
Optimization Techniques for Parallel Protocol ImplementationStefan Leue Philippe OechslinInstitute for Informatics Computer Network Lab LTIUniversity of Berne Swiss Federal Institute of TechnologyL�anggassstrasse 51 DI-LTI EPFLCH-3012 Berne, Switzerland CH-1015 Lausanne, Switzerlandleue@iam.unibe.ch oechslin@ltisun.ep
.chAbstractWe propose a method for deriving parallel, schedul-ing optimized protocol implementations from sequen-tial protocol speci�cations. We start with an SDL spec-i�cation, identify a common path for optimization andperform a data dependency analysis. The resultingcommon path graph is parallelized as far as permittedby the data dependency graph. The degree of paral-lelism is extended even further by deferring data opera-tions to the exit nodes of the common path graph. Theresulting parallel operation model is then submitted toa scheduling algorithm yielding an optimized compile-time schedule. An IP based protocol stack with TCPand FTP as upper layers serves as an example.1 IntroductionThe typical quality of service requirements (e. g.transfer delay, throughput rates) for high speed proto-cols impose strong performance requirements on highspeed protocol implementations. As the throughputof networks has increased much faster than the pro-cessing power of processors these requirements canonly be satis�ed by e�cient processing of protocoldata by the involved protocol machines. Di�erent ap-proaches to improve the performance of communica-tion protocols have been proposed, so f. e. improve-ments by changes to the protocol mechanisms ([CT90]and [TM92]), by hardware implementation of protocolfunctions ([KS89]), and by parallelizing the implemen-tation of communication protocols (BraZit92, [Hei92],[PS92], [RK92] and [TZ93]). These latter papers sug-gest distributing protocol functions over multiple pro-cessors with either dedicated or general purpose func-tionality, thus an MIMD parallelization. We will focuson this parallelization approach in this paper.

The method we propose takes as input an SDLspeci�cation of a protocol stack, some statistical in-formation about the behavior of the protocol and adescription of the hardware it will be executed on.Starting with a control dependence graph derived fromthe speci�cation we determine a subset of this graphcalled the common path graph in which we next re-duce the control dependencies to allow parallelism asfar as allowed by data dependencies. Then we groupand defer the data manipulation operations to allowLazy Message Processing. The resulting dependencegraph will be mapped on the hardware using a classicalscheduling algorithm which will yield a compile-timeschedule. The example will be given in Section 2, ourmethod will then be explained in Sections 3 and 4,and we conclude in section 5.2 The example SDL speci�cationWe base our optimization example on the SDL (see[BHS91]) speci�cation of an IP based protocol stack(see Tables 1 and 21). The system consists of oneblock STACK representing the example protocol stack.STACK is substructured into three blocks, each con-taining the functionality of one protocol layer. Theenvironment represents the lower layer medium, whichhands IP packet data units to the stack, and theupper layer FTP-user to which FTP data data unitsare delivered. The IP block mimics the IP proto-col entity behavior. After performing certain checkson the IP packet.header �eld the upper layer pro-tocol is tested. For reasons of conciseness we onlyconsider the case where TCP is the upper layer pro-tocol to which IP conveys the data in the form ofan IP TCP SDU, an alternative upper layer protocol is1The labels at the left margin are not part of the SDL spec-i�cation, their meaning will be explained later.
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SYSTEM STACK... /* type definitionsBLOCK STACK_block;CHANNEL TCP_FTPFROM TCP TO FTP WITH TCP_FTP_SDU;ENDCHANNEL TCP_FTP;CHANNEL IP_TCPFROM IP TO TCP WITH IP_TCP_SDU;ENDCHANNEL IP_TCP;CHANNEL ENV_IPFROM ENV TO IP WITH IP_packet;ENDCHANNEL ENV_IP;CHANNEL FTP_ENVFROM FTP TO ENV WITH FTP_data;ENDCHANNEL FTP_ENV;BLOCK IP; ...PROCESS IP_process; ...STATE waiting;* S1 INPUT(IP_packet);* D1 DECISION IP_check_sum(IP_packet.header);(FALSE) : CALL error_handling;NEXTSTATE waiting;CP (TRUE) :* D2 DECISIONIP_header_check(IP_packet.header);(FALSE) : CALL error_handling;NEXTSTATE waiting;CP (TRUE) :* D3 DECISIONIP_test_if_options(IP_packet.header);CP (FALSE) :;(TRUE) : CALL IP_options_processing;ENDDECISION;BP D4 DECISIONIP_test_upper_protocol(IP_packet.header);('TCP') :* S2 TASK IP_TCP_SDU :=TCP_SDU_compile(IP_packet);* S3 OUTPUT(IP_TCP_SDU);NEXTSTATE waiting;('UDP') : ...; /* UDP handling */(ELSE ) : ...;/* other protocol handling */ENDDECISION;ENDDECISION;ENDDECISION;ENDPROCESS IP_process;ENDBLOCK IP;Table 1: Part 1 of the SDL-PR speci�cation

BLOCK TCP; ...PROCESS TCP_process; ...STATE waiting ;* S4 INPUT(IP_TCP_SDU);* D5 DECISION TCP_check_sum(IP_TCP_SDU);CP (TRUE) :;(FALSE) : NEXTSTATE waiting;ENDDECISION;* D6 DECISIONconnection_state[IP_TCP_SDU.TCP_packet.header.TCP_destination]('established') :* D7 DECISIONTCP_test_flags(IP_TCP_SDU.TCP_packet.header);CP ('normal') :* S5 call TCP_normal_operations(IP_TCP_SDU.TCP_packet.header);(ELSE) : call TCP_exception_handling;NEXTSTATE waiting;ENDDECISION;* D8 DECISION TCP_seqno_ok(IP_TCP_SDU.TCP_packet.header);CP (TRUE) :* D9 DECISION TCP_test_upper_application(IP_TCP_SDU.TCP_packet.header);('FTP') :* S6 TCP_FTP_SDU :=IP_TCP_SDU.TCP_packet.data;* S7 OUTPUT(TCP_FTP_SDU);NEXTSTATE waiting;('TELNET') :/* appropriate TELNET handling */NEXTSTATE waiting;ENDDECISION;(FALSE) :CALL seqno_error_handling;NEXTSTATE waiting;ENDDECISION;(ELSE) : ...; /* handling other states */ENDDECISION;ENDPROCESS TCP_process;ENDBLOCK(TCP);BLOCK FTP; ...PROCESS FTP_process; ...STATE ascii_transfer;* S8 INPUT(TCP_FTP_SDU);* S9 FTP_data := translate(TCP_FTP_SDU);* D10 DECISION test_eof(FTP_data);(TRUE) : OUTPUT(FTP_data);NEXTSTATE closing;* S10 (FALSE) : OUTPUT(FTP_data);NEXTSTATE ascii_transfer;ENDDECISION;ENDPROCESS FTP_process;ENDBLOCK FTP;ENDBLOCK STACK_block;Table 2: Part 2 of the SDL-PR speci�cation
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Figure 1: Common path graph with control (solid ar-row) and data (dashed arrow) dependency relationsUDP. The TCP process checks the validity of the data,whether the relevant connection is established, andwhether 
ags are set in the TCP packet header �eldin which case exception handling is carried out. Oth-erwise, normal TCP operations will be performed, thesequence number will be checked, and if this check issuccessful the TCP packet.data �eld will be conveyedto FTP in case FTP is the upper layer protocol byan TCP FTP SDU. FTP translates the data to internalASCII representation and conveys it to the user.3 Parallelization and OptimizationDecomposition into operations. At �rst we de-compose the speci�cation of the protocol stack intooperations. An operation is either a single or groupeddata access statement, or a decision that leads tobranching. An iteration loop de�ned over the elementsof a set of data (e. g. checksum calculation) is de�nedas one operation. The control dependencies betweenthe statements de�ne a control dependency graph con-sisting of statement and decision nodes, one graph forevery SDL process.

Common Path analysis. Based on a stochasticprotocol analysis we distinguish the branches (outgo-ing edges of a decision node) of the dependency graphinto those which are taken with stochastic certainty(the common ones) and those for which the proba-bility is below a certain statistical con�dence value(the uncommon ones). This is a generalization of theCommon Path optimization in [CJRS89]. It de�nes acommon path graph which is a subgraph of the con-trol dependency graph in every SDL process. Our fur-ther optimization will only address the common way apacket takes through the protocol stack, along a com-mon path, and not the uncommon cases. We drop theuncommon branches from every decision node. Wecall those decision nodes for which there remain mul-tiple outgoing branches branching nodes. They enclosenon-branching segments on the common path graph.Classic cases of decision nodes that have only com-mon branches are nodes representing error checkingor connection opening or closing, branching nodes of-ten handle multiplexing or selection of an upper layerprotocol. To facilitate the presentation of our methodwe assume that the code we analyze contains no loopsand no recursive procedure calls which implies thatthe resulting common path graph is acyclic.Composing the common path graphs. We nowcombine the common path graphs of the SDL pro-cesses to form a monolithic commonpath graph for theentire protocol stack. We start the construction of thegraph at that node at which the data unit whose pro-cessing we consider is read from the medium. In SDLthis is indicated by an INPUT from the environment,we call the corresponding node root node. We com-pose two graphs at those nodes where the �rst processconveys a data unit by means of an OUTPUT statementto an adjacent layer process, which in turn receivesit by an INPUT statement. We consider the OUTPUTand INPUT statements simply to de�ne synchronousoperations. Furthermore we abandon at this stage oftransformation the fact that in SDL the speci�ed pro-cesses run independently and concurrently, only syn-chronizing by asynchronous communication over in-�nite process-unique input queues. The process weobtain by this composition forms a monolithic processspace with one global data space and a unique pro-cess control token. The composition ends when anSDL process outputs a data unit to the environment,we call the respective nodes exit nodes. Again, forsimplicity we assume that the code of the SDL spec-i�cation is structured so that the resulting structure,which we call the monolithic common path graph, is



acyclic.Figure 1 presents a monolithic common path graphobtained by transforming the SDL speci�cation ex-ample in Tables 1 and 2. In the SDL speci�cation wehave marked the statements which lie on the commonpath by asterisks. Non-decision statements are anno-tated by Sn, where n is an enumeration, and decisionstatements are annotated by Dn. Common branches ofdecisions are annotated with CP and uncommon oneswith BP. Figure 1 presents the control dependencies,indicated by solid line arrows, which form the mono-lithic common path graph after composing the indi-vidual common path graphs of the processes. S1 isthe root node. D4 and D9 are branching points. Forreasons of conciseness we do not consider the entirecommon path graph and omit the subgraphs startingwith branches 'UDP' and 'TELNET'. S10 is the exitnode for the common path graph we consider.Data dependency analysis. Based on the com-mon path graph we analyze data dependencies be-tween the nodes by classical data 
ow analysis. Thedata dependency graph constitutes a criterion for themaximum possible parallelization of the protocol be-cause two operations may only be executed in parallelif they are not data dependent.The statements in the speci�cation of the proto-col stack can be classi�ed as follows. An assignmentstatement2 S which assigns a value to a variable v isa de�ne statement with respect to v, and a use state-ment with respect to variable w if w appears on theright hand side of the assignment. A procedure call isa de�ne statement with respect to a result parameterand a use statement with respect to a non-result pa-rameter. A decision statement with a data parameterv is a use statement with respect to v. An OUTPUT(v)statement is a use statement with respect to v. AnINPUT(v) statement is a de�ne statement with respectto v. The dependencies between statements can thenbe determined as follows. A statement Sj is data de-pendent on a statement Si i� there is a variables v sothat a) Si is a de�ne and Sj is a use statement withregard to v, b) Si precedes Sj in the sequential con-trol 
ow and Si is a use and Sj is a de�ne statementwith regard to v, or c) Si precedes Sj and there is anintervening statement S0i so that Si and Sj are de�nestatements and Si is a use statement with regard tov3.2All statements are assumed to be single assignmentstatements.3For an overview on data and control dependency analysissee for example [PW86].
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Figure 2: The relaxed dependence graphThe result of the data dependency analysis for ourexample protocol stack is shown in Figure 1.Relaxation of control depen-dencies. The branching nodes in the common pathgraph and their successor nodes represent system ex-ecutions which are almost certainly taken. We there-fore replace the control dependency relations usuallyconnecting neighboring program statements by a re-laxed control dependency relation, namely that everynon-branching node only depends on its closest pre-ceding branching node. We de�ne that dependenciesalong the common path are always transitive. There-fore, whenever a non branching node is transitivelydepending on a branching node by the data depen-dency relation then we do not need to introduce anew dependency edge. Furthermore, we need to in-troduce a relaxed control dependency between everynon-branching node and every of those reachable exitnodes which are not already transitively depending.In our example we need to introduce relaxed con-trol dependencies from D4 to S2, and from D9 to S6,plus the edges leading from D1, D2, D3, D5, D6,D7, D8 and S5 to the exit node S10 (see Figure 2).Lazy Message processing. The idea behind LazyMessage processing (see [OP91]) is that combiningdata manipulation operations (DMOs) can be very ef-�cient. A big portion of the execution time for DMOscan very often be attributed to fetching the operands



whereas processing the operands is neglegible. Exe-cution time can be saved if DMOs which have identi-cal operands are executed in a combined fashion, thussaving unnecessary repeated fetch operations. It istherefore desirable to defer the execution of DMO'sas much as possible in order to be able to combine asmany DMOs as possible.In order to perform Lazy Mesage processing wehave to �rstly identify all DMO operations that ac-cess entire packets and not only headers. Branchingnode control decisions do usually not depend on thepacket data. In most cases they depend on the packetheader. This implies that only exit nodes depend onDMOs and thus that DMOs can usually be deferredto the exit nodes. A DMO is deferred by removing itfrom a segment and replicating it in each segment de-pending on the next branching node. The deferral andreplication is recursively repeated on every subgraphhaving its root in the branching node which delimitsthe segment graph from which the DMO is removed.This means that in general all DMOs will be repli-cated in all exit nodes which are reachable from theiroriginal location. In the exit nodes they are groupedand executed. However, it is still desirable to executegrouped DMOs as early as possible. Therefore theyshould be grouped and executed at that point in thegraph in which no further DMOs can be added on theway down to all reachable exit points.In our example we combine the DMOs D5 and S9and we execute them together right before the exitnode S10 is reached.Exiting the common path and ensuring consis-tency. The operations at the exit node now have tobe modi�ed to test all the results of the operationsthey depend on against the predicted results. If thereis a match the normal exit node operations can beexecuted. However, if there is a mismatch the wholeprocessing has to be restarted from the root node us-ing a non-optimized code version of the protocol stack.As the di�erent tests have been decoupled from theoperations which these tests `guard' some consistencyensuring mechanisms have to be applied. For example,a division by zero may be executed concurrently withthe test for non-zeroness of the respective operand.Thus the division operation must be made robust suchthat a system failure is excluded. Secondly, the oper-ations which are executed concurrently with the testoperations have to be be reversible. This can be en-sured by restricting the code to read-only operationsor by performing write operations only locally and per-forming a commit operation on the actual data when
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Bus1Figure 3: A hardware architecture for the receive paththe exit node is reached and all tests have had a pos-itive result.4 Scheduling the parallel operationsWe now describe the compile time scheduling ofthe parallelized operations on a given hardware archi-tecture. We consider the classic resource constrainedjob scheduling problem (see [CS90]). Both the classicproblem formulation as well as our algorithm do nottake delays induced by data transfers into account. Weimplemented a tool that in the current version uses anenumerative scheduling algorithm.� First we have to compile a list of all independentresources available in the system on which theprotocol is executing. For each operation of thecommon path graph we need to de�ne which re-sources will be needed and estimate the executiontime.� Secondly, given this information all possibleschedules can be enumerated and the ones min-imizing the time at which the exit node arereached can be selected. Note that due to the re-laxation of dependencies there are many degreesof freedom for the schedules. In particular it maybe that operations of di�erent layers turn out topossibly execute faster in a reverse order com-pared to the original speci�cation.The common path of the protocol will then be imple-mented according to the optimized schedule.For this example we will use a simple hardwarearchitecture (see Figure 3). It represents a network



adapter board with two interfaces: the medium ac-cess interface (MAC) to the network and the host in-terface (HI) to the host machine. Only the receivepath is covered by our example. There are two dual-port RAMs acting as FIFO's between the interfacesand the processing part. The processing part is madeof a general purpose RISC microprocessor containinga cache, its program RAM (which also contains thestate information for all open connections) and a DataManipulation Unit (DMU), typically a Digital SignalProcessor or a Field Programmable Gate Array. TheDMU reads packets from FIFO1, does the necessarytranslations and calculations and stores the resultingpacket in FIFO2. The microprocessor processes theheaders and updates the state of the connections. Itsbus (Bus2) can be isolated from the bus that connectsFIFO 1 to the DMU (Bus1) to allow parallel process-ing. This is achieved using a bidirectional three-statebu�er. cF F yI B B B I cF u u R D u F lO s s u A M s O e1 1 2 P M U 3 2 sD1 * * * * 20D2 * 5D3 * 1D4 * 1D5+S9 * * * * * 375D6 * * * 50D7 * 1D8 * 1D9 * 2D10 * 1S1 * 1S2 * 1S5 * 200S6 * 2S10 * * * * 10Table 3: Required resources and execution time foreach operationFor our example we will assume that the board isconnected to a link delivering packets of 1500 bytesat 600 Mb/s, that the hardware is clocked at 25 Mhz,that the busses are 32 bits wide and that they cantransfer one word per clock cycle.Table 3 gives the list of resources and indicateswhich resources will be used for each operation aswell as how many cycles are needed for execution4.4Operations S3, S4, S7 and S8 are not represented in thetables as they do not require any processing.

Note that the processor will access the packet headeronly once in FIFO1. Afterwards the header is re-tained in the processor cache. The time for trans-ferring the header from FIFO1 to the cache has ar-bitrarily been attributed to operation D1. With animproved scheduling algorithm implicit data transferslike this one would be generated automatically andscheduled optimally.operation starting end operation starting endtime time time timeS1 0 1D4 1 2S2 2 3D9 3 5S6 5 7D1 7 27D2 27 32 D5+S9 27 402D3 32 33D6 33 83D7 83 84S5 84 284D8 284 285D10 402 403S10 403 413Table 4: An optimal schedule on the proposed hard-ware architectureThe optimal solution requires 413 cycles to reachexit node S10 from root point S1. One optimal sched-ule is given in Table 4. It corresponds to a maximumthroughput of 728Mb/s which is about 21%more thanthe maximum throughput of the network. Whetherthese 21leave the common path is under investigation.The sequential execution of the original common pathsuite of operations on the same hardware would take1036 cycles, which is more than twice as long as withthe ompitimzed graph.The total packet processing time is mainly to beattributed to the compund processing of the DMOsD5 and S9. However, the compound execution of theDMOs is responsible for the considerable gain in e�-ciency in processing the whole packet.5 ConclusionsWe presented a method for the derivation of opti-mized parallel protocol implementations from formalspeci�cations. The parallelization covers multiple pro-tocol layers which distinguishes our method from theexisting previously cited approches. Also, the degreeof parallelism in the architecture we used as exam-



ple is relatively limited compared to other approaches([BZ92], [TZ93]). However, we have shown that evenwith this limited parallelism we gained considerablyin e�ciency. We claim that further parallelization willnot improve our realtively good cost e�ciency ratio,in particular because we saw that the most time con-suming part of the packet processing is the data accessrelated to data manipulation operations.Further research will address incorporating ourmethod into an integrated protocol engineeringmethodology which will cover all aspects of protocolspeci�cation, veri�cation, performance evaluation, de-sign and implementation. Our method is well suitedfor being integrated into a more complex context be-cause it is relatively formal, even if not all parts arefully formalized yet. The incorporation of our methodinto a protocol engineering tool as well as improve-ments on the scheduling algorithm are further goalsfor future research.AcknowledgementsThe work of both authors was supported by theSwiss National Science Foundation.References[BHS91] F. Belina, D. Hogrefe, and A. Sarma. SDLwith Applications from Protocol Speci�ca-tion. Prentice Hall International, 1991.[BZ92] T. Braun and M. Zitterbart. Parallel trans-port system design. In A. Danthine andO. Spaniol, editors, Proceedings of the 4thIFIP conference on high performance net-working, 1992.[CJRS89] D. D. Clark, V. Jacobson, J. Romkey, andH. Salwen. An analysis of tcp processingoverhead. IEEE Communications Maga-zine, 27(6):23{29, June 1989.[CS90] T.C.E. Cheng and C.C.S. Sin. A state-of-the-art review of parallel-machine schedul-ing research. European Journal of Opera-tional Research, 47:271{292, 1990.[CT90] D. D. Clark and D. L. Tennenhouse. Ar-chitectural considerations for a new gen-eration of protocols. In Proceedings ofthe ACM SIGCOMM '90 conference, Com-puter Communication Review, pages 200{208, 1990.
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