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Abstract

Optimization of process planning is considered as the key technology for computer-aided process

planning which is a rather complex and difficult procedure. A good process plan of a part is built

up based on two elements: (1) the optimized sequence of the operations of the part; and (2) the

optimized selection of the machine, cutting tool and Tool Access Direction (TAD) for each

operation. In the present work, the process planning is divided into preliminary planning, and

secondary/detailed planning. In the preliminary stage, based on the analysis of order and clustering

constraints as a compulsive constraint aggregation in operation sequencing and using an intelligent

searching strategy, the feasible sequences are generated. Then, in the detailed planning stage,

using the genetic algorithm which prunes the initial feasible sequences, the optimized operation

sequence and the optimized selection of the machine, cutting tool and TAD for each operation

based on optimization constraints as an additive constraint aggregation are obtained. The main

contribution of this work is the optimization of sequence of the operations of the part, and

optimization of machine selection, cutting tool and TAD for each operation using the intelligent

search and genetic algorithm simultaneously.
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Introduction

Computer-aided process planning (CAPP) is an important interface between computer-aided

design (CAD) and computer-aided manufacturing (CAM) in the computer integrated

manufacturing (CIM) environment. The process planning activity includes interpretation of

design data, selection and sequencing of operations to manufacture the part, selection of

machines and cutting tools, determination of cutting parameters, choice of jigs and fixtures

and calculation of machining times and costs. To clarify, the process planning, parts are

represented by manufacturing features. Figure 1 shows a part composed of m features in

which each feature can be manufactured by one or more machining operations (n operations

in total for the part). Each operation can be executed by several alternative plans if different

machines, cutting tools or set-up plans are chosen for this operation (Case and Harun Wan

2000;Maropoulos and Baker 2000).

One of the most important tasks in the process planning is the operation sequencing that is

concerned with the selection of machining operations in steps that can produce each form
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feature of the part by satisfying relevant technological constraints specified in the part

drawing, while minimizing the number of setups, maximizing the machines utilization,

minimizing the number of tool changes, and so forth. In other words, the operation

sequencing problem in the process planning is considered to produce a part with the

objective of minimizing the sum of machines, setup and tool change costs. A good process

plan for a part is built up based on two elements: (1) the optimized sequence of the

operations of the part and (2) the optimized selection of the machine, cutting tool and TAD

for each operation. Although many CAPP systems have been reported in the literature, only

few have considered the optimization of the sequence of operations, and suggested

alternative sequence of operations or process plans.

The basic input to any CAPP system is the part description. Usually the geometrical (shape,

dimensions, etc.) and technological information (tolerances, surface finish, etc.) are inputted

by a CAD modeler. Sometime this information is inputted by a user interface. Based on

process capability, appropriate operations are selected for producing the features. Then, by

considering constraints and relationship between operations, optimal/near optimal sequences

are generated. Many search methods were developed for generating optimal sequence. After

determining the optimal sequence, this sequence transmits for manufacturing by computer.

Operation sequencing is a complex task exhibiting combinatorial nature. As the operations

sequencing problem involves various interdependent constraints, it is rather difficult to

formulate and solve this problem using integer programming and dynamic programming

methods alone. The operation sequencing problems may usually be modeled as large-scale

and combinational optimization problems (Qiao et al. 2000). Integer programming, Genetic

algorithms (GA), search heuristics, hybrid genetic algorithms, and simulated annealing

approaches have been applied to operation sequencing.

Reddy et al. (1999) applied GA as a global search technique for a quick identification of

optimal or near-optimal operation sequences in a dynamic planning environment. Since

sequences may be obtained quickly, this algorithm can actually be used by the process

planner to generate alternative feasible sequences for the prevailing operating environment.

Qiao et al. (2000) used a GA-based approach for machining operation sequencing for

prismatic parts. Four types of process planning rules including precedence rules, clustering

rules, adjacent order rules and optimization rules were considered and encompassed

quantitatively in the fitness calculations for alternative operation sequences. The proposed

GA operates effectively by incorporating various production environment considerations

into process planning. Lee et al. (2001) developed six local search heuristics based on

Simulated Annealing (SA) and Tabu Search (TS) to obtain good operation sequences for

practical-sized problems within a reasonable amount of computation time. The results on

randomly generated problems showed that the TS-based algorithms perform better than the

SA-based algorithms on overall average. In particular, one of the suggested TA algorithms

gave optimal solutions for the most small-sized test problems within very short computation

times. Li et al. (2002) modeled the process planning as a combinatorial optimization

problem with constraints, and a hybrid GA and SA approach was developed to solve it. The

evaluation criterion was the combined strengths of machine costs, cutting tool costs,

machine change costs, tool change and setup cost. The GA was carried out in the first stage

to generate some initially good process plans. Based on a few selective plans with Hamming

distances between each other, the SA algorithm was employed to search for alternative

optimal or near-optimal process plans. In the GA and SA some preliminarily defined

precedence constraints between features and operations were manipulated. The case study

showed that this hybrid approach could achieve highly satisfactory results. Automated

processing planning based on GA and/or SA also have been reported by Ma et al. (2002) and

Alam et al. (2003). Tang and Liu (2002) developed a modified GA for solving the flow shop
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sequencing problem with the objective of minimizing mean flow time. To improve the

general GA procedure, two additional operations were introduced into the algorithm. One

replaces the worst solutions in each generation with the best solutions found in previous

generations. The other improves the most promising solution, through local search,

whenever the best solution has not been updated for a certain number of generations. Ding et

al. (2005) presented an optimization strategy for process sequencing based on multi-

objective fitness including minimum manufacturing cost, shortest manufacturing time and

best satisfaction of manufacturing sequence rules. A hybrid approach was proposed to

incorporate a GA, neural network and Analytical Hierarchical Process (AHP) for process

sequencing. A globally optimized fitness function was defined including the evaluation of

manufacturing rules using AHP, calculation of cost and time and determination of relative

weights using neural network techniques. Particle Swarm Optimization (PSO) was also used

by Cagnina et al. (2004) and Guo et al. (2006). Li et al. (2004) implemented a constraint-

based TS approach for optimization of process plans. Zhang et al. (2006) considered an

integrated Resource Selection and Operation Sequences (iRS/OS). Several types of

objectives, minimizing the make-span for orders, balancing workloads among machine tools

and minimizing the total transition times between machines in a local plant were taken into

account. A new two vectors-based coding approach was also proposed to improve the

efficiency by designing a chromosome containing two types of information. Using such

chromosome type, they adapted multistage operation-based Genetic Algorithm (moGA) to

find the Pareto optimal solutions. Salehi and Tavakkoli-Moghaddam (2009) presented an

approach in which the process planning was divided into preliminary planning, and

secondary/detailed planning. Analyzing the constraints and generating the feasible

sequences of operations were done in the preliminary planning using GA and optimizing the

process plan was conducted in secondary/detailed planning using GA too.

Evolutionary algorithms, which mimic living organisms in achieving optimal survival

solutions, may often outperform conventional optimization methods. In the past two

decades, GA has been widely applied for solving complex manufacturing problems, e.g. job

shop scheduling and process planning. A novel approach was proposed that incorporates two

GAs for optimizing the process planning (Salehi and Tavakkoli-Moghaddam 2009).

However, an intelligent search strategy was also introduced to incorporate with GA for

solving this optimization problem. In this approach, the process planning is divided into

preliminary planning, and secondary/detailed planning. In the preliminary stage, feasible

sequences of operations are carried out considering compulsive constraints of operations

using an intelligent search and during the secondary and detailed level of planning that is

similar to proposed approach by Salehi and Tavakkoli-Moghaddam (2009), the optimized

sequence of the operations of the part and the optimized selection of the machine, cutting

tool and TAD for each operation is acquired using GA considering additive constraints as

well. All of the proposed CAPP systems only regarded the one of these two planning, it

means that they obtained the optimized sequence of operations by analyzing the compulsive

constraints (preliminary planning) or the optimized selection of the machine, cutting tool

and TAD for each operation using operations precedence relations and the additive

constraints (secondary and detailed planning). With merging the preliminary and detailed

planning, implementing of compulsive and additive constraints, optimizing the sequence of

the operations of the part and optimizing the selection of the machine, cutting tool and TAD

for each operation simultaneously, this approach has useful contributions.

This paper is organized into four sections. “Materials and methods” depicts our approach for

determining the optimized operations sequence with determining a machine, cutting tool,

and TAD for each operation. “Example study” presents an example and discuses about it.

Finally, conclusions are summarized in “Conclusion”.

Salehi and Bahreininejad Page 3

J Intell Manuf. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Materials and methods

Figure 2 shows the modular structure of the proposed CAPP system, with the planning

activities divided into the preliminary planning and detailed planning. This modular

structure is approximately similar to the presented modular structure in Salehi and

Tavakkoli-Moghaddam (2009). The preliminary planning generates feasible sequences of

operations that are independent of the resources, considering compulsive constraints. The

detailed planning generates optimal/near-optimal sequences of operations and selects a

machine, cutting tool and TADs for each operation of these sequences, considering additive

constraints. We present Fig. 2 to illustrate an overall perspective about the CAPP system.

Only the distinct boxes demonstrate the sections that are analyzed in this paper.

In the absence of a CAD modeler which will yield manufacturing features along with the

geometrical and technological information, a user interface is developed in the present work

for part representation in terms of form features and their attributes. The user interactively

inputs the details from the engineering drawing of the part. Then, the system selects

operations that possess the capability to produce the form features based on their

geometrical and technological requirements that this paper doesn’t consider this problem.

The system also generates the compulsive constraints from the inter-relationships that exist

between the operations. Using these constraints, an operations precedence graph is generated

by the system. A novel searching strategy is incorporated in the system that searches the tree

representing all the paths and generates initial sequences.

In the detailed planning, machines and cutting tools that can perform the operations are

selected by the system from the machine database and tool database. Then, based on

selected machines and cutting tools, TADs are determined. In the next step, optimization of

the operation sequence and selection of the machine and cutting tool and TAD for each

operation based on the additive constraints are carried out. Finally, the system generates a

process sheet that tabulates the operation number, operation description and the machine

tool, cutting tool and TAD for each operation.

Preliminary planning

If there are n operations for producing a part, then the aggregation S = {o1, o2, … on} of

operations has n members. Here, oi indicates the ith operation. Each combination sequence

of all operations in S represents one solution. Operation sequencing can be regarded as a

process in which a series of constraints ri (R = {r1, r2, … rp}) is imposed on aggregation S

one by one where ri is a constraint. Then the final operation sequence which can fully or

mostly satisfy R is considered to be the optimal operation sequence. The goal of operation

sequencing is to find the optimal operation sequence. It is known through practice that in

operation sequencing, the theoretic constraints cannot be satisfied fully, so if the final

operation sequence can satisfy obligatory constraints and other additive constraints, the

operation sequence is reasonable (Bo et al. 2006) According to this condition, the constraint

aggregation of the operation sequence may be divided into two categories: a compulsive

constraint aggregation and an additive constraint aggregation.

In this research, order and clustering constraints are considered as the compulsive constraint

aggregation that is implemented for acquiring the feasible operation sequences in the

preliminary planning and the optimization constraint is considered as the additive constraint

aggregation that is implement for acquiring the optimized operation sequence and the

optimized selection of the machine, cutting tool and TAD for each operation in the

secondary and the detailed planning.
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Analyzing constraints—In the preliminary planning, for producing the feasible

sequences of operations the compulsive constraint aggregation is applied so that if a

sequence of operations cannot satisfy the compulsive constraints, it is infeasible and must be

eliminated. In this paper two compulsive constraints are considered:

1. Order constraint: An order constraint is represented in the form of A → B meaning

that operation B cannot take place until operation A has finished. This constraint

includes locating constraints, accessibility constraints, non-destruction constraints,

first rough machining and last finish machining, first main machining and last

subordinate machining, first basic reference and last others part, and so forth.

2. Clustering constraint: A clustering constraint is represented in the form of A ↔ B

which has two meanings. It may signify that two operations A and B must be done

with one holding/setup or must be handled together, such as the constraints that

refer to a datum: parallelism, perpendicularity, angularity, concentricity, circular

run-out, total run-out, symmetry and the like. However, it may signify that two

operations A and B must be performed together successively without attending the

order, such as the constraint of rough machining and fine machining separation.

This means all the operations in the same azimuth side must be done together

successively and also means that the same kind of operations or the operation that

can be applied with the same cutting tool must be carried out together successively.

For clustering constraint, the order is unimportant.

In this paper, the analyses for the constraints are carried out in similar way as Salehi and

Tavakkoli-Moghaddam (2009). However, in this research, an intelligent search is presented

for producing the initial sequences of operations in the preliminary planning instead of using

GA,

Intelligent search strategy—In this section, a graphical representation that can be also

referred to as OPG (Operation Precedence Graph) is generated using the order constraints.

Then, the intelligent search generates the sequences of operations based on the order

constraints. These initial sequences are tested for validity using the clustering constraints

and infeasible sequences are eliminated.

Some of features in a part will act as references to other features and their relevant

operations can be carried out first. Thus, the operations precedence graphical will have some

starting nodes assuming null nodes as their parent.

The system starts searching from the null node, selects any one of the starting nodes and

stores its reference/setup number. While selecting the next node, any of the following cases

may arise:

Case 1 A node may have one or more child nodes of the same setup. Then, Step 1 is

followed.

Step 1 The system selects any of the children randomly and the search starts from that

child node.

Case 2 A node does not have a child of same setup number or it may have child of same

setup with either of its parents not selected earlier. Then, Step 2 is executed.

Step 2 The system traces back the parent hierarchy and looks for a matching child node

of same setup number. If it finds a match, succeeding node is selected randomly among

them. In case, no child node of same setup is available, all the left out nodes of the

parent hierarchy are considered and any one of them is selected randomly and its setup

number is stored.
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Case 3 A node does not have a child. In such situation, Step 2 is repeated.

This process is repeated till all nodes are traversed.

After producing the sequences, validity of sequences must be checked by clustering

constraints and the valid sequences must be selected for the detail and second planning.

Secondary and detailed planning

The optimized sequence of the operations of the part and the optimized selection of the

machine, cutting tool and TAD for each operation are obtained in the secondary and detailed

level of planning. For this purpose, a proposed GA is also applied to implement the

optimization constraints as an additive constraint aggregation. The proposed GA in this

section is similar to the GA presented in Salehi and Tavakkoli-Moghaddam (2009). In this

paper, we describe the proposed GA in the fallowing stages.

Coding strategy—a gene in a string represents an operation ID and corresponding

machine, tool and tool access direction (TAD), which is used to accomplish this operation.

Sequence of operations is represented by the order of the genes in the string. Table 1 shows

the representation of a six-operation process plan. ‘Op3’ represents operation 3; M04, T02

and −x in the other rows represent the machine, tool and TAD, respectively, that are used to

perform operation 4, so are the other columns.

Population initialization—Once the number of the feasible sequences of the operations

is prescribed, the procedures for population initialization are given as follows:

1. Randomly select one sequence from the available feasible sequences of the

operations list.

2. Visit the first selected operation.

3. Randomly select machines and tools that can be used for manufacturing the

operation.

4. Randomly select one amongst all possible TADs for the operation.

5. Repeat steps (3) and (4), until each operation has been assigned a machine, a tool

and a TAD.

6. Repeat steps (1)–(5) until the feasible sequences of the operations are finished.

Fitness function—In this stage the additive constraint aggregation may be implemented.

The optimization constraints are often considered as the additive constraint aggregation.

These constraints mean that some target functions must be met in the technologic sequence

decision, such as minimum processing times, minimum production cost and so on. In this

research, the minimum processing time and minimum production cost can be employed to

calculate the fitness of each operation sequence and to measure the efficiency of a

manufacturing system.

1. Processing Time (PT), the commonly used criterion in practice, generally

comprises Machining Time (MT), Machine Change Time (MCT), Tool Change

Time (TCT) and Set-up Change Time (SCT). The fitness function is given as:

(1)
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2. Total Production Cost (PC) consists of Machine Cost (MC), Tool Cost (TC),

Machine Change Cost (MCC), Tool Change Cost (TCC) and Setup Change Cost

(SCC). The fitness function is computed by:

(2)

We can use one of these criteria or a combination of them.

Selection operator—The most of selection methods, such as roulette wheel’s extensions,

scaling techniques, tournaments, elitist models, and ranking methods were presented for

numerical optimization and their main objective was to reduce the sampling error and

improve calculation precision. When using GAs for operations sequencing, the natural

number format is used for coding. The fitness value of individual is only a relative concept

(only used for value comparisons and the value itself is not concerned), so the problem of

sampling error does not exist. Compared with other selection operators, the “tournament

selection” is more suitable for the problem of operations sequencing (Bo et al. 2006). In

order to guarantee the astringency of GA, the optimal (best) individual in one generation

must be kept for the next generation. Other individuals in population are selected using the

“tournament selection” operator. Suppose there have W individuals to be selected, selecting

two individuals randomly from the population and keeping the better one for the next

generation. Repeating this process W-1 times and then at last all individuals in the next

generation will be obtained.

Crossover operator—There are three crossover operators for path representation:

Partially Mapped Crossover (PMX) (Gorges-Schleuter 1985) Order Crossover (OX) (Davis

1985) and Cycle Crossover (CX) (Oliver et al. 1987). The aim of PMX crossover is keeping

the important similarities of parent and child generation. The OX crossover emphasizes that

the sequence order is very important. The CX reserves the absolute position of the elements

in the parent generation. The research of Oliver et al. (1987) indicated that OX is 11% better

than PMX and 15% better than CX. In this work, an OX crossover operator is adopted to

ensure the local precedence of operations is met and a feasible offspring is generated. The

procedure of the crossover operations is described as follows (see Table 2):

1. Based on the chromosome length, a crossover point is randomly generated. Each

string is then divided into two parts, the left side and the right side according to the

cutting point.

2. Copy the left side of parent 1 to form the left side of child 1. According to the order

of operations in parent 2, the operator constructs the right side of child 1 with

operations of parent 2, whose IDs are the same as operations of the right side in

parent 1.

3. The role of these parents will then be exchanged in order to generate another

offspring child 2.

Mutation operator—The mutation operator proposed here randomly selects some

individuals. Then the positions of two codes in each individual are swapped randomly.

Example of the mutation operation is shown in Table 3.

A new operator is developed to check the feasibility of the string obtained. If any string

violates the constraints, the string is considered infeasible and the total score is given a very

high value so that it will not come in the next generations:
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(3)

where α is a positive large number.

The frequency of machine change increases time and cost for accomplishing a job. To

decrease machine change, the machine change time or cost index can be increased. The

chromosomes resulting from these three operators are often known as offspring or children

and these form the next generation’s population. This process is repeated for a desired

number of generations, usually up to a point where the system converges to significant well-

performing sequences.

Example study

A part with 19 design features reported by Zhang (1997) is used to evaluate the capability of

the proposed algorithm for a CAPP system. Figure 3 shows the part with 23 operations and

Table 4 gives the information of operations that reported by Zhang (1997). Table 5 gives the

constraints that are obtained from a set of order constraints including fix-turability, tolerance

factor, good manufacturing practice and operation stages requirement for machining one

feature. This issue does not have the clustering constrains.

The operation precedence graph generated using the order constraints is shown in Fig. 4

along with the reference/setup number.

The system searches for all the precedence relations among the operations and generates

alternate sequences as strings of operations. This search procedure is evident in Fig. 4. The

search starts from the root node (null node ‘0’) and selects any one the start nodes, ‘14’ or

‘5’. Let us assume that node ‘5’ is selected and reference/setup number 2 is stored. At this

stage, case 1 in the search algorithm applies and node ‘5’ will have one node ‘6’ as the

succeeding one. ‘6’ is selected and its reference/setup number 2 is stored. The nodes ‘15’

and ‘4’ are possible succeeding nodes, and ‘4’ gets selected randomly. At this stage, case 2

is applicable and Step 2 yields the succeeding node ‘15’. Node ‘15’ is selected and this

search procedure is repeated till all the nodes are traversed. The resulting sequence is shown

in the first row in Table 6. Other initial sequences are also included in Table 6.

These initial sequences are tested for validity using the clustering constraints and infeasible

sequences are eliminated. In this case, we have no clustering constraints thus all of the

sequences in Table 6 are feasible.

For producing the part, available resources in the job shop and their cost indices are given in

Table 7. The cost indices of machines, tools and setup changes are MCCI = 300, TCCI = 10,

and SCCI = 90, respectively. For comparison, similar GA parameters used by Zhang (1997)

are used. These parameters are: population size 50, crossover rate 0.7, mutation rates 0.6,

and generations 8,000 (the stopping criterion). A final alternative optimal/near-optimal

sequence is given in the Table 8.

It can be concluded that the precedence relationships shown in Table 5 are maintained, such

as op9 after op8, op8 after op7 due to operation stages requirements, op5 before op21 due to

fixturability, op1 and op2 will be finished before op3 due to good manufacturing practice,

etc.

The number of iterations for producing the optimal process plans was about 50 generations

for each run, and the computation time using a PC with an Intel Pentium 4.2 GHz processor,
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1 GHz memory was about 10 s. In the final process plan produced by Zhang (1997), the

result was produced after 8,000 generations, and the computation time on a Pentium PC at

133 MHz was about 7 min (Zhang 1997). Through comparison with the process plan

reported in Zhang (1997), it can be seen that the proposed approach can generate the most

optimal process plan, which has the same quality obtained by Zhang, within the much fewer

number of iterations (50 compared to 8,000 iterations). In addition, the more significant

improvement of the proposed approach is that it generates the feasible sequences based on

the analysis of various constraints in the operation sequences using an intelligent search

strategy.

Through comparison between the proposed approach and the method reported in Salehi and

Tavakkoli-Moghaddam (2009) that implement a GA in preliminary planning instead of

intelligent search, it can be seen that in this work, the preliminary planning gives fewer

computation time. To verify this result we simulated 10 process planning problems

considering different number of operations and diverse information for operations in order

to solve problems using the two approaches. The results are shown in Fig. 5. It can be seen

that the proposed approach in this paper solves the problem using the fewer computation

time compared to the method reported in Salehi and Tavakkoli-Moghaddam (2009). In two

GAs approach reported in Salehi and Tavakkoli-Moghaddam (2009), the total time

computation comprises the time computation for each GA. While in our proposed approach

this time comprises the time computation for one GA and the intelligent search.

Certain abstractions are necessary in the preliminary planning, as it is done without

considering the specific resources such as machine tools, cutting tools, and so forth.

Therefore, any reference to processes, setups and tools is only to be understood as

abstractions. In the real word situation that there are more than one part for planning, their

processes can be planned by the proposed approach. However, it is necessary that the

processes of each part are considered as a cluster in the preliminary planning. By using this

approach, the break down in the final stage of machining can be modeled for each part. In

addition, the presented model can plan the clamping and fixturing. For this purpose, the

coding scheme should be extended for the proposed chromosome. In other words, a row for

the fixture and a row for the clam should be added in the chromosomes, and the fitness

function should be extended so that it is included the cost of the fixturing or clamping

change. By this approach, the fixturing or clamping change costs is also minimized.

Conclusion

In this paper, the process planning was divided into preliminary planning and secondary/

detailed planning. The preliminary planning is independent of resources, as it involves

abstractions of processes, setups, and so forth. In this stage, after necessary operations for a

part based on the form features selected, on the operations and their inter-relationships, the

preliminary sequences are determined. During the preliminary planning, an efficient

intelligent search is proposed to explore the large solution space of valid operation

sequences under compulsive constraints. The intelligent search strategy presented in this

paper generates the initial sequences from the operation precedence relation based on the

order constraints, that the feasibility of them was checked by clustering constraints. The

results of the preliminary planning are used in the next phase, the secondary/detailed

planning in which the exact operations, in which machine tools, cutting tools and TADs are

considered, and sequences of operations are optimized at the process level. A proposed

genetic algorithm (GA) in this paper optimizes the sequences using a criterion involving the

minimum processing time or minimum production cost that represents machine changes,

setup changes and tool changes.
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The process planning is a combinatorial problem with interacting constraints, and the

preliminary planning reduces the number of combinations to be examined. The GA

technique handles this combinatorial problem very well, and the reduction in the size of the

problem at each stage makes the algorithm a very fast and efficient.

The proposed algorithm can obtain optimal/near-optimal solutions, requiring about 10–40 s,

depending on the number of operations and the number of generations. Several case studies

were considered and the related results were obtained in less than 40 s. For a typical case of

an oil pathway broad with 29 operations, the results were obtained in 13.3 s for a population

size of 15 and 100 generations. The case study involving 38 operations took 15.4 s. Since

the computation time taken to generate the optimal/near-optimal sequences is low, the

software can be run several times to facilitate the process planner in obtaining alternative

sequences.
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Fig. 1.

Representation of a process plan
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Fig. 2.

Schematic diagram of the proposed CAPP system
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Fig. 3.

A prismatic part used by Zhang (1997)

Salehi and Bahreininejad Page 14

J Intell Manuf. Author manuscript; available in PMC 2012 August 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4.

Operation precedence graph
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Fig. 5.

Comparison of the computation time between two approaches
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Table 4

Operation information table in Zhang (1997)

Feature-ID Operations TAD candidates Machine candidates Tool candidates

F1 Drilling (op1) +z, −z M-01, M-02, M-03 T-01

F2 Drilling (op2) +z, −z M-01, M-02, M-03 T-01

F3 Milling (op3) +z, −z M-02, M-03 T-08

F4 Milling (op4) +y, −z M-02, M-03 T-05, T-06

F5 Milling (op5) +y M-02, M-03 T-05, T-06

F6 Milling (op6) +y M-02, M-03 T-05, T-06

F7 Drilling (op7) +z, −z M-01, M-02, M-03 T-02

F7 Reaming (op8) +z, −z M-01, M-02, M-03 T-03

F7 Boring (op9) +z, −z M-03, M-04 T-04

F8 Drilling (op10) +z, −z M-01, M-02, M-03 T-01

F9 Drilling (op11) +z, −z M-01, M-02, M-03 T-02

F9 Reaming (op12) +z, −z M-01, M-02, M-03 T-03

F9 Boring (op13) +z, −z M-03, M-04 T-04

F10 Milling (op14) +x M-02, M-03 T-05, T-06

F11 Drilling (op15) −z M-01, M-02, M-03 T-01

F12 Drilling (op16) −z M-01, M-02, M-03 T-01

F13 Milling (op17) −y, −z M-02, M-03 T-05, T-07

F14 Milling (op18) −y, −z M-02, M-03 T-05, T-06

F15 Drilling (op19) +z, −z M-01, M-02, M-03 T-01

F16 Drilling (op20) +z, −z M-01, M-02, M-03 T-01

F17 Milling (op21) −y M-02, M-03 T-05, T-06

F18 Drilling (op22) −y M-01, M-02, M-03 T-01

F19 Drilling (op23) −y M-01, M-02, M-03 T-01
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Table 5

Constraint generated for the part

Order constraints 1 → 2, 1 → 3, 21 → 1, 21 → 2, 4 → 3, 14 → 3, 21 → 3, 5 → 4, 6 → 4, 8 → 10, 11 → 13, 5 → 15, 5 → 16, 5 → 17, 5
→ 18, 5 → 19, 5 → 20, 5 → 21, 5 → 22, 5 → 23, 6 → 15, 6 → 16, 6 → 17, 6 → 18, 6 → 19, 6 → 22, 21 → 23, 22 →
23, 6 → 23, 7 → 8, 12 → 13, 7 → 10, 14 → 20, 7 → 12, 7 → 13, 21 → 7, 8 → 9, 8 → 11, 8 → 12, 8 → 13, 21 → 8,
21 → 9, 11 → 10, 11 → 12, 21 → 10, 5 → 6, 21 → 11, 12 → 13, 9 → 10, 9 → 11, 9 → 12, 9 → 13, 12 → 10, 21 →
12, 7 → 9, 21 → 13, 14 → 17, 14 → 18, 14 → 19, 14 → 21, 14 → 22, 14 → 23, 7 → 11, 15 → 16, 18 → 17, 18 → 19,
21 → 17, 21 → 18, 21 → 19, 21 → 20, 21 → 22

Clustering constraints –
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Table 6

Typical sequences generated using operation precedence relation

Sequences Validity

1 5 → 6 → 4 → 15 → 16 → 14 → 20 → 21 → 18 → 17 → 19 → 1 → 2 → 3 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 22
→ 23

Valid

2 5 → 6 → 15 → 16 → 4 → 14 → 21 → 18 → 17 → 19 → 22 → 23 → 20 → 1 → 2 → 3 → 7 → 8 → 9 → 11 → 12 → 13
→ 10

Valid

3 14 → 5 → 6 → 21 → 22 → 23 → 18 → 17 → 19 → 1 → 2 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 15 → 16 → 4 → 3
→ 20

Valid

4 14 → 5 → 6 → 20 → 4 → 15 → 16 → 21 → 22 → 23 → 1 → 2 → 3 → 18 → 17 → 19 → 7 → 8 → 9 → 11 → 12 → 13
→ 10

Valid

5 14 → 5 → 6 → 4 → 21 → 22 → 23 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 18 → 19 → 17 → 1 → 2 → 3 → 15 → 16
→ 20

Valid

6 14 → 5 → 6 → 21 → 18 → 17 → 19 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 22 → 23 → 1 → 2 → 20 → 15 → 16 → 4
→ 3

Valid

7 14 → 5 → 6 → 4 → 15 → 16 → 20 → 21 → 18 → 19 → 17 → 22 → 23 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 1 → 2
→ 3

Valid

8 5 → 6 → 4 → 15 → 16 → 14 → 21 → 22 → 23 → 18 → 17 → 19 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 1 → 2 → 3
→ 20

Valid

9 14 → 5 → 6 → 15 → 16 → 4 → 20 → 21 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 18 → 17 → 19 → 22 → 23 → 1 → 2
→ 3

Valid

10 14 → 5 → 6 → 4 → 21 → 22 → 23 → 7 → 8 → 9 → 11 → 12 → 13 → 10 → 18 → 19 → 17 → 1 → 2 → 3 → 15 → 16
→ 20

Valid
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Table 7

Available resources in the job shop in Zhang (1997)

ID Type Cost indices

M-01 Press drill 10

M-02 Vertical milling 35

M-03 Vertical CNC milling 60

M-04 Boring machine 50

T-01 Drill φ 0.2 3

T-02 Drill φ 1.2 3

T-03 Reamer 8

T-04 Boring tool 15

T-05 Milling cutter 10

T-06 Milling cutter 15

T-07 Slot cutter 10

T-08 Chamfer tool 10

MCCI: 300 SCCI: 90 TCI: 10
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