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A new kind of optimization technique, namely, continuous genetic algorithm, is presented in this paper for numerically
approximating the solutions of Troesch’s and Bratu’s problems.	e underlying idea of the method is to convert the two di
erential
problems into discrete versions by replacing each of the second derivatives by an appropriate di
erence quotient approximation.	e
newmethod has the following characteristics. First, it should not resort tomore advancedmathematical tools; that is, the algorithm
should be simple to understand and implement and should be thus easily accepted in the mathematical and physical application
�elds. Second, the algorithm is of global nature in terms of the solutions obtained as well as its ability to solve other mathematical
and physical problems. 	ird, the proposed methodology has an implicit parallel nature which points to its implementation on
parallel machines. 	e algorithm is tested on di
erent versions of Troesch’s and Bratu’s problems. Experimental results show that
the proposed algorithm is e
ective, straightforward, and simple.

1. Introduction

Nonlinear phenomena are of fundamental importance in var-
ious �elds of science and engineering and other disciplines,
since most phenomena in our world are essentially nonlinear
and are described by nonlinear equations. On the other
hand, most models of real-life problems are still very di�cult
to solve analytically. 	erefore, approximate and numerical
solutions were introduced.

Numerical methods are methods for solving problems
on computers by numerical calculations, oen giving a
table of numbers and/or graphical representations or �gures.
Numerical methods tend to emphasize the implementation
of algorithms. 	e aim of numerical methods is therefore
to provide systematic methods for solving problems in a
numerical form. 	e process of solving problems generally
involves starting from an initial data, using high precision
digital computers, following the steps in the algorithms, and

�nally obtaining the results. Oen the numerical data and the
methods used are approximate ones.

	e goal of this paper is to give an e
ective optimization
approach for solving two certain nonlinear second-order,
two-point boundary value problems (BVPs) based on the use
of the continuous genetic algorithm (GA) as an alternative
to existing methods. 	e present technique can avoid any
sensitivity of the problems and can be applied without any
limitation on the number of mesh points. On the other
aspect as well, the new technique is accurate, needs less
e
ort to achieve the results, and is developed especially for
nonlinear case. More speci�cally, we consider the following
two problems.

Problem 1. Troesch’s problem, which is covered by the ordi-
nary di
erential equation:

��� (�) − � sinh (�� (�)) = 0, � > 0, � ∈ [0, 1] , (1)
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subject to the boundary conditions

� (0) = 0, � (1) = 1. (2)

Problem 2. Bratu’s problem, which is covered by the ordinary
di
erential equation:

��� (�) + � exp (� (�)) = 0, � > 0, � ∈ [0, 1] , (3)

subject to the boundary conditions

� (0) = 0, � (1) = 0. (4)

	e closed form solution of Troesch’s problem in terms
of the Jacobian elliptic function has been given in [1]

as �(�) = (2/�)sinh−1[(1/2)��(0)sc(�� | 1 − (1/4)(��(0))2)],
where ��(0) = 2√1 − 
 in which the constant 
 being
the solution of the transcendental equation sinh(�/2) =
sc(� | 
)√1 − 
 such that sc(� | 
) is the Jacobi function
de�ned by sc(� | 
) = sin�/ cos�, where �, �, and 

are related by the integral � = ∫�0 (1/√1 − 
sin2�)��. It
was noticed that a pole of �(�) occurs at a pole of sc(�� |1 − (1/4)(��(0))2). It was also noticed in [1] that the pole
occurs at �� ≈ (1/2�) ln(16/(1 − 
)), which implies that the

singularity lies within the integration range if ��(0) > 8�−�.
	e closed form solution of Bratu’s problem has been given in
[2] as �(�) = −2 ln[cosh(0.5(� − 0.5)�)/ cosh(�/4)] , where� is the solution of the transcendental equation � = √2�
cosh(�/4). In fact, this equation has two, one, or no solution
when � < ��, � = ��, or � > ��, respectively, in which the

critical value �� satis�es the equation 4 = √2�� sinh(�/4).
It was evaluated in [2] that the critical value of �� equals3.513830719.

Troesch’s problem was �rst described and solved by
Weibel [3]. Troesch’s equation comes from the investigation
of the con�nement of a plasma column under radiation
pressure and also in the theory of gas porous electrodes [4–
6]. Bratu’s problem was �rst studied and solved by Bratu [7].
Bratu’s equation is used in a large variety of applications such
as the model of thermal reaction process, the Chandrasekhar
model of the expansion of the universe, chemical reaction
theory, nanotechnology, and radiative heat transfer [8–10].

In general, nonlinear BVPs do not always have solutions
which we can obtain using analytical methods. In fact,
many of real physical phenomena encountered are almost
impossible to solve by this technique. Due to this, some
authors have proposed numerical methods to approximate
the solutions of Troesch’s and Bratu’s problems. To mention
a few, the Laplace transform decomposition method has
been applied to solve Troesch’s and Bratu’s problems as
described in [11, 12]. In [13] also, the author has provided the
decompositionmethod to further investigate to Troesch’s and
Bratu’s equations. Furthermore, the homotopy perturbation
method is carried out in [14] for solving (1) and (2). 	e
variational iteration method has been used to solve (1) and
(2) as presented in [15]. In [16], the authors have developed
the B-spline method to solve Problem 2. Recently, Lie-group
shooting method for solving Problem 2 is proposed in [17].

	e organization of the remainder of this paper is as fol-
lows. In Section 2, we present a short preface to optimization
technique. In Section 3, we formulate the �tness function
in order to solve Problems 1 and 2 using continuous GA.
Section 4 covers the description of continuous GA in detail.
Simulation results are given in Section 5 in order to verify the
mathematical results of the proposed method. Statistical and
convergence analysis are provided by the results of numerical
simulation in Section 6. Finally, in Section 7 a brief summery
is presented.

2. Overview of Optimization Technique

Optimization is the process of making something better. An
engineer or scientist conjures up a new idea and optimization
improves on that idea. Optimization consists in trying varia-
tions on an initial concept and using the information gained
to improve on the idea. A computer is the perfect tool for
optimization as long as the idea or variable in�uencing the
idea can be input in electronic format. Feed the computer
some data and out comes the solution.

	e terminology “best” solution implies that there ismore
than one solution and the solutions are not of equal value.
	e de�nition of best is relative to the problem at hand,
its method of solution, and the tolerances allowed. 	us
the optimal solution depends on the person formulating the
problem. Education, opinions, bribes, and amount of sleep
are factors in�uencing the de�nition of best. Optimization
plays a crucial role in various disciplines in sciences, industry,
engineering, and almost in every aspect of the daily life. Opti-
mization problems are encountered, for example, in commu-
nication systems [18], antenna design [19], semiconductors
manufacturing [20], aerodynamics [21], transportation and
tra�c [22], nuclear reactor design [23], medicine [24], and
economics [25].

Optimization occupies a fundamental position in engi-
neering design and applications, since the classical function
of the engineer is to design new, better, or more e�cient and
less expensive systems as well as to advise planes and proce-
dures for the improved operation of exiting systems [26].	e
application of optimizationmethods to engineering problems
requires the selection of the problem decision variables that
are adequate to characterize the possible candidate designs
or operating conditions of the system, the de�nition of the
objective function on the basis of which candidates will be
ranked to determine the best solution, and the de�nition of
a model that describes the manner in which the problem
variables are related and the way in which the performance
criterion is in�uenced by the variables. 	e problem’s model
normally includes a set of equality constraints, inequality
constrains, and some bounds for the variables. In its most
general case, the optimization problem involves the deter-
mination of the optimal set decision variables of a given
objective function in the presence of some constraints. In
the context of optimization, the “best” will always mean the
candidate system with either the minimum or maximum
value of the objective function.
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Optimization problems can be divided into two cate-
gories depending on whether the solution is continuous or
discrete. An optimization problem with discrete solution is
known as a conventional optimization problem, while the
continuous version is known as a continuous optimization
problem. Numerical continuous optimization is the study of
how to get the global numerical solution (value or point)
for continuous mathematical and physical problems. 	e
importance of numerical continuous optimization has been
arisen in lots of research �elds, such as science, engineering,
and business [27–29].

3. Formulation of the Fitness Function

In this section, Troesch’s and Bratu’s problems of ordinary
types are �rst formulated as optimization problems by the
direct minimization of the overall individual residual error
subject to the given constraints boundary conditions and are
then solved using continuous GA.

To approximate the solutions of Troesch’s and Bratu’s
problems, we make the stipulation that the mesh points are
equally distributed through the interval [0, 1]. 	is condition
is ensured by setting �� = �ℎ, � = 0, 1, . . . , �, where ℎ = 1/�.
	us, at the interior mesh points, ��, � = 1, 2, . . . , � − 1, the
equation to be approximated is given as

��� (��) = � (� (��)) , �1 ≤ �� ≤ ��−1, (5)

subject to the boundary conditions

� (�0) = 0, � (��) = �, (6)

where �(�(��)) = � sinh(��(��)), � = 1, for Troesch’s
problem and �(�(��)) = −� exp(�(��)), � = 0, for Bratu’s
problem.

	e �nite di
erence approximations for derivatives are
one of the simplest and of the oldest methods to solve
di
erential equations.	ismethod consists of approximating
the di
erential operator by replacing the derivatives in
the equation using di
erence quotients. In this work, we
will employ this technique to approximate the solutions of
Troesch’s and Bratu’s problems numerically using continuous
GA. Anyhow, the di
erence quotients approximation formu-
las, which closely approximate ���(��), � = 1, 2, . . . , � − 1,
when ℎ is small using 5 points at the interiormesh points with

error of order O(ℎ3), are given as follows:

��� (�1) ≈ 1ℎ2Δ (� (�0) , � (�4)) ,
��� (��) ≈ 1ℎ2Π(� (��−2) , � (��+2)) , � = 2, 3, . . . � − 2,

��� (��−1) ≈ 1ℎ2∇ (� (��−4) , � (��)) ,
(7)

where Δ,Π, and ∇ are forward, central, and backward differ-
ences, respectively, and are given as

Δ (� (�0) , � (�4)) = 1112� (�0) − 53� (�1) + 12� (�2)
+ 13� (�3) − 112� (�4) ,

Π (� (��−2) , � (��+2)) = − 112� (��−2) + 43� (��−1) − 52� (��)
+ 43� (��+1) − 112� (��+2) ,

∇ (� (��−4) , � (��)) = − 112� (��−4) + 13� (��−3)
+ 12� (��−2) − 53� (��−1)
+ 1112� (��) .

(8)

To complete the formulation substituting the di
erence
approximation formulas of���(��), � = 1, 2, . . . , �−1, into (5),
the discretized formof this equation is obtained.	e resulting
algebraic equations will be a function of �(�0), �(�1), . . ., and�(��). On the other hand, using formulas in (7), the discrete
equations to be optimized will take the following form:

1ℎ2Δ (� (�0) , � (�4)) − � (� (�1)) ≈ 0,1ℎ2Π(� (��−2) , � (��+2)) − � (� (��)) ≈ 0,� = 2, 3, . . . � − 2,
1ℎ2∇ (� (��−4) , � (��)) − � (� (��−1)) ≈ 0.

(9)

In order to construct the �tness function, we �rst de�ne
the residual of the general interior node, Res, as

Res (1) = 1ℎ2Δ (� (�0) , � (�4)) − � (� (�1)) ,
Res (�) = 1ℎ2Π(� (��−2) , � (��+2)) − � (� (��)) ,� = 2, 3, . . . � − 2,

Res (� − 1) = 1ℎ2∇ (� (��−4) , � (��)) − � (� (��−1)) .
(10)

As the second step in the construction, we de�ne the
overall individual residual function, Oir, in �2 norm to be a
function of the residuals of all interior nodes. 	is function
may be stated as

Oir = √Res2 (1) + �−2∑
�=2

Res2 (�) + Res2 (� − 1). (11)
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For the �nal step, we de�ne the �tness function, Fit, as

Fit = �� +Oir
; � is a small positive number. (12)

Amapping of the overall individual residual function into
a �tness function is required in the algorithm in order to
convert theminimization problemofOir into amaximization
problem of Fit. In fact, we do this to facilitate the calculations
and planning graphics. 	e value of individual �tness is
improved if a decrease in the value of the Oir is achieved.
	e optimal solution of the problem, nodal values, will be
achieved whenOir approaches zero and Fit approaches unity.

4. Outline of the Genetic Algorithm

	e GA is an optimization and search technique based on
the principles of genetics and natural selection. 	e GA
allows a population composed of many individuals to evolve
under speci�ed selection rules to a state that maximizes the
�tness function. In this section, a general review of the GA is
presented. Aer that, a detailed description of the continuous
GA is given. As will be shown later, the e�ciency and
performance of continuous GA depend on several factors,
including the design of the continuous GA operators and the
settings of the system parameters.

GA, initiated in [30] as stochastic search technique
based on the mechanism of natural selection and natural
genetics, has received a great deal of attention regarding
its potential as optimization technique for solving discrete
optimization problems or other hard optimization problems.
GA start with an initial population of individuals generated
at random. Each individual in the population represents
a potential solution to the problem under consideration.
	e individuals evolve through successive iterations, called
generations. During each generation, each individual in
the population is evaluated using some measure of �tness.
	en, the population of the next generation is created
through genetic operators. 	e procedure continues until
the termination conditions are satis�ed. GA is nature-
inspired optimization method that can be advantageously
used for many optimization problems. GA imitates basic
principles of life and applies genetic operators like mutation,
crossover, or selection to a sequence of alleles. 	e sequence
of alleles is the equivalent of a chromosome in nature and
is constructed by a representation which assigns a string
of symbols to every possible solution of the optimization
problem.

GA is an evolutionary computation technique, devel-
oped for optimization of nonlinear, constrained and uncon-
strained, nondi
erentiable multimodal functions. Here, we
introduce someof the advantages ofGA [31]; �rst, it optimizes
with continuous or discrete variables; second, simultaneously
searches from a wide sampling of the cost surface; third,
it deals with a large number of variables; fourth, it is well
suited for parallel computers; �h, it optimizes variables with
extremely complex cost surfaces (they can jump out of a local
minimum); sixth, it provides a list of optimum variables, not
just a single solution; seventh, it may encode the variables

so that the optimization is done with the encoded variables;
eighth, it works with numerically generated data, experimen-
tal data, or analytical functions.

Remark 3. 	e term continuous in “continuous GA” is used
to emphasize the continuous nature of the optimization
problem and the continuity of the resulting solution curves.

Continuous GA was developed as an e�cient method
for the solution of optimization problems in which the
parameters to be optimized are correlated with each other or
the smoothness of the solution curvemust be achieved [32]. It
has been successfully applied in themotion planning of robot
manipulators, which is a highly nonlinear, coupled problem
[33, 34], in the solution of collision-free path planning prob-
lem for robot manipulators [35], in the numerical solution of
second-order, two-point BVPs [36], in the solution of optimal
control problems [37], in the solution of second-order, two-
point singular BVPs [38], and in the solution of systems of
second-order regular BVPs [39]. 	eir novel development
has opened the doors for wide applications of the algorithm
in the �elds of mathematics and physics. It has been also
applied in the solution of fuzzy di
erential equations [40].
On the other hand, the numerical solvability of other versions
of di
erential equations and other related equations can be
found in [41–48] and references therein. 	e reader is asked
to refer to [32–40] in order to know more details about con-
tinuous GA, including its history, its justi�cation for use, its
applications, its characteristics, and its operators and control
parameters.

	e use of continuous GA with coupled parameters
and/or smooth curves needs some justi�cation [32, 36]. First,
the discrete initialization version of the initial population
means that neighbouring parameters might have opposite
extreme values thatmake the probability of valuable informa-
tion in this population very limited and correspondingly the
�tness will be very low. 	is problem is overcome by the use
of continuous curves that eliminate the possibility of highly
oscillating values among the neighbouring parameters and
result in a valuable initial population. Second, the traditional
crossover operator results in a jump in the value of the
parameter in which the crossover point lies while keeping
the other parameters the same or exchanged between the two
parents. 	is discontinuity results in a very slow converging
process. On the other hand, the continuous GA results
in smooth transition in the parameter values during the
crossover process. 	ird, the conventional version of the
mutation process changes only the value of the parameter
in which the mutation occurs, while it is necessary to make
some global mutations which a
ect a group of neighbouring
parameters since either the parameters are coupled with
each other or curve should be smooth. To summarize,
the operators of the continuous GA are of global nature
and applied at the individual level, while the operators of
the traditional GA are of local nature and applied at the
parameter level. As a result, the operators of the traditional
GA result in a step-function-like jump in the parameter
values, while those of continuous GA result in smooth
transitions.
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Figure 1: 	e �owchart of the life cycle of continuous GA.

Continuous GA has several advantages over conventional
one when it is applied to problems with coupled parameters
and/or smooth solution curves [32, 36] as follows.

(1) 	ere are no encoding/decoding processes in contin-
uous GA. 	is means that the execution time will be
smaller in continuous GA case if both GA versions
converge in the same number of generations.

(2) 	e memory requirements of conventional GA are
higher than those of continuous GA because the
former uses genotype and phenotype representations
of the population’s individuals, while the later utilizes
only the phenotype data. 	is makes continuous GA
more suitable for problems with larger number of
parameters.

(3) In conventional GA, the actual range of the parameter
values should lie within the fed range during the
evolution process; otherwise, the optimal solution
will not be reached. 	is is because the encod-
ing/decoding processes in conventional GA require
the range of values within which the solution should
lie. To overcome this problem in conventional GA,
a wide range of the parameter values should be
provided or some adaptive range value scheme should
be used. However, this problem is not encountered
in continuous GA due to the fact that there are no
encoding/decoding processes.

(4) 	e conventional GA fails to �nd the optimal solution
in such problems. It might reach a near-optimal
solution; as a result, it cannot be used in applications
where the optimal solution is required.	e de�ciency
of the conventional GA is emphasized when the
dimension of the optimization problem increases or
the coupling e
ect is accentuated.

However, when using GA in optimization problems,
one should pay attention to two points: �rst, whether the
parameters to be optimized are correlated with each other
or not; second, whether there is some restriction on the
smoothness of the resulting solution curve or not. In case
of uncorrelated parameters or nonsmooth solution curves,
the conventional GA will perform well. On the other hand, if
the parameters are correlated with each other or smoothness
of the solution curve is a must, then the continuous GA is
preferable in this case [32–40].

To summarize the evolution process in continuous GA
for solving Troesch’s and Bratu’s problems, an individual is

a candidate solution that consists of 1 curve of � − 1 nodal
values.	e population of individuals undergoes the selection
process, which results in a mating pool among which pairs
of individuals are crossed over with probability ��. 	is
process results in an o
spring generation where every child
undergoes mutation with probability �	. Aer that, the
next generation is produced according to the replacement
strategy applied. 	e complete process is repeated till the
convergence criterion is met where the � − 1 parameters of
the best individual are the required nodal values. 	e �nal
goal of discovering the required nodal values is translated into
�nding the �ttest individual in genetic terms. 	e �owchart
of the algorithm is given in Figure 1.

5. Simulation Results

To validate the integrity of continuous GA and to investigate
the errors of the modeling andmeasurements, we carried out
two experiments. In fact, simulation results are carried out in
order to verify the mathematical results and the theoretical
statements for the optimized solutions. 	e results obtained
by the continuous GA are compared with the analytical
solution of each problem. 	e e
ects of various continuous
GA operators and control parameters on the convergence
speed of the proposed algorithm are also investigated in this
section. 	e analysis includes the e
ect of various initializa-
tion methods on the convergence speed of the algorithm in
addition to an analysis of the e
ect of selection schemes, the
vector norm used, the crossover and mutation probabilities,
the population size, and the step size.

Remark 4. 	e convergence speed of the algorithm, when-
ever used, means the average number of generations required
for convergence.

	e continuous GA produces one population aer
another. 	is can be done in an in�nite loop. When the user
speci�es a �tness value to be reached, the procedure can be
stopped as soon as at least one individual has a higher �tness
than the desired one. Oen, the user does not exactly know
how big the �tness value of an acceptable solution should be.
	erefore, one would like to stop the continuous GAwhen he
cannot expect to obtainmuchbetter solutions anymore. From
the experience with traditional optimization algorithms one
might be tempted do observe convergence and to stop the
continuous GA when the maximum �tness remains more or
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Table 1: Numerical results for Troesch’s problem when � = 0.5.
�� Exact value Approximate value |Err(��)| |Res(��)|0 0 0 0 00.1 0.0951769020 0.0951768506 5.14476384 × 10−8 4.33487462 × 10−70.2 0.1906338691 0.1906337234 1.45741828 × 10−7 9.77131143 × 10−70.3 0.2866534030 0.2866533395 6.34609416 × 10−8 4.75142679 × 10−70.4 0.3835229288 0.3835228897 3.90866823 × 10−8 3.31275728 × 10−70.5 0.4815373854 0.4815373121 7.33121592 × 10−8 6.41709009 × 10−70.6 0.5810019749 0.5810019054 6.95247591 × 10−8 8.39064329 × 10−70.7 0.6822351326 0.6822350995 3.31330484 × 10−8 8.13306207 × 10−70.8 0.7855717867 0.7855717450 4.16561352 × 10−8 6.07573447 × 10−70.9 0.8913669875 0.8913669298 5.77267702 × 10−8 2.24858269 × 10−71 1 1 0 0

Table 2: Numerical results for Troesch’s problem when � = 1.
�� Exact value Approximate value |Err(��)| |Res(��)|0 0 0 0 00.1 0.0817969966 0.0817961006 8.95972167 × 10−7 6.02388187 × 10−50.2 0.1645308709 0.1645279896 2.88132675 × 10−6 6.70066325 × 10−40.3 0.2491673608 0.2491660068 1.35402743 × 10−6 6.78708955 × 10−40.4 0.3367322092 0.3367315761 6.33142603 × 10−7 3.82537236 × 10−50.5 0.4283471610 0.4283456762 1.48480592 × 10−6 7.09360764 × 10−40.6 0.5252740296 0.5252726497 1.37988706 × 10−6 7.37034856 × 10−40.7 0.6289711434 0.6289706787 4.64675846 × 10−7 7.35668506 × 10−50.8 0.7411683782 0.7411675558 8.22354112 × 10−7 7.16391614 × 10−50.9 0.8639700206 0.8639681690 1.85163340 × 10−6 7.21723770 × 10−51 1 1 0 0
less constant over some populations. However, the continu-
ous GA is stopped when one of the following conditions is
met:

(1) the �tness of the best individual of the population
reaches a value of 0.999999;

(2) the maximum nodal residual of the best individual of
the population is less than or equal to 0.00000001;

(3) a maximum number of 3000 generations is reached;

(4) the improvement in the �tness value of the best
individual in the population over 500 generations is
less than 0.001.

It is to be noted that the �rst two conditions indicate a
successful termination process (optimal solution is found),
while the last two conditions point to a partially successful
end depending on the �tness of the best individual in the
population (near-optimal solution is reached) [32–40].

	e continuous GA proposed in this work is used to
solve the given Troesch’s and Bratu’s problems.	e input data
to the algorithm is divided into two parts: the continuous
GA related parameters and the problems related parameters.
	e continuous GA related parameters include the popula-
tion size, �
, the individual crossover probability, ��, the
individual mutation probability, �	, the rank-based ratio, ��, the initialization method, the selection scheme used,

the replacement method, the immigration threshold value
and the corresponding number of generations, and �nally
the termination criteria. 	e problem related parameters
include the governing Troesch’s and Bratu’s equations, the
independent interval [0, 1], and the number of nodes,�.

Consider Troesch’s problems (1) and (2), when � = 0.5
and � = 1. Using continuous GA technique, taking �� =�/�, � = 0, 1, 2, . . . , �, with the �tness function (12) and
the previous termination conditions, the numerical results of
approximating �(��), when � = 0.5 and � = 1 at � = 10,�
 = 500, �� = 0.9, �	 = 0.9,  �� = 0.1, and � = 1 are
tabulated in Tables 1 and 2, respectively.

Consider Bratu’s problems (3) and (4), when � = 1
and � = 2. Using continuous GA technique, taking �� =�/�, � = 0, 1, 2, . . . , �, with the �tness function (12) and
the previous termination conditions, the numerical results of
approximating �(��), when � = 1 and � = 2 at � = 10,�
 = 500, �� = 0.9, �	 = 0.9,  �� = 0.1, and � = 1 are
tabulated in Tables 3 and 4, respectively.

Numerical comparisons for Troesch’s and Bratu’s prob-
lems are studied next. 	e conventional numerical methods
that are used for comparison of Troesch’s problem with
continuous GA include the Laplace transform decomposi-
tion method [11], decomposition method [13], homotopy
perturbation method [14], and variational iteration method
[15], while on the other hand, the conventional numerical
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Table 3: Numerical results for Bratu’s problem when � = 1.
�� Exact value Approximate value |Err(��)| |Res(��)|0 0 0 0 00.1 0.0498467900 0.0498469017 1.11747073 × 10−7 1.46008376 × 10−60.2 0.0891899350 0.0891901414 2.06424850 × 10−7 3.90633337 × 10−60.3 0.1176090956 0.1176093611 2.65491661 × 10−7 2.42396771 × 10−60.4 0.1347902526 0.1347905498 2.97185578 × 10−7 1.58574073 × 10−60.5 0.1405392142 0.1405395202 3.05996395 × 10−7 2.33841807 × 10−60.6 0.1347902526 0.1347905431 2.90489351 × 10−7 2.69406948 × 10−60.7 0.1176090956 0.1176093394 2.43813586 × 10−7 1.71196336 × 10−60.8 0.0891899350 0.0891901126 1.77595908 × 10−7 1.13445094 × 10−60.9 0.0498467900 0.0498468894 9.94223941 × 10−8 1.95960534 × 10−61 0 0 0 0

Table 4: Numerical results for Bratu’s problem when � = 2.
�� Exact value Approximate value |Err(��)| |Res(��)|0 0 0 0 00.1 0.1144107440 0.1144123667 1.62268051 × 10−6 3.02045290 × 10−50.2 0.2064191156 0.2064220793 2.96373587 × 10−6 5.97375566 × 10−50.3 0.2738793116 0.2738831613 3.84970866 × 10−6 3.98775778 × 10−50.4 0.3150893646 0.3150937394 4.37480887 × 10−6 3.42529172 × 10−50.5 0.3289524214 0.3289570153 4.59390598 × 10−6 4.43231785 × 10−50.6 0.3150893646 0.3150937944 4.42984785 × 10−6 4.44801409 × 10−50.7 0.2738793116 0.2738831212 3.80957282 × 10−6 2.65423819 × 10−50.8 0.2064191156 0.2064219434 2.82777504 × 10−6 2.22101666 × 10−50.9 0.1144107440 0.1144123281 1.58406997 × 10−6 3.81609672 × 10−51 0 0 0 0

Table 5: Absolute error results for Troesch’s problem when � = 0.5.
�� Method in [11] Method in [13] Method in [14] Method in [15] Continuous GA0 0 0 0 0 00.1 7.6745 × 10−4 7.6145 × 10−4 7.6266 × 10−4 4.8651 × 10−3 5.1448 × 10−80.2 1.4949 × 10−3 1.4842 × 10−3 1.4855 × 10−3 9.7001 × 10−3 1.4574 × 10−70.3 2.1410 × 10−3 2.1269 × 10−3 2.1273 × 10−3 1.4475 × 10−2 6.3461 × 10−80.4 2.6619 × 10−3 2.6458 × 10−3 2.6446 × 10−3 1.9154 × 10−2 3.9087 × 10−80.5 3.0098 × 10−3 2.9929 × 10−3 2.9900 × 10−3 2.3704 × 10−2 7.3312 × 10−80.6 3.1313 × 10−3 3.1150 × 10−3 3.1108 × 10−3 2.8080 × 10−2 6.9525 × 10−80.7 2.9660 × 10−3 2.9517 × 10−3 2.9471 × 10−3 3.2235 × 10−2 3.3133 × 10−80.8 2.4448 × 10−3 2.4338 × 10−3 2.4300 × 10−3 3.6110 × 10−2 4.1656 × 10−80.9 1.4872 × 10−3 1.4810 × 10−3 1.4792 × 10−3 3.9641 × 10−2 5.7727 × 10−81 0 1.1000 × 10−9 0 4.2740 × 10−2 0
methods that are used for comparison of Bratu’s problemwith
continuousGA include the Laplace transformdecomposition
method [12], decomposition method [13], B-spline method
[16], andLie-group shootingmethod [17]. Tables 5 and 6 show
a comparison between the absolute errors of our method
together with other aforementioned methods for Troesch’s
problem, while Tables 7 and 8 show a comparison for Bratu’s
problem.

As it is evident from the comparison results, it was found
that our method in comparison with the mentionedmethods

is much better with a view to accuracy and utilization. Also,
from the tables, it can be seen that the continuousGAmethod
is consistent with the accurate approximate solutions.

6. Statistical and Convergence Analysis

	roughout this paper, we will try to give the results of
Troesch’s and Bratu’s problems; however, in some cases we
will switch between the results obtained for the problems in
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Table 6: Absolute error results for Troesch’s problem when � = 1.
�� Method in [11] Method in [13] Method in [14] Method in [15] Continuous GA0 0 0 0 0 00.1 2.8661 × 10−3 2.4518 × 10−3 2.5847 × 10−3 1.8370 × 10−2 8.9597 × 10−70.2 5.8663 × 10−3 4.8998 × 10−3 5.0899 × 10−3 3.6808 × 10−2 2.8813 × 10−60.3 8.2321 × 10−3 7.2471 × 10−3 7.4256 × 10−3 5.5374 × 10−2 1.3540 × 10−60.4 1.0498 × 10−2 9.3535 × 10−3 9.4785 × 10−3 7.4109 × 10−2 6.3314 × 10−70.5 1.2262 × 10−2 1.1055 × 10−2 1.1095 × 10−2 9.3026 × 10−2 1.4848 × 10−60.6 1.3272 × 10−2 1.2092 × 10−2 1.2056 × 10−2 1.1209 × 10−1 1.3799 × 10−60.7 1.3171 × 10−2 1.2113 × 10−2 1.2039 × 10−2 1.3119 × 10−1 4.6468 × 10−70.8 1.1454 × 10−2 1.0620 × 10−2 1.0565 × 10−2 1.5012 × 10−1 8.2235 × 10−70.9 7.4049 × 10−3 6.9387 × 10−3 6.9135 × 10−3 1.6849 × 10−1 1.8516 × 10−61 0 1.8020 × 10−6 0 1.8565 × 10−1 0

Table 7: Absolute error results for Bratu’s problem when � = 1.
�� Method in [12] Method in [13] Method in [16] Method in [17] Continuous GA0 0 0 0 0 00.1 1.9788 × 10−6 2.6851 × 10−3 2.9797 × 10−6 7.5085 × 10−7 1.1175 × 10−70.2 3.9394 × 10−6 2.0219 × 10−3 5.4660 × 10−6 1.0182 × 10−6 2.0642 × 10−70.3 5.8548 × 10−6 1.5234 × 10−4 7.3357 × 10−6 9.0475 × 10−7 2.6549 × 10−70.4 7.7038 × 10−6 2.2017 × 10−3 8.4967 × 10−6 5.2393 × 10−7 2.9719 × 10−70.5 9.4665 × 10−6 3.0155 × 10−3 8.8921 × 10−6 5.0669 × 10−9 3.0600 × 10−70.6 1.1112 × 10−5 2.2017 × 10−3 8.4967 × 10−6 5.1386 × 10−7 2.9049 × 10−70.7 1.2572 × 10−5 1.5234 × 10−4 7.3357 × 10−6 8.9485 × 10−7 2.4381 × 10−70.8 1.3475 × 10−5 2.0219 × 10−3 5.4660 × 10−6 1.0086 × 10−6 1.7760 × 10−70.9 1.1968 × 10−5 2.6851 × 10−3 2.9797 × 10−6 7.4160 × 10−7 9.9422 × 10−81 0 0 0 0 0

Table 8: Absolute error results for Bratu’s problem with � = 2.
�� Method in [12] Method in [13] Method in [16] Method in [17] Continuous GA0 0 0 0 0 00.1 2.1290 × 10−3 1.5217 × 10−2 1.7179 × 10−5 4.0341 × 10−6 1.6227 × 10−60.2 4.2097 × 10−3 1.4675 × 10−2 3.2597 × 10−5 5.7027 × 10−6 2.9637 × 10−60.3 6.1868 × 10−3 5.8878 × 10−3 4.4899 × 10−5 5.2212 × 10−6 3.8497 × 10−60.4 8.0019 × 10−3 3.2466 × 10−3 5.2858 × 10−5 3.0749 × 10−6 4.3748 × 10−60.5 9.5992 × 10−3 6.9851 × 10−3 5.5614 × 10−5 1.4554 × 10−8 4.5939 × 10−60.6 1.0930 × 10−2 3.2466 × 10−3 5.2858 × 10−5 3.0464 × 10−6 4.4298 × 10−60.7 1.1933 × 10−2 5.8878 × 10−3 4.4899 × 10−5 5.1946 × 10−6 3.8096 × 10−60.8 1.2378 × 10−2 1.4675 × 10−2 3.2597 × 10−5 5.6787 × 10−6 2.8278 × 10−60.9 1.0873 × 10−2 1.5217 × 10−2 1.7179 × 10−5 4.0135 × 10−6 1.5841 × 10−61 0 0 0 0 0

order not to increase the length of the paper without the loss
of generality for the remaining cases and results.

Due to the stochastic nature of continuous GA, twelve
di
erent runs were made for every result obtained in this
work using a di
erent randomnumber generator seed; results
are the average values of these runs.	is means that each run
of the continuous GA will result in a slight di
erent result
from the other runs [32–40]. However, the convergence data
of Troesch’s and Bratu’s problems are given in Table 9.

	e evolutionary progress plots of the best-�tness indi-
vidual of Troesch’s and Bratu’s problems are shown in Figures
2 and 3, respectively. It is to be noted from the evolutionary
plots that the best-�tness function approaches one very fast
in the �rst stage of computations aer that the best-�tness
function reaches steady-state values and no further improve-
ment in the �tness value. 	is means that the approximate of
continuous GA converges to the actual solution very fast in
the �rst stage of computations.
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Table 9: Convergence data of Troesch’s and Bratu’s problems.

Case Gen Fit |Err| |Res|� = 0.5 1051 0.99999503 6.38988847 × 10−8 5.93727586 × 10−7� = 1 1231 0.99992419 1.30753614 × 10−6 3.45671315 × 10−4� = 1 1134 0.99999255 2.22018533 × 10−7 2.13495920 × 10−6� = 2 1313 0.99990899 3.33956728 × 10−6 3.47339266 × 10−5
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Figure 2: Plot of the best-�tness function for Troesch’s problem
when (a) � = 0.5 and (b) � = 1.

	e way in which the nodal values evolve is studied next.
Figure 4 shows the evolution of the �rst, �1, middle, �5, and
ninth, �9, nodal values for Troesch’s problem, while Figure 5
shows the evolution of the same nodal values for Bratu’s
problem.

It is observed from the evolutionary plots that the con-
vergence process is divided into two stages: the coarse-tuning
stage and the �ne-tuning stage, where the coarse-tuning stage
is the initial stage in which oscillations in the evolutionary
plots occur, while the �ne-tuning stage is the �nal stage in
which the evolutionary plots reach steady-state values and
do not have oscillations by usual inspection. In other words,
evolution has initial oscillatory nature for all nodes, in the
same problem. As a result, all nodes, in the same problem,
reach the near-optimal solution together.

	e e
ect of the di
erent types of initialization methods
on the convergence speed of the algorithm is discussed next.
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Figure 3: Plot of the best-�tness function for Bratu’s problem when
(a) � = 1 and (b) � = 2.
	ree initialization methods are investigated in this paper;
the �rst method uses the modi�ed normal Gaussian function
(MNGF), the second uses the modi�ed tangent hyperbolic
function (MTHF), and the third is the mixed-type initializa-
tion method that initializes the �rst half of the population
using the MNGF and the second half of the population
using the MTHF [32–40]. Table 10 shows that the use of the
initialization method has a minor e
ect on the convergence
speed because usually the e
ect of the initial population
dies aer few tens of generations and the convergence
speed aer that is governed by the selection mechanism,
crossover, and mutation operators [32–40]. For Troesch’s
problem, the MTHF results in the fastest convergence speed
while for Bratu’s problem, the MNGF results in the fastest
convergence speed. However, for a speci�c problem, the
initialization method with the highest convergence speed is
the one that provides initial solution curves which are close
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Figure 4: Evolution of the nodal values for Troesch’s problem when � = 1 for (a) �(�1), (b) �(�5), and (c) �(�9).
Table 10: 	e convergence speed of the algorithm using di
erent initialization functions for Troesch’s and Bratu’s problems.

Troesch’s problem MNGF MTHF Mixed Bratu’s problem MNGF MTHF Mixed� = 0.5 1110 917 1051 � = 1 1019 1220 1134� = 1 1369 1105 1231 � = 2 1202 1404 1313
Table 11: 	e e
ect of the vector norm on the convergence speed of the algorithm for Troesch’s and Bratu’s problems.

Troesch’s problem !1 norm !2 norm Bratu’s problem !1 norm !2 norm� = 0.5 1107 1051 � = 1 1298 1134� = 1 1324 1231 � = 2 1411 1313
to the optimal solution of that problem; that is, the optimal
solution of Troesch’s problem is close to the MTHF and the
optimal solution of Bratu’s problem is close to the MNGF.
However, since the optimal solution of any given problem
is not assumed to be known, it is better to have a diverse
initial population by the use of the mixed-type initialization
method. As a result, the mixed-type initialization method is
used as the algorithm default method [32–40]. 	e reader is
asked to refer to [32–40] in order to knowmore details about
the initialization methods used in continuous GA, including
their kinds and types and their justi�cation and conditions
for use.

	e e
ect of the vector normused in the �tness evaluation
is studied here. Two vector norms are used: !1 norm and !2
norm.	e !1 norm is governed by the equation

Oir = |Res (1)| + �−2∑
�=2

|Res (�)| + |Res (� − 1)| , (13)

while !2 norm is governed by (11). Figure 6 shows the evolu-
tionary progress plots for the best-of-generation individual
for Troesch’s problem when � = 1 and Bratu’s problem
when � = 2 using !1 and !2 norms, while Table 11 gives
the convergence speed for Troesch’s and Bratu’s problems
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Figure 5: Evolution of the nodal values for Bratu’s problem when � = 2 for (a) �(�1), (b) �(�5), and (c) �(�9).

for two di
erent cases. Two observations are made in this
regard. First, the evolutionary progress plots of both norms
show that !2 norm has higher �tness values than those of!1 norm throughout the evolution process. Second, !2 norm
converges a little bit faster than !1 norm. 	e key factor
behind these observations is the square power appearing in!2 norm. Regarding the �rst observation, it is known that for
a given set of nodal residuals with values less than 1, !1 norm
results in a higher value than !2 norm and correspondingly
the �tness value using !2 norm will be higher than that
using !1 norm. Regarding the second observation, !2 norm
tries to select individual solutions, vectors, with distributed
nodal residuals among the nodes rather than lumped nodal
residuals where one nodal residual is high and the remaining
nodal residuals are relatively small. 	is distributed selection
scheme results in closer solutions to the optimal one than the
lumped selection scheme. In addition to that, the crossover
operator will be more e
ective in the former case than in the
latter one. 	ese two points result in the faster convergence
speed in !2 norm as compared with !1 norm. Furthermore,
it is observed that !2 norm is less sensitive to variations in the
genetic related parameters and problem related parameters.
As a result, !2 norm is preferred over !1 norm and it is used
as the algorithm’s default norm [32–40].

	e particular settings of several continuous GA tuning
parameters including the probabilities of applying crossover
operator and mutation operator are investigated now. 	ese
tuning parameters are typically problem dependent and have
to be determined experimentally. 	ey play a non negligible
role in the improvement of the e�ciency of the algorithm.
Figure 7 shows the e
ect of the crossover probability, ��, and
themutation probability,�	, on the convergence speed of the
algorithm for Troesch’s problem when � = 0.5. It is clear
from Figure 7 that when the probabilities values �� and �	
are increasing gradually, the average number of generation
required for convergence is decreasing aswell. Also, it is noted
that the best performance of the algorithm is achieved when�� = 0.9 and �	 = 0.9. As a result, these values are set as the
algorithm default values [32–40].

	e in�uence of the population size on the convergence
speed, the average �tness, and the corresponding errors of
continuous GA is studied next for Troesch’s problem when� = 1 as shown in Figure 8. Small population sizes su
er
from larger number of generations required for convergence
and the probability of being trapped in local minima, while
large population sizes su
er from larger number of �tness
evaluations that means larger execution time. However, it
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Table 12:	e in�uence of the number of nodes on the convergence speed, the average �tness, and the corresponding errors of the algorithm
for Bratu’s problems when � = 1.
� Gen Fit |Err| |Res|5 601 0.99999077 1.00934085 × 10−5 8.99016147 × 10−410 1134 0.99999255 2.22018533 × 10−7 2.13495920 × 10−520 2409 0.99999191 1.16620506 × 10−9 9.58206567 × 10−8
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Figure 6: Evolutionary progress plots of best-�tness function using!1: (. . .) and !2: (—) vector norms for (a) Troesch’s problem, when� = 1, and (b) Bratu’s problem, when � = 2.

is noted that the improvement in the convergence speed
becomes almost negligible aer a population size of 700.

Now, the e
ect of the number of nodes on the con-
vergence speed, the average �tness, and the corresponding
errors is explored. Table 12 gives the relevant data for Bratu’s
problems when � = 1. It is observed that the reduction
in the step size results in a reduction in the error and
correspondingly an improvement in the accuracy of the
obtained solution. 	is goes in agreement with the known
fact about �nite di
erence schemes where more accurate
solutions are achieved using a reduction in the step size.
On the other hand, the cost to be paid while going in this
direction is the rapid increase in the number of generations
required for convergence. For instance, while increasing the
number of nodes from 5 to 10 to 20, the required number of
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Figure 7: 	e e
ect of the crossover and mutation probabilities on
the convergence speed of the algorithm for Troesch’s problem when� = 0.5.
generations for convergence jumps from almost 600 to 1130
to 2400, that is, 1.89 to 2.21multiplication factor.

Finally, the e
ect of the most commonly used selection
schemes by GA community of the performance on the
continuous GA is investigated. Table 13 represents the e
ect
of selection schemes on the convergence speed, the average
�tness, and the corresponding errors for Bratu’s problem
when � = 2. It is clear from Table 13 that the rank-based
selection scheme [49] has the faster convergence speed. 	e
tournament selection with replacement [49] and tournament
selection without replacement [50] approaches come in the
second place with almost similar convergence speeds. It is
obvious that the roulette wheel [30], stochastic universal
[50], and half biased selection [51] schemes have slower
convergence speed of the rest of the methods.	e half biased
selection scheme has the slowest convergence speed. 	e
reader is kindly requested to go through [32–40] for more
details about the selection scheme used in the algorithm.

7. Summery

	is paper has introduced a new optimization technique
based on the use of continuous GA where two smooth
solution curves are used for representing the required nodal
values. 	e continuous GA was found to be accurate in
which the boundary conditions of the problems are satis�ed.
Simulation results are carried out in order to verify the
mathematical results and the theoretical statements for the
optimized solutions. 	e applicability and e�ciency of the
proposed algorithm for the solution of di
erent cases of
Troesch’s and Bratu’s problems are investigated. On the other
aspect as well, the e
ect of di
erent parameters, including
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Figure 8: 	e e
ect of the population size of the algorithm for Troesch’s problem when � = 1 on the (a) Gen, (b) Fit, (c) |Err|, and (d) |Res|.
Table 13:	e in�uence of selection schemes on the convergence speed, the average �tness, and the corresponding errors for Bratu’s problems
when � = 2.
Selection method Gen Fit Err Res

Rank-based 1313 0.99990899 3.33956728 × 10−6 3.47339266 × 10−5
Tournament with replacement 1404 0.99998805 1.32758514 × 10−5 0.10260139 × 10−4
Tournament without replacement 1429 0.99999092 1.00934084 × 10−5 0.11360136 × 10−4
Roulette wheel 1699 0.99999184 9.06686522 × 10−5 0.10602135 × 10−4
Stochastic universal 1880 0.99998117 2.09275009 × 10−4 0.11740260 × 10−3
Half biased 2008 0.99998950 1.16620506 × 10−3 0.13856138 × 10−2
the evolution of nodal values, the initialization method, the
selection method, the vector norm used, the crossover and
mutation probabilities, the population size, and the step size,
is studied.
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Comptes Rendus, vol. 150, pp. 896–899, 1910.

[8] R. Buckmire, “Application of aMickens �nite-di
erence scheme
to the cylindrical Bratu-Gelfand problem,” Numerical Methods
for Partial Di�erential Equations, vol. 20, no. 3, pp. 327–337,
2004.

[9] J. S. McGough, “Numerical continuation and the Gelfand
problem,” Applied Mathematics and Computation, vol. 89, no.
1–3, pp. 225–239, 1998.

[10] A. S. Mounim and B. M. de Dormale, “From the �tting
techniques to accurate schemes for the Liouville-Bratu-Gelfand
problem,” Numerical Methods for Partial Di�erential Equations,
vol. 22, no. 4, pp. 761–775, 2006.

[11] S. A. Khuri, “A numerical algorithm for solving Troesch’s
problem,” International Journal of Computer Mathematics, vol.
80, no. 4, pp. 493–498, 2003.

[12] S. A. Khuri, “A new approach to Bratu’s problem,” Applied
Mathematics and Computation, vol. 147, no. 1, pp. 131–136, 2004.

[13] E. Deeba, S. A. Khuri, and S. Xie, “An algorithm for solving
boundary value problems,” Journal of Computational Physics,
vol. 159, no. 2, pp. 125–138, 2000.

[14] X. Feng, L. Mei, and G. He, “An e�cient algorithm for solving
Troesch’s problem,”AppliedMathematics and Computation, vol.
189, no. 1, pp. 500–507, 2007.

[15] S. Momani, S. Abuasad, and Z. Odibat, “Variational itera-
tion method for solving nonlinear boundary value problems,”
Applied Mathematics and Computation, vol. 183, no. 2, pp. 1351–
1358, 2006.
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