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OPTIMIZATION PROBLEMS ON GRAPHS

WITH INDEPENDENT RANDOM EDGE WEIGHTS

George S. Lueker

Abstract

We consider optimization problems on complete graphs
with edge weights drawn independently from a fixed
distribution. We discuss several methods for analyzing
these problems, including greedy methods, applications of
Boole's inequality, and exploitation of relationships with
results about random unweighted graphs. We illustrate these
techniques in the case in which the edge weights are drawn
from a normal distribution; in particular, we investigate
the expected behavior of the minimum weight clique on k
vertices. We describe the asymptotic behavior (in
probability and/or almost surely) of the random variable
which describes the optimum; we also discuss the asymptotic
behavior of its mean. Next we demonstrate techniques by
which we may determine an asymptotic description of the
behavior of a greedy algorithm for this problem.

1. Introduction

Many results have been proven about the properties of

random graphs. Some of these [1, 3, 9, 10, 12, ^7, 23, 24,

26] deal with graphs constructed by letting each possible

edge be present with a specified probability; one then

tries to estimate the probability that a subgraph of a given

type will be present. ([11] may be considered a paper about

random directed graphs.) We will call such a problem a

subgraph existence problem. Another area of interest is

algorithms on graphs in which all edges are present, but

weights are assigned to the edges according to some

distribution; one then tries to find the minimum weight

subgraph of a given type. We will call such problems
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subgraph optimization problems; they are the subject of

this paper. For example, if a traveling salesman problem is

constructed using the Euclidean distance between n points

chosen from a uniform distribution in the unit square, then

1/2
asymptotically the optimum solution is proportional to n

[2]; very efficient algorithms have been designed whose

asymptotic behavior tends to be optimal [19j 21]. The

assignment problem for the case in which edge weights are

chosen from,various distributions has been analyzed by

Borovkov [4]; for this problem, the case in which the edge

weights are chosen from a uniform distribution appears to be

particularly difficult, and has been further pursued by

Walkup [27] .

In section 2, we present some basic definitions and

facts. In section 3, we will discuss a very general

technique for obtaining lower bounds on the values of

solutions to subgraph optimization problems, based on

Boole's inequality. Section 4 discusses a very general

technique for obtaining upper bounds on these values, using

theorems about subgraph existence problems. Combining the

bounds of sections 3 and 4 often enables us to make rather

precise statements about the asymptotic behavior of the

minimum, as will be shown in section 5. Since many

optimization problems are NP-coraplete [16, 20], it is useful

to investigate the behavior of heuristics. In section 5 we

will investigate the behavior of some greedy algorithms.
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2. Definitions

We will frequently discuss probabilities and expected

values. If X is a random variable and A and D are events,

let P{A} be the probability of A, P{A1B} be the probability

of A given B, E[X] be the expected value of X, and E[X1A] be

the expected value of X given A.

Throughout this paper, will be a random structure

which is a complete, weighted, labeled graph on n vertices;

we v/ill assume the vertices are labeled 1,2,...,n% Weights

are chosen, independently, from a distribution whose

probability density function (pdf) is f, and whose

(cumulative) probability distribution function (PDF) is F.

X will denote the random variable whose PDF is F. G will

denote some particular weighted complete graph. The weight

of the edge Joining vertex v and w will be denoted d(v,w).

Depending on the application, G^ may be undirected or

directed; in the former case, d(v,w) is of course

symmetric. When we make asymptotic statements about the

behavior of some random variable which is a function of G^,

we will assume that an infinite sequence G^, n=1,2,...., is

considered, with each graph drawn independently.

Let be a set of labeled graphs on n vertices;

again, the vertices are labeled 1,2,...,n, so there is a

natural one-to-one correspondence between the vertices of an

element of S and the vertices of G . All elements of S
n n n

are assumed to have the same number of edges. For any H in
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3^, and any weighted graph G, let W(G,H) be the number found

by summing, over all edges in H, the weight of the

corresponding edge in G. For a given G, we wish to choose H

in so as to minimize W(G,H); this minimum will be called

Wmin(G). Note that, for example, if is the set of the

(n-1)!/2 cycles on n vertices in an undirected graph,

W^in(G) gives the solution to the traveling salesman

problem. We wish to investigate the expected behavior of

^rain^'^n^" (Often in an optimization problem, we wish to
maximize some quantity; for uniformity, however, we will

always assume that we are minimizing quantities. The

methods used here could also be applied to maximization

problems.)

In this paper we will often wish to discuss

inequalities which hold approximately, most of the time, for

large enough n. In order to make such statements precisely,

we need to introduce some notation. Let Y and Z be
n n

sequences of reals, and choose. e>0. For any n and 6>0,

consider the follov^^ing two propositions:

In > Z„ - ^ lZ„i (2)

If for every &>0, (1) (respectively (2)) holds except for

finitely many n, we will write Y^<z^ (respectively Y^>Z^) .

If for every £>0, both (1) and (2) hold except for finitely

many n, we write
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Now let and be sequences of random variables; we

will not assume that and are independent, but we will

assume that variables with different indices are

independent. (In our applications, each will often be a

constant.) Note that now (1) and (2) are events rather than

simple predicates. Let P.j(n,e) be the probability that (1)

fails and P2(n,e) be the probability that (2) fails. If for

each e>0, P^(n,fe) (respectively P2(n,<5)) goes to 0 as n

approaches infinity, we will say Y^<Z^ (respectively

• If both P.j and P2 approach zero for
all e>0, we write probability. (The phrase "in

probability" will be abbreviated "(pr.)".)

A much stronger notion is that of almost sure behavior.

An asymptotic statement holds almost surely if the set of

sequences Y and Z which do not obey the statement has

probability measure 0. Suppose that, for each 6>0, except

with probability 0, the sequences Y^ and Z^ fail to satisfy

(1) for only finitely many n. Then by an argument like that

of Theorems 4.1.1 and 4.2.2 in [5], we may write

Y^<Z^ almost surely. (3)

("Almost surely" will be abbreviated "(a.s.)".) By the

Borel-Cantelli lemmas (see, for example, [5]), an equivalent

definition of (3) is

CO

V fe> 0, ^ P^(n,e) < 00.
n = 0

We may similarly define statements that Y^>z^ or Yj^~Z^
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almost surely. Sometimes we will show that an asymptotic

statement which is true in probability is not true almost

surely; it then follows that the statement is almost surely

false (see Corollary [5, p. 78]), even though it is true in

probability!

Note that statements about probabilistic convergence

and convergence of expected values are somewhat independent.

In particular, either, both, or neither of the following two

statements may be true:

• E[V„] - E[Z„]

Y„ - Z„ (a.s.)

For more information and examples, see [5] and [28].

We will illustrate the methods discussed in this paper

in the case in which f is the unit normal distribution. The

following few observations, which are well-known or easily

established, are useful. If X is some random variable, let

X. denote the random variable obtained by selecting the
X • ri

i^*^ smallest of n independent observations of X.

Fact 2* X be a unit normal variable and let A be

any event with probability p. Then as p->0,

a) lEEX 1 A]', < (2 log

b) EEIXI 1 A] < (2 log p-'')''^^.
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The proof is easy and omitted.

Fact 2. Let X be a unit normal variable. Then

a) E[X^.^] ~ - (2 log

Moreover, for any e with 0<6:<1,

^ n)^/2 } < exp(-n^).

:n 1 log n)^/2 }

" n F(-(1 +<j) (2 log n)^^^)

=Q(n-2«-^^ (log n)"''/^ ).

See [7] for a thorough discussion of distributions of

minima and other order statistics; parts (b) and (c) are

simple calculations.

Note that for any k, and any €>0,

t

lim n'̂ exp(-n^) = 0;
n -?> 00

we will describe this by saying that exp(-n^) swallows

polynomials. Note also that we may conclude that

X.| < -(2 log n)^^^ (a.s.)

while on the other hand

X. > -(2 log (pr. but not a.s.).
I • n M

Intuitively, this is because the minimum cannot be greater
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(algebraicly) than some bound unless all n observations are

greater than the bound; for it to be less than the bound,

only a single observation needs to be low. (Sen probably

discusses related phenomena in [25], but I have not yet

gotten hold of a copy of this paper.) This sort of behavior

will arise again when we consider the problem of finding

minimum weight cliques.

Fact 3. Let X be a unit normal variable and let F be

its PDF.' Then as p-»>0;

•I • ' • • ' 2
p{x < (1+e) F-^p) I X < F-'' tph ;= .).

Now let F again be an arbitrary PDF, and f the,

corresponding pdf. Often we will need to consider•the sum

of several of these variables; we will let X be the

random variable corresponding to the sUm of k random

variables chosen, independently according to F,, and let F**^

be the corresponding PDF. Note that if F is unit, normal^

then

= FCk"""/^ x) . (I)

In order to discuss minimization problems, we will need

to discuss the expected value of a sum given that a certain

event is true; the following notatibri will be helpful. If

m is a positive integer and p is.a real in [0,1], let

B(m,p,F) = E[X*"' I F*'"(X*'") < p] .
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Note that if A is any event with probability p, then

E[X*"' 1 A] > B(m,p,F) ;

note also that if F is unit normal,

B(m,p,F) ~ - (2 ra log (5)

3- A lower bound'

In this section we derive a simple bound on the

expected behavior of and on ithe PDF ol* .

The method ik a straightforward application of Boole's,

inequality; see [6, 14]. See [15:] for another

application of this inequality to anjoptimlzation problem;

there a problem involving points distributed uniformly over

the Euclidean plane was investigated. (Donath [8] used a

combinatorial argument, for a version of the assignment

problem with integer weights, which is in some ways similar

to that given here.) Let-M^ be the cardinality of 3^,^;

recalling that each element of has the same number of

edges, :id.t mr be this commOn number.

*m
Lemma 1 . i '''n ^

Proof. We have

< xl

PO h 6 Sjj such that WCS^.H) < x}
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(by the definition of

<2 P{W(Gjj,H) <x}

(by Boole's inequality [14, p. 23])

n'HCS^

E*m„
F (x)

H6S„

(since, each H has edges)

*in
=M F "(X). . •

n

Corollary 1. E[W^^^(G^)] > B(m^yMjjV,F) .

Proof. Note that if a random variable had a PDF of

min(1,M^ F ), its expectation Would be precisely : .

Coroliary If F is, unit ,normal,.Vbrid , ,then

,EIW^,„(G„)] > - (2 m„ log

Proof. This follows immediately from the previous

corollary and (5) .

Corollary 3. If F is un,it normal, and approaches

infinity., then

> - (2 -n loi (pr.).

Moreover, if M~^ swallows polynomials, then this bound

holds almost surely.
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Proof. Using Lemma 1, we know that the probability of

is bounded by

*m

F "(-(1 +fe) (2 m^ log

= F(-(1+€) (2 log

(by (4))

0(M -26.)
n

(by Fact 2c)

Clearly this goes to zero if goes to infinity; moreover,

if swallows polynomials, the sum of this probability

must converge, so by the Borel-Cantelli lemma the almost

sure convergence is established. []

4 . ^ upper bound

In this section we obtain an upper bound on the

expected behavior of . We will use some results

about subgraph existence problems on random graphs. Define

a random structure G to be a graph on n vertices, where
' n

each edge is present with probability , independently of

the others. Then, for example, it is known [1, 24] that for

any i, we can choose a c large enough so that has a
• n

hamiltonian cycle except with probability 0(n"^), if
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p^=(c log n)/n.

In this section, we discuss a simple lemma which

relates results of this form to the optimization problems we

are considering. (This lemma was used in [22] for the case

of normal distributions; it can be stated much more

generally, as was suggested by the referees and also

observed by Weide [28], who attributes the idea of the lemma

to T. Nishizeki. Walkup [27] has also exploited the

relationship between existence and optimization problems.)

Lemma 2 [22, 28]. Let p^ be a sequence of reals in

[0,1] and let be the probability that fails to
' n

contain an element of S . Then
n

W . (G ) < m F"''(p ) (6)
min^ n^ — n ^n'

except with a probability of at most q^.

Proof. Consider the following algorithm for choosing

an element H of S^.

1. Let a = and let Hg be some fixed element

of S„.

2. Let E be the set of edges in G whose weight is less

than a; call these light edges.

3. Let H be any element of all of whose edges are

light, and stop. If no such H can be found, go on

to step 4.
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Let H = Hq.

Note that, except with probability of at most , this

algorithm returns a subgraph whose weight satisfies the

desired inequality. H

Corollary J_ [22]. Suppose that F is unit normal, and

that q^ goes to zero rapidly enough that

Qn (mn = °^"'n
s

Then

Proof. Consider again the algorithm in the proof of

the lemma. Note that with probability approaching 1, the

algorithm will return a subgraph H whose weight is at most

% f^^Pn^ ~ - ™n ^2 log

Let FAIL be the event that we fail to find- an element of

among the light edges, and must therefore set H to the

probability of FAIL is just q^. By Fact 1, and the fact

that W(G^,Hg) is normally distributed with variance m^^, we

may conclude that the expected weight of Hg in the event

FAIL is 0((m^ log Then by the hypotheses of the

corollary, the error we commit by ignoring the possibility

of event FAIL is negligible. •
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Corollary 2 [28]. If the sum of the in the lemma

converges, then

5. Some examples

In this section we show some applications of the

methods discussed so far. As mentioned earlier, we will

assume that edge weights are unit normal variables. The

assignment problem for the normal distribution (and others)

was analyzed by Borovkov [4]; he observed that a lower

bound for this problem may be obtained by taking the sum of

the minimum element in each row of the input matrix;

similarly, he observed that a simple greedy algorithm yields

a fairly good upper bound. Using these results he showed

that

WjninCSn) ~ - n (2 log n)^^^ (pr .) .

His method also easily establishes a similar result for the

traveling salesman problem.

Weide has used results about the probability of finding

a hamiltonian circuit in G [1, 24], to show that for
"'Pn

the traveling salesman problem with unit normal edge

weights,

W^in(Gn) < - n (2 log n)^^^ (a.s.).
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Using Corollary 3 to Lemma 1 we can easily extend this to

also be an upper bound. A very similar analysis holds for

the assignment problem, so we obtain the following.

Theorem For the traveling salesman problem or the

assignment problem, with unit normal edge weights,

Wmin(<En) ~ - n (2 log (a.s.).

Of course, these examples do not provide much evidence

for the power of the methods discussed here, since we have

only slightly extended a long-known result. The bounds

achieved in the next example, however, do not appear to be

obtainable by simple greedy arguments. Consider the problem

of finding the weight of the heaviest k-clique in a graph G.

(By a k-clique we mean a subgraph on k vertices, all of

which are adjacent. In the asymptotic statements which

follow, we assume that k is fixed and n goes to infinity.)

It is not at all easy to devise a greedy algorithm which

gives good bounds for this problem; in fact, in the next

section we will see that the natural greedy algorithm, in

probability, fails to produce a good bound. The results of

the previous sections, however, easily lead to a tight

description of the behavior of this problem.

Theorem 2. For the problem of finding the lightest

k-clique in an n-vertex graph with unit normal edge weights,

a) < - k ((k-1) log n)^^^ (a.s.)
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b) ~ - k ((k-1) log (pr. but not a.s.)

c) E[W^.^(G^)] - - k ((k-1) log

Proof. Observe that Corollary 4 to Theorem 1 in [10],

combined with the method of proof of Theorem 2(ii) in [31>

can easily be used to show that if we let p^ =n~^^
then the probability that G fails to contain a k-clique

n ,Pn
is 0(exp(-n®)). Thus Corollary 1 to Lemma 2 gives

E[W^in(Gn)] < -C(k,2) (2 log

~ - k ((k-1) log n)^^^ Od+c),

so

1 /?

5 - ((k-1) log n)'^^,

and by Corollary 2 part (a) holds almost surely,

Next note that the number of edges in a k-clique is

C(k,2), where C(i,j) denotes the number of combinations of i

things taken j at a time. Further, the number of distinct

k-cliques is C(n,k). Thus, by Lemma 1 and its corollaries,

we see that

E[Wmin(Gn)] >-(2 C(k,2) log C(n,k))'̂ ^^

~-k ((k-1) log n),

and
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Wmi^CGn) >-!< ((k-1) log (pr.) (7)

Note that does not become infinite fast enough to

guarantee almost sure behavior by Corollary 3- We now

sketch a proof that the bound in (7) does not hold almost

surely. Choose S small enough so that

(2 8 + 8^) (2/(k-1)) < 1. (8)

Now let

p (9)
t-n '

as above. Then if we pick out the light edges of as in

the proof of Lemma 2, we can almost surely construct a

k-clique using only light edges. But by (8), (9)i and Fact

3, an arbitrarily chosen one of the light edges used in the

clique will be less than F"^(p^) by a factor of (1+8) with a
probability whose sum does not converge as n goes to

infinity. Since this remains true even if we make •

arbitrarily close to zero, and since the number of edges in

a k-clique is independent of n, this likelihood of a single

excessively light edge must prevent (7) from holding almost

surely. H

The results obtained so far demonstrate that the bounds

discussed in the previous section can give tight

descriptions for some interesting problems. However, these

bounds are not always tight, even when the edge weights have

unit normal distributions. Say a graph H has property X(k)
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if

a) H contains a clique of size k, and

b) H has edges.

Let be the set of all n vertex graphs with property X(k).

It is not difficult to show that for this choice of ,

neither the lower nor the upper bound on the asymptotic

expected behavior is tight; see [22] for details.

6. Regular greedy algorithms

It is easy to devise greedy algorithms for subgraph

optimization problems. For example, to find the lightest

hamiltonian path in a graph, one can start at an arbitrary

'vertex and iteratively walk to the nearest unused vertex. A

greedy algorithm was used by Borovkov [4] in his analysis of

the assignment problem. For the lightest clique problem,

one can start with the cheapest edge and iteratively add the

vertex which increases the weight of the clique by the

smallest amount.

Such algorithms can be viewed in the following way.

The desired output is a list L of the edges in the subgraph

found; by a slight abuse of notation, we will say that a

vertex is in L if it is an endpoint of an edge in L.

Initially L is the null list. Each partial list L will

somehow determine a family CHOICE(L) of sets of edges in G;
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each set in CHOICE(L) must be disjoint from L. At each

iteration, we choose the set of edges in CHOICE(L) of

smallest total weight, and append it to L.

For example, in the k-clique algorithm discussed above,

after r>0 iterations L would be a clique on r+1 vertices.

If L is the empty list, CHOICE (L) would contain a set of

singleton sets whose elements were the edges of the graph;

for nonempty L, CHOICE (L) would contain one set for each

vertex v not in L, namely, the set of r+1 edges which join v

to vertices in L.

A Pidgin-Algol specification of the algorithm appears

below; here cost(E), where E is a set of edges, denotes the

total weight of the edges in E.

beg i n
L *— the empty list;
for r +— 1 unti1 t do
'^egig

' let E be the set in CHOICE(L) which minimizes
cost(E);

append the elements of E to the end of L;
end;

end;

Let A be such an algorithm. If the length of L determines

the cardinality of CHOICE (L) and of each element of

CHOICE(L), we will say the algorithm is regular; henceforth

we assume the algorithm is regular. This means that we

know, for each r, how many choices are possible at iteration

r (call this number c(r)) and how many edges will be added

during iteration r (call this number e(r)). It is tempting

at this point to use the following argument, which we shall



call the naive analysis. At the iteration, we choose

the minimuiti of c(r) variables each of which is the suin of

e(r) random variables chosen according to CHOICE; thus the
• / ^ 0 f r)

amount we add to the cost of L is

notation like the superscript is considered to have
t Vi

higher precedence; thus this would mean to choose the b

smallest of c independent observations, each of which was
A

the sum of a observations of X.) Let be the random

variable corresponding to the sum of these variables over

all iterations; i.e.,

t

~ l:c(r) •
r = l

Let F be the corresponding PDF. Let F* be the PDF which

describes the true distribution of outputs of A, and let

X be the corresponding random variable.
lA.

Now F^ and F^ may be different; the flaw in the

above analysis is twofold:

a) after several iterations the edge weights have been

conditioned by previous choices made during the

algorithm, and

b) the sets in CHOICE(L), for some L, may overlap, and

we are thus not choosing the minimum of independent

variables.

If we rule out such problems, the analysis becomes much

easier. Define a simple greedy algorithm to be a regular

greedy algorithm for which, at each iteration, none of the

Page 20
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edges in CHOICE(L) can have appeared in a set in CHOICE(L)

at some previous iteration, and the sets in CHOICE(L) are

disjoint from each other. Then if k is a simple greedy

algorithm, we have (see [28]).

Note that the natural greedy algorithm for the

assignment problem is simple, so the analysis of this

algorithm is easily carried out. The k-clique algorithm

described above, however, is not simple; an edge may be

considered at many different iterations. We shall, in the

remainder of this paper, undertake the analysis of regular

greedy algorithms which are not simple.

Theorem 3. If A is a regular greedy algorithm, then

for all X

.F^(x) < F^(x).

Hence E[X^]>E[X^].

For the proof we will need a lemma, whose proof is

un interesting and deferred to the appendix.

Lemma 3. Let w be a column vector of m independent

real random variables chosen with a distribution function G,

Let g be a real-valued function of m-vectors which is

monotonic nondecreasing, in the sense that

w ^ w' ==> g(w) £ g(w').

(Here w' is said to be less than or equal to w' if the
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inequality holds in each component.) Finally, let B be an r

by m matrix of nonnegative reals, and b be a column vector

of r reals. Then

P{g(w)^x 1 B w > b} _< P{g(w)_<x} .

Proof of theorem. Suppose we are at the beginning of

iteration r. Let Lg be some possible value for L at this

point, and let Aq be the event that L=Lg. Consider the

function

min cost(E). (10)
EeCHGICEdg)

Were it not for the conditioning on the probabilities of the

edge weights due to previous iterations, the PDF for this

minimum cost would be less than or equal that for

^l^c(r)" (The inequality is necessary because the sets
in CHOICE(Lg) may not be disjoint.) We now show that this

statement remains true even when we bear in mind that the

edge weights are conditioned. Note that (10) depends only

on edges which have not yet been chosen, and is monotonic

increasing in these edges. Now since the choice of edges to

add to L is determined by comparisons of suras of edge

weights, the event Ag can be phrased as a set of

inequalities on the edge weights; each inequality expresses

that fact that the selected set of edges was less than or

equal to some other set allowed by CHOICE. Note that each

edge not yet chosen must appear only on the greater side of

these inequalities. Thus by the lemma, the true PDF for the
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variable which describes the total weight of edges added to

L during this iteration can only be decreased by this

conditioning. Summing over all possible Lq , and integrating

over all values of the variables chosen so far, we obtain

tlie theorem.

To illustrate the application of this theorem, consider

the greedy k-clique algorithm mentioned above, with unit

normal edge weights. The naive analysis says that the

algorithm returns a clique of weight.

k-1

:C(n,2) S ^lln-i
i = 2

" - (log n)^^^, (pr.) where

Sk = 2. x;
i = 2

Lemma k.

> - Sw (log n)^^2 (pr.), and'k

'^k
b) E[X.] > _ s. (log n)^/2

Proof. satisfies the indicated bounds, and hence

so does by the previous theorem. , []

In order to complete pur analysis of the behavior of

the greedy algorithm for k-cliques, it would be desirable to

have an upper bound on the behavior of the solution it

obtains. The past theorem .gives us little help in this
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direction, but we may nonetheless establish the desired

bound.

Lemma 5•

a) (log (a.s.), and

,b) E[X^] < _ sj^ (log n)^/2, .

Proof. An idea similar to that used in [13, 18] is

useful here--we can simply eliminate all cases in which

things do not work out as we like. Choose any £>0. Note

that the probability that, the. first edge selected is above

-2(1-£)(log goes to zero fast enough to swallow

polynomials. Next consider the probability that for some

set C of vertices, |C|<k,

min S d(v,w) > - (1-€) (2 |C| log (n-|C!))
vgC w6C

1/2

Using Fact 2b, we see that for any fixed choice of C, this

probability goes to zero fast enough to swallow polynomials.

But, for fixed k, there are only polynoraially.many choices

for C, so the sum of this probability, over all possible C

with iCKk, must go to zero fast enough to swallow

polynomials. We may conclude that the algorithm produces a

clique of weight less than (1-€) times the expected value

predicted by the naive analysis except with a probability

which sWallows polynomials. Thus the sum of this

probability over all n must converge, so we have part (a).

Part (b) is then easily obtained using Fact 1. []
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Theorem For the greedy k-clique algorithm with unit

normal edge weights,

a) (log (a.s.),

h) ~ (log n)^^^ (pr. but not a.s.), and

a) E[X^] " - Sj^ (log

Proof. Most of the theorem follows directly from

T.emmas 4 and 5. To show that the asymptotic behavior does

not hold almost surely, we may use an argument similar to

that used in the proof of Theorem 2. []

Combining Theorems 2 and 4, we see that for k^3,

X^/Wjjjin ~ (k-l)!''^) (pr. but not a.s.). (11)

For k=2, the algorithm is of course exact, since it merely

chooses the cheapest edge; as k approaches infinity the

1 /P
ratio on the right of (11) approaches (8/9) .

7. Conclusions

We have demonstrated the use of some basic methods for

analysis of the expected behavior of subgraph optimization

problems. These methods have enabled us not only to

determine the expected behavior of the optimum, but also to

demonstrate that the asymptotic behavior held in

probability, and to determine whether or not it held almost
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surely. In addition, we have demonstrated how to analyze

the behavior of a greedy algorithm, even when edge weights

were conditioned as the algorithm proceeded, and when the '

algorithm was provably suboptiraal.

Although many of the techniques discussed here are of

fairly general applicability, we have demonstrated them only

in the case where edge weights are chosen from a unit normal

distribution. It would be easy to state the results in the

case where an arbitrary mean and variance were stated for

the normal distribution. In a later paper, we plan to

investigate these same problems under distributions other

than normal.
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Appendix: Proof of LemTia 3^.

Lemma 3. Let w be a column vector of m independent

real random variables chosen with a continuous distribution

function G. Let g be a real-valued function of ra-vectors

which is monotonic nondecreasing, in the sense that

w ^ w' ==> g(w) < g(w').

Finally, let B be an r by m matrix of nonnegative reals, and

b. be a column vector of r reals. Then

P{g(w)^x 1 B w b} < P{g(w)£x} .

Proof. We prove the lemma by induction on m. For m=1

it is easy. Suppose it holds for m=k-1. We may decompose w

as

/ *w = (w ,w ),
' n '

%
where w is the first k-1 components of w, and w^ is the

last component of w. Then

P{g(w)_<x 1 Bw>^b}

= P{g(w ,Wj^)_<x I B^ w* + B2 w^ _> b} (12)

where B^ and B2 are appropriate submatrices of B. We may

write the right hand side of (12) as
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JdG(^) h(^) P{g(w*,|)<x I w* >b - B2 f }

J dG(f) h(|)

h(^) = P{B^ w* > b - B2 f}.

Now by the inductive hypothesis, for any

P(g(w*,|)<x I w* >b - Bg n < P{g(w*,e)<x}.

Thus an upper bound is

JdGd) h(f) P{g(w*,^)<x}

JdGU) h(^)

But since h(^) is easily seen to be monotonic increasing,

while P{g(w*,^)<x} is monotonic decreasing in this ratio

is bounded above by

JdG(i) P{g(w*,f)<x},

which is precisely P{g(w)<x}. This completes the induction
[]
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