA ¢ Sk' Then

d0(a)(dA) = - tra™(aa).

So for amy distiner 4, B ¢ Pk’ by Theorem 2.2.1,

(d6(8) - d0(3))(a-B) = - tr(a~-3"1)(a-B) > 0.

f

i

iy

|



Tﬁerefore ¢ is strictly convex on Pk' By Lemma 3.2.3 with =0,

-

o, is strictly convex. ' ' . g.e.d.

.Sigce €+ C_ is iinear, by Theorem 3.2)&; 0, is convex.

3.3 D-, A~ and Ds-Optimal models

To find the D-, A- and Ds-optimal.models m{f), one has

to solve for each i=1,2,3, the optimization problem oi(f)=max Qi(g).
geX

Using results 'in Chang and Wong (to appear) and Chan and Wong (to

appear), the above problem can be solved.

Let Hl be an moxk matrix obtained by re-arranging the.

"rows" f .y of the "matrix" F ip anv preassigned order. - Let R. be
(a,1) - s . 1

the moxmn matrix. obtained by re-arranging the 'rows" and "columns".
of R in the corresponding wav. Since multiplication of .matrices

does not depend on these re-arrapgements,

_ B S
I(f) = (T.a:1 H.l) B, thl(hl El) . . \

Siace R1 is positive definite, there exist an orthogonal matrix P

-

such that

s
23]
‘o
n
m
[
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where 0<d, < d, < ... < d.,- It is important to stress here that if

one changes the above arrangement of rows and columns, then R1 will

<

- be replaced by a similar matrix R‘.Zw-hence‘R1 but not D will be

changed. Let G = PH, . Then
-— t -1 1 1 -1
I(f) = (6'6)*6'ne(6'6) "L,

HMoreover, the columns Gj of G has norm less than ‘or-equal to 1:

2 2
G = 2 f .
o™= 2 fas), p
2
=2Z|f .
jll JBH
= | fﬁ]fz
< 1.

Thus the results in Chang and Wong (to appear) and Chap and Wong
{to appear) for m(f) with o<1, m replaced by mn-can be applied.
We shall assume that D is positive definite. The following results

'_ follow trivially from Theorem 3 in Chan and Wong (to appear).

Theorem 3.3.1. Let



O

"" 4

4 0 ;
D, = ) L

0 'EH; , .

AR

c 1 1 e,

<2\ o " -

/

Where Q is an orthogomal matrix such that Q Dll-zQ' has egqual
diagonal elements. Then m(f) is A-optimal and

$(E) = e Q nllfzq‘.

0f course, fn order to find an optimal model n(f), ome

must £irst pbtain F from G and then obtain £ from F.

Theorem 3.3.2. The following conditions are equivalent:

a) m(f) is D-optimal. !

ia
+

B G =a() .

for some orthogonal matrix Q and sxs diagonal matrix U whose

diagonal elements all belomg to {-1,1}.
Theorem 3.3.3. The following conditions are equivalent:
a) _m(f) is Ds4optimal.

Ut 0
B) G=Ql0 Vv ,
0 0
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where U is an sxs dlagonal matrix such ‘that each diagonal element of
U is ~1 or 1, V is a (k s)x(k-s) nonSLngular matrlx such that each

column has Euclidean norm equal or less than 1,

For illustration, we shall give ap example. Earlier no-

—

tations will be kept. Suppose that for o(f), a=2=m=k, a=0, b=1, all

sl(s), sz(t) are independent normal random variables of mean 0 apd

(i,s,j,t) = r(s,t)éij,

where for s,t in (0,1),

t{s,t) = (I-s) (1-t) min {T§? ] T%g},
z=(1,t) = r(s,1) = r{1,1) =
. 1, /3 1.3 1 i 920 1
Simce — + == (2t-1), —1 . 43 (2t-1) are orthonormal ig [0,1],
TR 2 2 : &

we mav take

s ]
[
t
~
%]
(84
f
L —

We shall use Theorem 3.3.1 to find an A-optimal model a(f). Now

=L 2 L eyl V3,
fcl,l),(l,l)'fé I t—f—§+_r2_(2h 1))(5+ = Gsm1)

(1=-s)(1-t) min { } dsd’

l1=5' 1-t

.



Co= .l'ol J : (-—'—1 + —‘C Q- {—= L. ﬁ (2s-1))(1-s)tduds
') .

S 2

+ Jco'l j-os (7_2-

—
L 2

- 1 1
1,10, = fo F

- (I-s)(1-t)} min

-+

Similarly,

(2,13,02,1) T F(2,2), 2,

T(2,1),(1,1) T T,2), 1,

T(e,1),(B,3) T

We shall use the ordar:

(1,1) — 1, (1,2) — 3,

Y2 2 V2

5

= | _
L 2 0r1))(d w23 (25-1))(1-t)sdsde
ri

V2 2 V2

5

r.

+—= (25-1))(—= - 33 (2t 1)). -
V2 V2 v,_z
] _
{1 =s’ 1- t} det
3 1 3 '
— {25-1))(—= - == (2t~1))(1-s)tded
V2 2 V2o ® °
'»G 1 /3
—= (2t-1))(—= - —= (2s-1))(1-t)sdsdt
7z 2 T
- § e
2) T f(1,2),(1,2) T 10,
= ot §
2) T F(1,2),(2,2) T 15,

elsewhere.

(2,1) — 2, (2,2) — 4,

-t
-



1 1

> 0 5
1 1

R1 = 15 10

0 0

It is easy to diagonalize

1 1
10 bE)
to
1 1
15 10
by
1 1
1
2 .
1 - =17

So R1 can be diagonalized to

o
(=]

L¥3)
L)

O

— ‘
Lo} L R

—

Gl

—
OI'—‘

L
O

(o)

~
ol
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by : :
1 1 0
oa= L 1 -1 0 0 A
vz { o 1 Lo
Let P be the matrix obtained from A by intei‘chang-:'-.ng the second and
third columns. Then o

1 0 1 0
peL |1 0 1O
Yz 1o 1 1 )
and
1
= 0 0 0
. D=PRP=| 0 = 0 0 | ‘-
= PRt . 30
0 0 % 0
' 1
0 0 0 :
-y
Thus 4, =d, = 55, &, =4 =1 c"(dlg-"a;&)" L
- —'-—'-, - - s - —:,
30 4 3 5 V30
_ 1 : 3
D, 75 Iy -

. ' X
Let Q be a 2x2 orthogenal matrix. Then Q'Dl Q' has equal diagomal

el'ement.'s_;*_ In fact, Q D, Q =-—_1 I .. . r
: , : 30 2 . e

-

-

PR



L

N4

So : -

3,
DI
6T Q"
¢ 0
.
12 .
= Q',
0
51 = P'G
1 1
1- 0 '
== 0 Q
2 1 -1 .
¢ 0

1 1
5 = J% 0 0
St -1
0 0

%

Using the earlier order, we obtain F

- -

'

~ . _ 1 _ .
T E T e
£ =2 = ¢

(1,2),1 V2 (1,2),2

f(c,i),j = 0 elsewhere.

Let ©+ ¢ [0,1]. Then

LT TP YR L LB FUTPRR P LY

= Bla,a),5), Wi

F N



~1
~1

£,(8) = & (Q=¥3) + 213 1.

Simil;rly

*

ERCEEMOEENOY

£,(t) = - - n,(e).

JE

Thus

L L (U-73)+2/F ) x€(1-43) + 2 E:))
() = " . :
' ("1((1~f3')+2f§tJ - ((1- %) +2/30)/,

- te0,1]. With this A-optimal model o(f),

Zg = 2(£f)
= c Qa* Q'
i
=c¢ D1°
_ 1
=% 12,

- 2 o~ . ) . . . 1
i.e.’” B,, 6, are independent random variables of variance 39

D-optimal and Dsroptimal'mogels m(%) can be found numerically b?

using Theorems 3.3.2 and 3.3.3.

/.



3.4. - Reproducing Kernmel Hilbert spaces.

" The notion of least squarés in section 3.3 does not depend
on the covariance fuﬁction R. There appearé to have no sufficient
reason I:.o use the Euclideaﬁ porm te measure a random dj.jstance.
In this section, we shall ‘use a distance éséocigted with R.

Instead of assuming that D-is positive dé‘_‘fini;e, we shall assume
that R(i,s,j,t) = Ri(s,tjéij, whare all Ri are continuous. So for
i#j, all yi(s); Yj (t) are independent. Chang (1979) deals with the
case n=l. Tor completeﬁess, Let us Qeéne the notion of. positive
definiteness mentioned above. Let X be a coatinuous real-valued

. function on TxT. - Note that =zll Ri are examples of K. Let £ F.‘Ef(T).
b hd
R(£)(2) = [ 08Ik, 0)ds, ¢ e [3,b].
Bv the continuity of K and the compactness of {a,b], ﬁ(f) is centi-
zuous om [a,b}. So X is a linear function of Z(T) into 25(T).
Since
o ¢'2 V-]
LT e L9 < L),

AT Co ) 2
K, restricted to &~(T), is 2 linear function of &£ (T) into itself.

We shall assume that K is restricted to a‘,‘_’z('l‘). For simplicity, let
2 . .

fe X°(T), seT. Sinece K(s, ) ¢ 3{2(‘1‘), by Schwartz's inequality,
R < | KGs, ) | <. | ’

Thus

fRE | <fr §orel



‘where || K|l .is the norm of X in aﬂz(TxT). Let B(ofz('r)) be the

algebra of all contiauous linear fumctions of &PZ(T) into &:2('1‘)

with the operator nomﬂ “ ﬂ . Then XK ¢ B(sz(T)) and ‘as it was

shown above : . - ’
1= <lix].

Since A is one- to-one, we may identify K with X and write K for K

Smce K¢ B(L (T)) the notions and theory of operators inm H:.lberr.

I

spaces can be applied, e.g., X is said to be Dositive (nonnegative)

definite if K is self adjoint, i.e. X=K', the adjoint of K, and for
any nonzero f in the Hilbert space a‘f_z('l‘), K£,5) > 0 {(> 0). The

adjoiat X' of K is defined as K' ¢ B(£2(T)) such cthat
(K'£,8) = (£,Xg) ,  £,5¢ ZL2(T).

Thus K=K' if and ozly if X is symmetric. So all Ri are self
adjoint. We shall now let i=1,2,...,n, K=R, ané prove that X is

nognegative definite. Let £ s;ﬁz('l‘). Then

= fab(fabeS)K(s,:)ds)f(:)dt \

fabfabf(s)f(tJ E (g;(s)e, (2))dsde

n
tn

o jabf(s)f(t)Fi(s)ai(t)dsdt)

((fabf(s)si(S)dS)z)

——
(5]
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Se K is n&nnégative definite. For convemience, we shall assume
that all R, are positive definite. This assumption is ﬁbt serious,
and amouats to: For amy i=1,2,...,p -and any A ¢ @ with P(4) = 1,
afz(T) is the closed linear span of {£(.)(uw) : w € A}. It can be
shown by the theory of Wiener processes that r im the examplé of

section 3.3 is nonnegative defipite.

The background of the above discussions can be fouad in
Riesz and Nagy (1955}, especially the Chapters IV and VI, respec-
tively, on integral equations and completely continuous svymmetric

transformations of Hilbert space.
A

Now by Mercer's theorem, for each i, there exist an ortho-

.
gonal basis {¢iu} for o “(T) and a sequence {A,

LS

u} of positive real

numbers such that

R.(s,t) = A 0,080 0, (1) (3.4.1)

v ;
in QEZ(T).énd'{ Zl hiu ¢iu(s) @iu(t)} converges uniformly to R; on
- u=l .-

TxT. Here {Aiu} is the spectrum of R, (3.4.1) -is the spectral
representation of Ri an¢ each ?iu is an eigeavector of R, cor-

responding to Aiu‘ Let

HR) = (£ 622 © I ylts,0, 0% < o,
u=1l "iu

80
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where ( , ) is the usual inner product for gfz(T).-For-g, he H(Ri)’

we define g, = (8,0, ) (B;, = (By 0;,)) and

- .
: .Siuhiu
(8,0 = I—5—=

i u=1 in

- Then HCRi) is a Hilbert space and will be referred to as the repro-

ducing kernel Hilbert space (RKHS) induced by R11 Let R = (Ri) and,-

as in sectiom 3.2, let H(R) be the product of H(Ri)[s equipped with -

the product inmer product ( , )R’ i.e.,

(8,8)g =
1

LU B
—

g=(g), b= (k;).

. Then H(R) is a EHilbert space and is called the reproducing kermel

Eilbert space (RRES) induced by R. H HR‘_will depote the norm
induced by ( , )R. . )
gl 2 = (g.8) s H (3063
g R Sng » g < . . .-

We assume- that fj's in m(f) are continuous on T and are

independent:in H(R). Tet w ¢ Q. g in Rk; denoted by B(w), is the

Gauss - Markov estimator of & based on the observation Y(.)(w) if

+}

fYC)w) - 2.2 = aie [J¥()w) -£ 6.2
; R ) , R
‘ ge R
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Since f,, f,, ..., £, are indepeﬁdent in H(R) and {8 : 8 ¢ Rk} is

the finite dimensional linear space S spanned by'fl, f f

2r o e

ékw) uniqueiy exists and with ¥ = Y(.)(w),

(¥ - £.8(w), £)p = 0 . 3= 1,2,k

Thus
(F,£)3 = (£ 8w, £)q \\
= % ez(m) (fé,fj)R .
Hence
k ~ -
(E Sl (£,5)5) = ((F.5)q).
Let ' . - -

H(E) = ((5,£,)3) -
Then n(fﬁ'l exists aad
FH(DBW) = ((T,£;) .
Therefore

o~ _ _1 . - ,
a) = WO (1£)) - (3.4.9



Let W be a random vector of (Q,,?) iatoe RY. W is said

: o I . . . .
Lo "be a continuous linear estimator, of 6 if there exist linpear

continuous funetionals Ll’ Lz,_.\<< Lk on H(R) such that

W) = LEGWN , weo

Theorem 3.4.1. O(w) is the best unbiased limear contipuous esti-

mator (BLUE) of 8. - - -

~r
Proof. It suffices to prove that 9(w) is unbiased for 8 and that
~ .
8(w) bhas nminimum variance among ail unbiased linear comtinuous
. . T
estimator of 8. Ilet we Q, and ¥ be a continuous linear sstimator

of §. Then by Riesz's representation theorem,

Ww) ((Y(.)(w),ngRJ,

for some gi, 8yr -ees 8, o H(R). . Write gj = (g..). Then

1]

(W)

|
Tisp * R

. .
(I (T ()(w),g; )p dB(w))
i=1 I8y

-

32 s giiu b

=02 [y 1 3= Ja T3 ()W), (t)drdP(w))
i=1 usl g .
('2 z i P ; £ .(0)8 ¢‘ (t)d 5

= R 4 .o lt)dt
1=] u=I Aiu dp=1 O 2 4w
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B ® g

§iju
(gf 8, I I TL,sz)

S1=1 y=1. ) . P

=

k “n
(Z 8, 3 (B::3f.5)0 ) '
g=1- £ 4oy CiiTie Ry . .

" o
(2 8 (8:,f,)5).
Py £ “550%2/R

So

BW) = ((5,80908. BN

Now by (3.4.5),
.“~ o "
E(B(w) =-E(M(f) ((Y(-),fj)R})

= ﬁ(f) (( gw )R) 8
/

.:e,

i.e., ’é'(w) is unbiased for ©. Let 2. be the dispersion matrix of W.

o By T EE0)0),8005, (600 Vg 0p)

2 a2 e o
(zx 1 1 3

1=1 i'=] u=1 u'=] iu‘kiu‘

o

8ijudi kur jj

E(si(s)si,(t))@iu(s)¢i.u,(t)dsdt)

n & &

-1 Yo
(£ 5 3 — 8,8 [0 PR (s,1)
i=1 u=1 u'=s hin)\iu' 1jutiku "a a *

S



0, (500, (t)ésdn)

50
%, = ((gj,gkiRJ- - (3.4.6)
_Bv (3.4.6),
2(£) = M) z(v( ),£,, 40 el
= () " hum(e) ™
So. |

I(£) = M(H) L. | . (3.4.7)
By (3.4.5), W is unbiased~for 6 if and only if

J’fZ)R) = Ik- (?-A.S)

i
‘l

It can be nroved by (3.4.6) - (3 4.8) that if W ,:Ls un-

for B then Zw S(ul) is nonnegat*ve definite. Henic 8 (w)

has mirimum\variance among all umbiased continuous estimatorsof 8.

g.e.d.

. - ’
A
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1To obtain D-, Ds- and A-optimal models m(f), we need to
y

specify the family X of all eligible £, Let L& (o0,®) and let

- X be the family of £ = (£5) fa (3.2.1) such whar ||£ ]l <1,

j= 1,2,...,k¥\\ .

b
N
W

Theorem 3.4.2. (a) min |3(g)| = '%E
| " geX L°*.

P

(6) m(f) is a D-optimal model if amd ouly if £, S f, are

orthogenal in H(R) with morm L.

Proof. (a) Since

|2()f = [ M),

4]
(4]
]

it suffices to prove that

e
max | M(g)| = Rl
geX

“Let g £ X and let {Aj} be the spectrum of H(gj. Then

k X |
2 A, =t M = X (£.,£.).
o (33 & ( 3 J)R
k. 2
-5 e}
5=1 iha
k
< 3 12
j=1
=k 12, (3.4.9)
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So, by-the familiar arithematic mean - geomeiric. mean inequality,

' k
IM(g)l = 1 A,
j=1 1
b/
< ko ap 8
SO %)
J=1
S .

"
=

Now suppose that fl’ 0y ooty fk are .orthogonal in H(R) with porm

-

L. Then
EIGIIER(¢ A SNY
=1 1]
- LZk,

proving (a).

(b} From (a), it suffices to prove that min ]M(g)] ={M(£)| =‘L2k
. ..gEX

-

implies that fl’ £, ..., fk are orthbgonal iz H(R) with zorm

L. Let {Aj} be the spectrum of M(£). Since {Aj} minimizes

" awg

A. with .
i=1 -3
all A. > 0
J .

Py

- 87
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and
_k ) . - - _ )
2 A, < kL ' ’ (3.4.10)
j=1 J o . .
A, = AQ .= rel = AP = 12, Since M(f) is . positive' and has
identical eignevalues, Aj = Lz, M(£) = 12 Ik‘ Thus _fl,*fz,
«+» £, are orthogonal ia H(R) aod have norm L. - q.e.d.

Note here that even for 0=1, the above result is more

general than Theorem 1 (i) ig Chang (1979). .Also our proof is dif-
. ferent Zrem the one given by Chang who uses Hadamard's inequaliry

te prove (2).
Theorem 3.4.3.

(2) wmin eor (g) =
geX L

folom

(b) o(f) is an A-optimal model if znd enly if f1 f2, S fk are

orthogonal in E(R) with porm L.
Proof. (a) Le: geX; Then
r $fo) - -1
r 2(g) = tr M(g) ~.

Let {Ai} be the spectrum of M(g). Then o

k
ctri(g) = Z

i

1 :
I X;, . (3.4.11)




F
To minimize tr Z(g) is equivalent to minimize (3;4.11) subject .to

© (3.4.10), which, again, is equivalent 'to minimize (3.4.11) subject

to -

all A, > 0 . I A =kIZ . (3.5.12)

Let A = (Ai) and

o) =

.k E 2
= p( 2 Al -kl )v
1

174 i=]

I M=

where p is a Lagfange multiplier. Let dA = (dki) e R Then

0@ = - Zr - e

1

—

et a = (Gi), B.=.(Bi) ¢ RN with all ¢,, B, > 0. Then

b=

It

(Gp(@-do(®) (@) = (( 27 - <L) (le;5))

i i’

2
i;; (a,-B;) (o, +8;)

~ 3.7
o;"B;

~*

1t

. | .=l

»-

> 0.

-

So ¢ is comavex on the cpen convex set B of all A in Rk with each

.Ai > 0. ZLet do(A) = 0. Then

-1 ..
A= ()7 , i=1,2,...,k.




. Choose P so that (3.5.12) holds. Then

and so KD witk each AO

i = L2 gives the minimum value of ¢(B). By

>

the theory of Légrange‘é multipliers, A, minimizes (3.4.11) subject

to (3.5.12) and R

. 1 k. &
tr 2(f) > X = -
i=1] Moi 12

Now choose f such that fl; £fhy -1ty fk,are orthogonal'in H(R) with

‘morm L. Then £ ¢ X and Z(f) = L Ik. Thﬁs

fd'?;‘

tr L(f) =
: L

proving (a).

NI?T'

implies that

(b} By (a), iﬁ suffices to prove that t:.Z(f) =

tt

fl, fk are orthogonal in H(R)'with norm L. From the proof

of (a), the spectrum {KOi} of M(f) minimizes (3.5.11) subject to

(3.5.12). 5o

. N
Ao T g2 T ors T A T LY

i.e., M(f) = szk. Hence f,, fé, --., £, are orthogomal in H(R)

with norm L. ' . .q.e.d.



1/\

-

Again, even for n=1, Theorem 3.4.3 ig more‘ general than
Theorem 1 (ii) iz Chang (1979) ' Also, our proof is d:.fferent from
the one given by Chang who uses the Gram - Schmidt process to prove
(a). Combmmg 'I‘heorem 3.4.2 and Theorem 3.4.3 ve have the fol-

lowing nice result.

Theorem 3.4.4. let f £ X. Then m(f) is D-optimal if and only if

it is A-optimal. ..

-

From the view_point of section 3.3, where D-op.timal models
are not equivalent to A-optimal 'mode.ls, Theorem 3&4 is a ;\rerv
strong and, vet, a desirable ‘resulr..‘ One then wonders which esti-
mator and optimal model s.bou.ld be used. The Gauss-Markov ;stimator
is the BLUE of &. However, for finding this estimator, one need

the spectral representatiom of all r. T hthh are often difficult to

obtain. Also, we seldom know all T; brecisely and if we do not

know all T, Precisely, t:hen a repeated use  of r, 's will nrobablv

increase the uncertainty of the chosen model and the chosen esti- -

mater. Since the optimal models m(f)} obtained in this secrion

depend_on a certair RKHS, practically, the design f mav be difficult
te control (or,. say, construct). On the other bhand, it is rela-
tively easv to control the optimal models in sectionm 3.3 and compute
the underlying least square estimates. Also, in terms of motiva-
tions and conclusions, A-optimal_ models m(f) iz section 3.3 tend
to ignore iarger eigenvalues of R. Indeed, with the gssﬁmption

of this section, if n > k, then only the smallest eigenvalue of R



contributes to the optimal models.. On the other hand the A-optimal

- models m(f) in this section are obtalned by more or less treating

-all eigenvalues of r; 's as equal. To conclude, like many other

statistical models, it is up to the workers to observe the realzty
-~
and then deczde which optim2l model to use.

92
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