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The recent movement towards an open, competitive market environment introduced new
optimization problems such as market clearing mechanism, bidding decision and Available
Transfer Capability (ATC) calculation. These optimization problems are characterized by
the complexity of power systems and the uncertainties in the electricity market. Accurate
evaluation of the transfer capability of a transmission system is required to maximize
the utilization of the existing transmission systems in a competitive market environment.
The transfer capability of the transmission networks can be limited by various system
constraints such as thermal, voltage and stability limits. The ability to incorporate such
limits into the optimization problem is a challenge in the ATC calculation from an
engineering point of view. In the competitive market environment, a power supplier needs
to find an optimal strategy that maximizes its own profits under various uncertainties
such as electricity prices and load. On the other hand, an efficient market clearing
mechanism is needed to increase the social welfare, i.e. the sum of the consumers’ and
producers’ surplus. The need to maximize the social welfare subject to system operational
constraints is also a major challenge from a societal point of view. This paper presents
new optimization techniques motivated by the competitive electricity market environment.
Numerical simulation results are presented to demonstrate the performance of the proposed
optimization techniques.

Keywords: Markov decision process; market optimization; improving hit-and-run; power
system economics; available transfer capability.

1. Introduction

Optimization techniques have been applied to various traditional power system problems
including minimization of generation costs and system losses. Various optimization tools
have been developed to solve optimal power flow, economic dispatch and unit commitment
(Wood & Wollenberg, 1996). These problems are complex due to both the nonlinear
nature of power flows and a large number of continuous or discrete decision variables
and constraints. The recent movement towards an open, competitive market environment
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introduced new optimization problems such as market clearing mechanism, bidding
decision and available transfer capability (ATC) calculation. These new optimization
problems become more complicated due to the complexity of power systems and the
uncertainties in the electricity market.

In a competitive market environment, the system operator needs to know how much
additional power can be transferred from one area to another area without violating system
constraints. Accurate evaluation of the transfer capability of a transmission system is
required to maximize the utilization of the existing transmission systems. In practice,
the transfer capability of the transmission networks can be limited by various system
constraints such as thermal, voltage and stability limits (Graveneret al., 1999). The
ability to incorporate such limits into the optimization problem is a challenge in the ATC
calculation from an engineering perspective.

In a deregulated power market where electric power is traded through spot and
bilateral markets, a power supplier chooses an optimal strategy to maximize its own profits
under various uncertainties such as electricity prices and load. Rotting & Gjelsvik (1993)
and Kayeet al. (1990) proposed optimization-based methods for scheduling of bilateral
contracts. Songet al. (2000) used a Markov decision process (MDP) model to find an
optimal bidding strategy in the spot market environment. In trading, a power supplier needs
to find optimal coordination of the bilateral contracts and spot market bidding decision
while taking into account the supplier’s production limit. Therefore, maximization of the
combined profits in both markets requires optimization of the combined problem rather
than optimization of each individual problem. On the other hand, from a societal point
of view, an efficient market clearing mechanism is needed to increase the social welfare
that is the sum of the consumers’ and producers’ surplus. The need to maximize the social
welfare subject to system operational constraints is also a major challenge from a societal
point of view.

This paper presents state-of-the-art optimization techniques: (i) to maximize the power
transfer between areas, (ii) to maximize the expected profit for a power supplier, and
(iii) to maximize social welfare in a competitive market environment. The sensitivity of
the energy margin can provide information on how changes in generations can influence
the degree of stability of a system (Fouad & Vittal, 1992). The proposed ATC method
determines ATC between areas by running a series of numerical simulations directed by
energy margin sensitivity as well as energy margin. The decision-making process of the
bilateral contract affects the bidding strategy to the spot market since bidding decision-
making in electricity markets is coupled with the bilateral contract position. An MDP-
based optimization technique is intended to assist a market participant to make decisions on
bilateral contracts and bidding to the spot market. Given the nonlinearity of power systems,
the market optimization problem (MOP) requires the use of the global optimization
technique to maximize the social welfare of a market. A global optimization algorithm
in combination with sequential quadratic programming (SQP) is applied to solve the MOP
incorporating the complex characteristics of large-scale nonlinear power systems.

The remainder of this paper is organized as follows. In Section 2, the ATC calculation
problem, suppliers’ optimization problem (SOP) and MOP are formulated with the power
system model incorporating the nonlinear nature of power systems. Section 3 presents
optimization techniques to solve the problems described in Section 2.
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2. Problem description

2.1 Available Transfer Capability

According to the report of NERC (1995), transfer capability refers to the ability of
transmission systems to reliably transfer power from one area to another over all
transmission paths between those areas under given system conditions. The mathematical
definition of ATC given in the report of NERC (1996) is ‘. . . the Total Transfer
Capability (TTC) less the Transmission Reliability Margin (TRM), less the sum of existing
transmission commitments and the Capacity Benefit Margin (CBM)’:

ATC = TTC − TRM − existing transmission commitments (including CBM). (2.1)

TTC refers to the maximum amount of electric power that can be transferred over
transmission systems without violating system security constraints. The accuracy of the
ATC calculation is highly dependent on the accuracy of available network data, load
forecast, and the estimation of future energy transactions. Therefore, there is uncertainty
in ATC calculation associated with errors in load forecast and estimation of future energy
transactions. TRM is a safety margin to protect against the overload of the transmission
system considering those uncertain factors in ATC calculation. ‘Existing transmission
commitments’ means ‘existing transfers between areas’. The ATC between two areas
provides an indication of the maximum amount of additional MW transfer possible
between two parts of a power system.

ATC between areas can be calculated by increasing generation in the sending area and
at the same time increasing the same amount of load in the receiving area until the power
system reaches system limits. The evaluation of ATC can be formulated as an optimization
problem. The objective function to be maximized is expressed as

max
∑

i∈area A

∆Pi (2.2)

subject to

ẋ = f (x, y) (2.3)

0 = g(x, y) (2.4)

0 � Pi + ∆Pi � Pmax
i (2.5)

−Fmax � F(x, y) � Fmax (2.6)

V min � V � V max (2.7)

E M(x, y) > 0, (2.8)

where Pi is power injection at the bus of generator ‘i ’ and
∑

i∈area A∆Pi is the sum of
the increased generation in the sending area A,x is a vector of state variables andy is
a vector of algebraic variables. Equation (2.3) represents differential equations describing
the dynamic behaviours of the power system while (2.4) represents algebraic equations
including power flow equations. Equations (2.5)–(2.8) are inequality constraints.Pmax

i
is the upper limit of active power output of generator ‘i ’. Fmax is the vector of thermal
limits of transmission lines.V min and V max are the vectors of lower and upper limits
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of bus voltage magnitudes, respectively.E M(x, y) is energy margin which provides a
quantitative measure of the degree of stability of power systems (Fouad & Vittal, 1992).
The energy margin of a power system indicates how far the power system is from the
stability boundary. The technical details for computing the second-kick-based energy
margin of the system can be found in the work of Hashimotoet al. (2002).

The limiting conditions of transmission systems can shift among thermal, voltage, and
stability limits as the operating condition of the power system change over time. Stability
limits of systems may become more restrictive than static limits depending on system
operating conditions. The ATC calculation must be evaluated based on the most restrictive
one of those limiting factors. Therefore, the accuracy of ATC calculation is not reliable
if the stability limits of the system are not taken into account. It is desirable to consider
stability limits in addition to static limits in the ATC calculation.

2.2 Suppliers’ optimization problem

In a competitive market environment, power suppliers choose their optimal strategies
to maximize their own profits. A power supplier may participate in a bilateral market
in addition to a spot market. A supplier’s existing bilateral contracts would influence
its bidding decision to the spot market since the total amount of electricity that can
be simultaneously traded in both markets is restricted by its capacity limit. Therefore,
a supplier’s scheduling of bilateral contract needs to be coordinated with its bidding
decisions to spot market in order to maximize the combined profits (Joo & Liu, 2000).

This study assumes that a power supplier has an obligation to provide a certain contract
volume over a time horizon. The power supplier with bilateral obligations decides the
scheduling of the bilateral contracts and simultaneously chooses a bidding strategy to
the spot market to maximize the total profit over the planning horizon. In this section,
an MDP-based optimization technique is used to find a supplier’s optimal decisions over
the planning horizon. A MDP consists of four elements such as states, decision options,
transition probabilities, and rewards (Howard, 1960). The MDP provides a multi-stage
decision model where the status of a system is represented by a stochastic process with
decision options that induce stochastic transitions from one state to another state.

Power suppliers submit bids to the spot market to sell electricity. The spot prices are
determined by the bids from power suppliers and the load demand. Hence, the bidding
behaviours of market players will be affected by the spot price, the load demand and
tomorrow’s load forecast. Scheduling of the flexible bilateral contract is considered as the
decision-making process that affects bidding strategy to the spot market. With this in mind,
the state of electricity markets is defined by all possible combinations of RCV (remaining
contract volume) of a given bilateral contract, spot price, cleared-demand and tomorrow’s
load forecast in the spot market. Then, the number of possible states is (the number of
possible RCV)× (the number of possible spot price)× (the number of possible demand)
× (the number of possible forecastload). The number of states does not increase as the
number of players or the duration of the planning horizon increases. The decision options
of the power supplier consist of all possible combinations of the usage of a given flexible
bilateral contract and the bidding decision to the spot market.

Transition probabilities can be modelled by statistical analysis based on competitors’
bidding data, historical prices and load information. In this paper, Pr(t, i, k, j) represents
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the transition probability from statei to state j if the decision maker makes decision
option ‘k’ f or each time periodt . The calculation of transition probability requires the
identification of market scenarios, which include the other player’s probabilistic bidding
information as well as the decision option of the power producer. If all possible aggregate
bidding data with forecasted demand in statei are put into the market clearing system,
a transition can be found according to the market clearing price and RCV. Then, one
must find all scenarios which contribute to statej , and add up all the probabilities of the
various scenarios. The overall probability represents the transition probability from statei
to statej . The availability of the competitors’ bidding data is critical for the accuracy of
the transition probabilities.

The power supplier earnsri j dollars when the electric market system moves from state
i to statej . Theri j associated with the transition from statei to j is called the ‘reward’.
Reward is the difference between the revenue and the cost of the power supplier. For each
time periodt , the immediate reward of a power supplier from statei to statej with decision
option ‘k’ i s calculated as follows:

r(t, i, k, j) = S P(t, j) × Q(t, j) + BC P × x(t, k) − Cost[Q(t, j) + x(t, k)] (2.9)

whereS P(t, j) = spot market price in statej at time periodt , Q(t, j) = power producer’s
quantity that is accepted into spot market in statej at time periodt , x(t, k) = scheduling
decision of bilateral contract with decision optionk at time periodt , andBC P = bilateral
contract price per MW. After the transition probabilities and rewards are calculated, the
next step is to find the optimal decision option in thei th state that maximizes the expected
value of accumulated rewards over the planning horizon. A value iteration algorithm is
used to find an optimal decision option to maximize the following value iteration equation:

V (i, τ + 1) = K
max
k=1

N∑
j=1

{Pr(i, k, j) ∗ [r(i, k, j) + V ( j, τ )]} (2.10)

whereV (i, τ + 1) is the total expected reward inτ + 1 remaining stages starting from
statei if an optimal policy is followed. OnceV is computed over the decision options,
the optimal policy is immediately obtained by choosing any decision which satisfies the
maximum function of the value iteration equation.

2.3 Market Optimization Problem

From a market point of view, it is desirable to maximize the social welfare, which is
defined by the sum of the consumers’ and producers’ surplus. There are transmission
system constraints based on the nonlinear power flow model. Generators also have their
capacity availability constraints and ramping constraints that limit the rate of power that
can be increased. In the work of Shenet al. (2003), the market mechanism problem was
first formulated based on a 30-bus power flow system. The mathematical optimization
model based on a general power flow system to find the optimal combination of the power
generated,P1, . . . , Pm , and the load delivered,L1, . . . , Ln , to maximize the social welfare
is stated below.

max
n∑

i=1

ULi −
m∑

j=1

CPj (2.11)
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where producers’ cost function

CPj = α j P2
j + β j Pj + γ j for j = 1, . . . , m (2.12)

and consumers’ gross surplus function

ULi = −vi L2
i + νi Li for i = 1, . . . , n (2.13)

subject to

Lmin
i � Li � Lmax

i for i = 1, . . . , m (2.14)

Pmin
j � Pj � Pmax

j for j = 1, . . . , n (2.15)

−Fmax
bk � sin(θb − θk)

xb k
� Fmax

bk for all connected busesb, k, (b < k) (2.16)

∑
k:busk is
connected
to busb

sin(θb − θk)

xb k
= 0 + Pg(b) − Ll(b) for b = 1, . . . , B (2.17)

whereα j , β j andγ j are the parameters of the generatorj ’s cost function,νi , vi are the
parameters of the loadi ’s gross consumer surplus function,Pmax

j , Pmin
j and Lmax

i , Lmin
i

represent the upper and lower bounds of thej th generator and thei th load respectively,
Fmax

bk is the capacity of the transmission line that connects busb and busk, and xb k is
the reactance of the line. In the balance equation constraints,g(b) is the generator number
connected to busb andl(b) is the load number connected to the bus. Note that if there is no
generator or load connected to the bus, the right-hand side of the balance equation equals
zero.

Unlike the traditional optimal power flow model used by Sunet al. (1984) and Alsac
et al. (2003), the power flow equations considered here in the MOP model are nonlinear
functions, involving sinusoidal functions. This is more difficult for existing optimization
techniques. If the objective function and intersection of nonlinear constraints are convex,
then local optimization techniques may be applied, such as SQP (Boggs & Tolle, 1995).
However, a complex power system may have a non-convex feasible region. Shenet al.
(2003) showed that by using SQP with the starting point being chosen by trial and error, two
different local optima were found for the MOP based on a 30-bus power flow system. The
nonlinear and global nature of the problem would imply that other optimization techniques
are necessary. Currently, simulated annealing and genetic algorithms are employed for
complex global optimization problems in other arenas with little underlying structure (see
Pham & Karaboga, 2000). In Section 3.3, Improving Hit-and-Run (Zabinskyet al., 1993)
will be combined with SQP to solve an example of MOP with a two-area, four-machine
test system.
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FIG. 1. Two-area four-machine test system.

3. Optimization techniques for ATC and market calculations

In this section, new optimization techniques will be illustrated with a small competitive
electricity market and the two-area four-machine test system, which consists of four
generators, 11 buses and 12 transmission lines as shown in Fig. 1. The generators are
modelled via the sub-transient model, and are equipped with exciters, while the loads are
constant MVA. The two-area four-machine test system is divided into two areas: A and B.
Area A includes generators 1 and 2, which generate electricityP1 and P2, while area B
includes generators 11 and 12, which generate electricityP3 and P4. The loads delivered
to two customers areL1 andL2, which are located in area A and area B respectively. Both
areas are connected to the bus 101 with two identical parallel lines.

3.1 Optimization technique to calculate ATC

The proposed method determines ATC between areas by running a series of numerical
simulations while examining whether the system limit is reached. The proposed method
to calculate ATC consists of three major procedures: (i) second-kick-based energy margin
computation, (ii) energy margin sensitivity computation, and (iii) generation adjustment.
The proposed ATC method first performs numerical simulations to compute the second-
kick-based energy margin of the system. Once the energy margin computation is done, the
energy margin sensitivity of the system is evaluated. After evaluation of energy margin
sensitivity, a line search is performed along the search direction formed by the energy
margin sensitivity to find the proper adjustments of generation in the sending area to
increase the power transfer between areas while keeping the system below the system
limit. The proposed ATC calculation algorithm can be summarized as follows.

Second-kick-based energy margin computation

Step 1: Perform time-domain simulation to obtain the system trajectory following a pre-
specified disturbance sequence.

Step 2: Compute potential energy of first- and second-kick trajectories.
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Step 3: Calculate the potential energy difference at the respective peaks of the first-kick
and second-kick disturbances for the energy margin.

Step 4: Stop if 0 < E M < ε. (ε represents a pre-specified tolerance value). Else go to
Energy Margin Sensitivities computation procedure.

Energy margin sensitivities computation

Step 5: Perform the trajectory sensitivity analysis to obtain the trajectory sensitivity to
changes in generations of generators in sending area.

Step 6: Calculate∂ E M
∂ Pm,i

, the energy margin sensitivity with respect to change in generations
of generator ‘i ’.

Step 7: Generate the search direction by updating an approximation to the inverse of
Hessian matrix. The search direction in the ‘kth’ iteration with the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method (see Bazaraaet al., 1993 and Luenberger, 1989) is
generated by

S(k) =




S(k)
i

···
S(k)

n


 = −D(k)




(
∂ E M

∂ P(k)
m,i

)

···(
∂ E M

∂ P(k)
m,n

)




. (3.1)

D(k) starts with an identity matrix in the first iteration and successively approximates the
inverse of the Hessian matrix throughout the iterative process. The updating formula for
the BFGS method to obtainD(k+1) is

D(k+1) = Dk +
(

1 + (qk)T Dkqk

(qk)T pk

)
pk(pk)T

(pk)T qk
− pk(qk)T Dk + Dkqk(pk)T

(qk)T pk
(3.2)

where

pk =




P(k+1)
m,i

···
P(k+1)

m,n


 −




P(k)
m,i

···
P(k)

m,n


 and qk




(
∂ E M

∂ P(k+1)
m,i

)

···(
∂ E M

∂ P(k+1)
m,n

)




−




(
∂ E M

∂ P(k)
m,i

)

···(
∂ E M

∂ P(k)
m,n

)




.

(3.3)
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Generation adjustment

Step 8: Determine the adjustments of generations of the sending area using the following
equation:




∆Pm,i

···
∆Pm,n


 =




α
(k)
i ×

(
S(k)

i

)−1

···
α

(k)
n ×

(
S(k)

n

)−1


 × E M = kp




Pm,i

···
Pm,n


 (3.4)

where
∑

i∈area Aα
(k)
i = 1. α

(k)
i andkp are introduced to distribute the energy margin to

each generator such that generators in the sending area are adjusted in proportion to their
generations in the basecase. If the sending area includes only one generator, the generation
of the generator in the sending area is adjusted using the following equation:

∆Pm,i =
(

S(k)
i

)−1 × E M . (3.5)

Step 9: Update generations of the sending area using the following equation:


Pnew
m,1

···
Pnew

m,k


 =




Pold
m,1

···
Pold

m,k


 +




∆Pm,1

···
∆Pm,k


 . (3.6)

Step 10: Go to second-kick-based Energy Margin Computation procedure and repeat
algorithms with rescheduled generations.

The proposed ATC calculation method will be illustrated with the two-area four-
machine test system. First, it is necessary to establish a basecase, in which the system
load is supplied without violating any system limits such as thermal, voltage and stability
limits. The power transferred from area A to area B in the established basecase is
equal to 453 MW. In the following example, the proposed ATC calculation method
attempts to determine ATC from area A to area B by increasing generation in area A and
simultaneously increasing the same amount of load at bus 13 in area B while examining
whether stability limits are reached.

EXAMPLE 1 It is assumed in this example that the generation of generator 2 in area A is
adjusted to increase power transfer from area A to area B while holding the generation of
generator 1 in area A. This assumption is made to calculate a point-to-point ATC from bus
2 in area A to bus 13 in area B. Energy margin computation and energy margin sensitivity
analysis were performed with the established basecase. The second-kick scenario consists
of a temporary three-phase fault at bus 3, followed by another temporary three-phase fault
at bus 20. The duration of the second-kick, which is a three-phase fault at bus 20, is selected
such as to yield a marginally stable trajectory. Results of the proposed ATC calculation
method for Example 1 are summarized in Table 1.

As can be seen in Table 1, the energy margin is reduced from iteration to iteration. In
the fourth iteration, the proposed ATC calculation algorithm stops since the energy margin
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TABLE 1 Results of proposed ATC calculation method for Example 1

Power transfer Energy Pm,2 ∆Pm,2
Iteration (bus 2→ bus 13) margin (MW) S2 (MW)

(MW)
1 453 13·35 754 1·4688 9·19
2 462 10·72 763·09 0·7853 13·65
3 475·8 2·77 776·74 1·5697 1·77
4 477·3 0·11 778·41 0·5799 0·18

is less than the pre-specified tolerance value (0·5 p.u.). The transfer amount (477·3 MW)
from bus 2 to bus 13 in the fourth iteration is the total transfer capability (TTC). Once TTC
is obtained, a point-to-point ATC from bus 2 to bus 13 can be calculated by using (2.1).

3.2 Optimization technique to solve SOP

A small competitive electric market is used to illustrate the MDP-based optimization
technique for the SOP. The small competitive electric market consists of the spot market,
two competing power suppliers, a group of customers, and GencoA, which is the decision-
making power supplier using the proposed MDP-based optimization technique. GencoA
and two competing power suppliers participate in the spot market to sell electricity. This
simple market model is useful only as an illustrative example and is not fully representative
of an actual market.

Suppose that GencoA has a flexible contract to provide 50 MW (@$20/MW) of power
with the contract partner ‘A’ over the course of the next week. The power must be delivered
under the restriction of 10 MW per day or 0 MW per day. Thus, the number of possible
RCVs is 6, i.e. 50 MW remaining on the contract, 40 MW remaining, and so on down
to 0 MW remaining. To reduce the size of the state space, the spot market is restricted
to generate only ‘high spot price’ (=$23/MW), ‘medium spot price’ (=$22/MW) and ‘low
spot price’ (=$21/MW) while the possible load range is restricted to take the form of high
(=350MW), medium (=320MW) and low demand (=290MW). A further reduction in states
can be achieved by the assumption that the high (medium or low) spot price is related only
to the high (medium or low) demand, respectively. Since this assumption does not fully
represent the reality of an actual market, all possible combinations of the two variables
should be considered for a practical application. Under this assumption, the number of
reduced states is 54(= 6× 3× 3). In addition, the number of states can be further reduced
by checking infeasible RCV states for each time period. For example, at the ending day
of the bilateral contract, the remaining contract volume must be zero. Thus, no other than
RCV = 0 MW is a feasible state at the ending day of the bilateral contract. For an illustration
of states, some of the possible combinations of state variables are as follows.

- State 1: (0 MW RCV, high spot price, high demand, high forecastload),
- State 2: (0 MW RCV, high spot price, high demand, medium forecastload),
- State 16: (10 MW RCV, medium spot price, medium demand, low forecastload),
- State 46: (50 MW RCV, high spot price, high demand, high forecastload),
- State 51: (50 MW RCV, medium spot price, medium demand, low forecastload).
- State 54: (50 MW RCV, low spot price, low demand, low forecastload).
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TABLE 2 Decision options of GenCoA

Optionk Description of decision options of GenCoA
1 Low-priced bidding without usage of bilateral contract(xt = 0 MW)
2 Medium-priced bidding without usage of bilateral contract(xt = 0 MW)
3 High-priced bidding without usage of bilateral contract(xt = 0 MW)
4 Low-priced bidding with usage of bilateral contract(xt = 10 MW)
5 Medium-priced bidding with usage of bilateral contract(xt = 10 MW)
6 High-priced bidding with usage of bilateral contract(xt = 10 MW)

State transition occurs as a result of a change in load demand and price. The MDP
generates a sequence of rewards as it makes transitions from state to state over the planning
horizon. The decision options of GenCoA also affect reward and transition probabilities. It
is assumed that GenCoA calculate transition probabilities based on load forecast, decisions
for each state, and probabilistic bidding information of two competitors. For practical
applications, probabilistic bidding information of competitors needs to be modelled with
statistical market data analysis. The decision option of GenCoA consists of all possible
combinations of the usage of a given flexible bilateral contract and the bidding decision to
the spot market. GencoA is restricted to take the form of high-priced, medium-priced or
low-priced bidding to the spot market. The possible decision options of GenCoA are listed
in Table 2.

Block bidding over different MW ranges is employed for GenCoA’s bidding curve
representation. For example, the low-priced bidding option of GenCoA without bilateral
contract usage (decision option 1) will be


17$/MW over the first 50 MW
18$/MW over the next 40 MW
19$/MW over the next 30 MW
19$/MW over the next 30 MW·




If the bilateral contract usage is exercised, the bidding curve is shifted to the left in the
amount of the bilateral contract usage. When GenCoA exercises the usage of the bilateral
contract (10 MW) with the low-priced bidding option, the supply bidding option (decision
option 4) will result in the following format:


17$/MW over the first 40 MW
18$/MW over the next 40 MW
19$/MW over the next 30 MW
19$/MW over the next 30 MW·




On the first day (or time period ‘t = 1’) of the bilateral contract, GencoA makes a
decision considering the entire week ahead. The value iteration algorithm is applied to find
an optimal decision option to maximize the expected value of accumulated rewards over the
planning horizon. Due to space limitation, selected results of the MDP-based optimization
technique are shown in Table 3. According to the simulation results, the optimal decision
option differs in the time period ‘t = 1’ depending on the current state of the system. If the
system is in state ‘49’ which corresponds to (RCV= 50 MW, medium spot price, medium
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TABLE 3 Selected simulated results (t = 1)

Feasible Optimal Contract
statei decision usage Bidding to spot market Accumulated

option # (MW) reward
State 46 4 10 Low-priced bidding 96768·13
State 47 6 10 High-priced bidding 123240·77
State 48 5 10 Medium-priced bidding 79920·83
State 49 4 10 Low-priced bidding 124416·17
State 50 6 10 High-priced bidding 95853·93
State 51 5 10 Medium-priced bidding 102755·35
State 52 4 10 Low-priced bidding 124416·17
State 53 6 10 High-priced bidding 95853·93
State 54 5 10 Medium-priced bidding 102755·35

demand, forecasted high demand), the optimal decision of the power producer at time
periodt = 1 is ‘4’ which means ‘low-priced bidding to the spot market with usage of the
bilateral contract’. In last time period ‘t = 7’, GenCoA’s optimal decision is the decision
option that gives maximum daily reward because GenCoA does not need to consider the
effect of bidding strategy beyond the planning horizon.

3.3 Optimization technique to solve MOP

In this section, our focus is on solving the MOP based on the two-area test system. The
parameters of the model are given in the Appendix. Considering the sinusoidal function
involved in the power flow constraints that may cause a non-convex feasible region we will
use a global optimization algorithm combining with SQP to solve the model. Particularly,
we will implement Improving Hit-and-Run (IHR) to solve the model directly, then provide
the solution found by IHR as the starting point of SQP and use SQP to find the local
optimum. A multi-start approach will be used to improve the probability of finding a global
optimum.

IHR was introduced by Zabinskyet al. (1993) as a sequential random search global
algorithm in a measurable continuous domain. The main idea behind IHR is to use a line
sampler called Hit-and-Run, which was introduced by Smith (1984) as a Markov chain
Monte Carlo sampler, to generate candidate points, then select those that are improving
in objective function value. It was shown that IHR converges to a global optimum with
probability one for a broad class of global optimization problem. In addition, the expected
number of function evaluations of IHR on the class of positive definite quadratic programs
is polynomial in the dimensionn, and specifically, O(n5/2) (Zabinskyet al., 1993). IHR
can be formally described as follows.

Improving Hit-and-Run algorithm

Step 0: Initialize starting pointX0 randomly in the feasible regionS, and setk = 0.

Step 1: Generate a random directionDk according to a uniform distribution on a unitn-
dimensional hyper-sphere.
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Step 2: Generate a pointYk+1 uniformly distributed on the line set

L = S ∩ {x |x = Xk + λDk, λ a real scalar}. (3.7)

Step 3: If the objective function value at the pointYk+1 is better than that at the pointXk ,
setXk+1 = Yk+1. Otherwise, setXk+1 = Xk .

Step 4: If a stopping criterion is satisfied, then stop. Otherwise incrementk and return to
step 1.

In contrast to IHR, the SQP method is a deterministic algorithm that searches for a
local optimum nearest to a given starting point. At each iteration of SQP, an approximation
is made of the Hessian of the Lagrangian function. This is then used to generate a quadratic
programming sub-problem involving the minimization of a quadratic approximation of the
objective function, subject to a linear approximation of the constraints. The solution of
the sub-problem is then used to form a search direction for a line search procedure. An
overview of SQP is found in Boggs & Tolle (1995).

As a deterministic algorithm, SQP is not a suitable algorithm for a global optimization
problem. The performance of SQP is very sensitive to the initial starting point, which
influences which local optimum is detected. Therefore, instead of using SQP to solve the
MOP directly, it is proposed to first use IHR, the global optimization algorithm, to find
a good starting point, and then use SQP to search for the local optimum nearest to the
starting point. In order to improve the probability of finding the global optimum, a multi-
start approach with our mixed algorithm will be used to solve the model. Particularly, in
our code, the mixed algorithm will be run 50 times, and for each run, the maximum number
of iterations of IHR is 100 and the maximum number of iterations of SQP is 500.

A difficult step in the two-area MOP is to solve for bus angles embedded within the
optimization algorithm. Instead of choosingP1, . . . , P4 andL1, L2 as decision variables,
our approach is to choose angle differences as decision variables. Particularly, five angle
differences,(θ1 − θ10), (θ2 − θ20), (θ3 − θ101), (θ13 − θ120) and(θ12 − θ120), are chosen as
decision variables, and the values of other angle differences andP1, . . . , P4, L1, L2 are the
functions of the five decision variables. Considering the nature of the sinusoidal function,
it is reasonable to set the upper and lower bounds of each decision variable to be−90◦ and
90◦.

In our mixed algorithm, IHR is used to obtain a good starting point for SQP.
Considering the difficulties for IHR to handle inequality and equality constraints, those
constraints are put into the objective function by adding a penalty on violated constraints.
Therefore the feasible region S for IHR becomes a five-dimensional box with−90◦ and
90◦ as the upper and lower bounds of angle difference, i.e.

S = {
(∆θ1, . . . ,∆θ5) : ∆θi ∈ �−90◦, 90◦�, for i = 1, . . . , 5

}
. (3.8)

It may cause the problem that, under some combination of decision variables inS, there
may exist complex numbers for other angle differences in the model. This drawback is
also considered in the objection function by adding another penalty. The penalty objective
function used for IHR is therefore as follows:

max f (∆θ) =
4∑

i=1

ULi −
2∑

j=1

CPj − µ (3.9)
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FIG. 2. Optimal solution of two-area MOP.

where

CPj = α j P2
j + β j Pj + γ j for j = 1, . . . , 4 (3.10)

ULi = −vi L2
i + νi Li for i = 1, 2 (3.11)

µ =
{

108 if complex number exists in the model
κ · 106 otherwise

(3.12)

whereκ is the total number of violated constraints in the original MOP model. The result
of an IHR run on the penalty function problem is then taken as a starting point for SQP on
the original MOP formulation. The mixed algorithm is run 50 times with the starting point
of IHR being chosen uniformly over the setS. Among the 50 runs, the mixed algorithm
successfully found an optimal solution 37 times, and failed to find an optimal solution
13 times. Of the unsuccessful runs, four runs ended by exceeding the maximum number
of iterations of SQP, and nine runs ended SQP with an infeasible solution. An interesting
observation on the successful runs is that they all converge to the same local optimum,
which is shown in Fig. 2 and Table 4. This may be because of the relatively simple
structure of the two-area power flow system. While it is difficult to prove mathematically
that the solution found by the mixed algorithm is a global optimum, by using the mixed
algorithm with a multi-start approach, we can announce with confidence that we have
found a global optimum.

In order to explore the benefit of using IHR, the SQP itself is also run 50 times with
starting points generated uniformly over the setS. Among 50 runs, eight runs found the
same optimal solution successfully; 24 runs ended at an infeasible solution and 18 runs
ended by exceeding the maximum number of iterations of SQP. Hence coupling IHR with
SQP provides a more robust mixed algorithm.

4. Conclusions

In this paper, new optimization techniques are proposed to deal with ATC calculation, SOP,
and MOP which are motivated by the competitive electricity market environment. The
proposed ATC calculation method is designed to incorporate system dynamics in the ATC
calculation and to avoid exhaustive numerical simulations directed by energy margin and
energy margin sensitivity. The BFGS method was employed to speed up the convergence
of the ATC calculation process. An MDP-based optimization technique is proposed for
optimal coordination of the bilateral contracts and spot market bidding decisions. A
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TABLE 4 Optimal solution of two-area MOP

Decision variables:θ1 − θ10 = 1·5311◦, θ2 − θ20 = 1·3397◦,
θ3 − θ101 = 1·1380◦, θ13 − θ120 = −1·7191◦, θ12 − θ120 = 1·4858◦

Bus angle Bus angle
(setθ1 = 0◦) (setθ1 = 0◦)

Bus 1 0◦ Bus 11 −2·6409◦
Bus 10 −1·5311◦ Bus 110 −4·0260◦
Bus 20 −3·8236◦ Bus 120 −6·0996◦
Bus 2 −2·4839◦ Bus 12 −4·6138◦
Bus 3 −5·5427◦ Bus 13 −7·8188◦
Bus 101 −6·6807◦

Maximum social welfare= 13893

global optimization algorithm, IHR, combined with the traditional SQP is introduced
to solve marketing optimization problems. The proposed optimization techniques were
implemented and tested on the two-area four-machine test system. The test results have
shown the effectiveness of the proposed optimization techniques.

Many other opportunities exist for the application of optimization techniques to
electricity market problems. Uncertainties in the market price require statistical forecasting
techniques. Prediction of the market behaviour is a natural problem for heuristic
computational methods. The concept of efficient frontier in finance for risk management
requires multi-objective optimization and the concept of Pareto optimality. Market clearing
mechanisms may involve combinatorial optimization to select generating units to meet the
load demand. The determination of a market equilibrium given a number of supply and
demand bids is an optimization problem.
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Appendix

TABLE A1 Parameters of cost functions of generators and
the upper and lower bounds of generators

Generator (P) Lower Upper Cost function parameters
bounds bounds α β γ

1 0 5 100 700 300
2 0 4 150 600 100
3 0 3 200 400 150
4 0 3·5 180 500 150
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TABLE A2 Parameters of utility
functions of loads

Loads Utility function parameters
(L) ν v

1 160 3500
2 200 4000

TABLE A3 Capacities and reactance of transmission lines

Connected buses Capacity(C APbk) Reactance(xb k)

Busb Busk
1 10 3·0 0·0167
10 20 3·0 0·0250
2 20 3·0 0·0167
20 3 3·0 0·0100
3 101 (1) 3·0 0·1100
3 101 (2) 3·0 0·1100
13 101 (1) 3·0 0·1100
13 101 (2) 3·0 0·1100
120 13 3·0 0·0100
12 120 3·0 0·0167
110 120 3·0 0·0250
11 110 3·0 0·0167

Note:xb k = xk b


