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Abstract

We propose a method for deriving parallel, schedul-
g optimized protocol implementations from sequen-
tial protocol specifications. We start with an SDL spec-
tfication, identify a common path for optimization and
perform a data dependency analysis. The resulting
common path graph is parallelized as far as permatted
by the data dependency graph. The degree of paral-
lelism 1s extended even further by deferring data opera-
tions to the exit nodes of the common path graph. The
resulting parallel operation model is then submitted to
a scheduling algorithm yielding an optimized compile-
time schedule. An IP based protocol stack with TCP
and F'TP as upper layers serves as an example.

1 Introduction

The typical quality of service requirements (e. g.
transfer delay, throughput rates) for high speed proto-
cols impose strong performance requirements on high
speed protocol implementations. As the throughput
of networks has increased much faster than the pro-
cessing power of processors these requirements can
only be satisfied by efficient processing of protocol
data by the involved protocol machines. Different ap-
proaches to improve the performance of communica-
tion protocols have been proposed, so f. e. improve-
ments by changes to the protocol mechanisms ([CT90]
and [TM92]), by hardware implementation of protocol
functions ([KS89]), and by parallelizing the implemen-
tation of communication protocols (BraZit92, [Hei92],
[PS92], [RK92] and [TZ93]). These latter papers sug-
gest distributing protocol functions over multiple pro-
cessors with either dedicated or general purpose func-
tionality, thus an MIMD parallelization. We will focus
on this parallelization approach in this paper.
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The method we propose takes as input an SDL
specification of a protocol stack, some statistical in-
formation about the behavior of the protocol and a
description of the hardware it will be executed on.
Starting with a control dependence graph derived from
the specification we determine a subset of this graph
called the common path graph in which we next re-
duce the control dependencies to allow parallelism as
far as allowed by data dependencies. Then we group
and defer the data manipulation operations to allow
Lazy Message Processing. The resulting dependence
graph will be mapped on the hardware using a classical
scheduling algorithm which will yield a compile-time
schedule. The example will be given in Section 2, our
method will then be explained in Sections 3 and 4,
and we conclude in section 5.

2 The example SDL specification

We base our optimization example on the SDL (see
[BHS91]) specification of an TP based protocol stack
(see Tables 1 and 2'). The system consists of one
block STACK representing the example protocol stack.
STACK is substructured into three blocks, each con-
taining the functionality of one protocol layer. The
environment represents the lower layer medium, which
hands IP_packet data units to the stack, and the
upper layer FTP-user to which FTP_data data units
are delivered. The IP block mimics the IP proto-
col entity behavior. After performing certain checks
on the IP_packet.header field the upper layer pro-
tocol is tested. For reasons of conciseness we only
consider the case where TCP is the upper layer pro-
tocol to which IP conveys the data in the form of
an IP_TCP_SDU, an alternative upper layer protocol is

IThe labels at the left margin are not part of the SDL spec-
ification, their meaning will be explained later.
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SYSTEM STACK
... /* type definitions
BLOCK STACK_block;
CHANNEL TCP_FTP

FROM TCP TO FTP WITH TCP_FTP_SDU;
ENDCHANNEL TCP_FTP;
CHANNEL IP_TCP

FROM IP TO TCP WITH IP_TCP_SDU;
ENDCHANNEL IP_TCP;
CHANNEL ENV_IP

FROM ENV TO IP WITH IP_packet;
ENDCHANNEL ENV_IP;
CHANNEL FTP_ENV

FROM FTP TO ENV WITH FTP_data;
ENDCHANNEL FTP_ENV;

BLOCK IP;
PROCESS IP_process;
STATE waiting;
S1 INPUT(IP_packet) ;
D1 DECISION IP_check_sum(IP_packet.header);
(FALSE) : CALL error_handling;
NEXTSTATE waiting;
(TRUE)
D2 DECISION
IP_header_check(IP_packet.header);
(FALSE) : CALL error_handling;
NEXTSTATE waiting;

(TRUE)
D3 DECISION
IP_test_if_options(IP_packet.header);
(FALSE) :;
(TRUE) : CALL IP_options_processing;
ENDDECISION;
D4 DECISION
IP_test_upper_protocol(IP_packet.header) ;
(’TCP?)
S2 TASK IP_TCP_SDU :=
TCP_SDU_compile(IP_packet);
S3 OUTPUT (IP_TCP_SDU) ;
NEXTSTATE waiting;
(°UDP’) : ...; /* UDP handling */
(ELSE ) : ...;
/* other protocol handling */
ENDDECISION;
ENDDECISION;
ENDDECISION;

ENDPROCESS IP_process;
ENDBLOCK IP;

Table 1: Part 1 of the SDL-PR specification
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BLOCK TCP;
PROCESS TCP_process;
STATE waiting ;
sS4 INPUT(IP_TCP_SDU);
D5 DECISION TCP_check_sum(IP_TCP_SDU);
(TRUE) :;
(FALSE) : NEXTSTATE waiting;
ENDDECISION;
D6 DECISION
connection_state[

IP_TCP_SDU.TCP_packet.header .TCP_destination]

(’established’)
D7 DECISION
TCP_test_flags(
IP_TCP_SDU.TCP_packet .header) ;
(’normal’)
S5 call TCP_normal_operations(
IP_TCP_SDU.TCP_packet.header);
(ELSE) call TCP_exception_handling;
NEXTSTATE waiting;
ENDDECISION;
D8 DECISION TCP_seqno_ok(
IP_TCP_SDU.TCP_packet.header) ;
(TRUE)
D9 DECISION TCP_test_upper_application(
IP_TCP_SDU.TCP_packet.header);
(FTP?)
S6 TCP_FTP_SDU :=
IP_TCP_SDU.TCP_packet.data;
s7 OUTPUT(TCP_FTP_SDU) ;
NEXTSTATE waiting;
(’TELNET’)
/* appropriate TELNET handling */
NEXTSTATE waiting;
ENDDECISION;
(FALSE)
CALL seqno_error_handling;
NEXTSTATE waiting;
ENDDECISION;
(ELSE) : ...; /* handling other states */
ENDDECISION;
ENDPROCESS TCP_process;
ENDBLOCK(TCP) ;

BLOCK FTP;
PROCESS FTP_process;
STATE ascii_transfer;
S8 INPUT(TCP_FTP_SDU) ;
S9 FTP_data := translate(TCP_FTP_SDU);

D10 DECISION test_eof(FTP_data);
(TRUE) OUTPUT (FTP_data) ;
NEXTSTATE closing;
510 (FALSE) OUTPUT (FTP_data) ;
NEXTSTATE ascii_transfer;
ENDDECISION;

ENDPROCESS FTP_process;
ENDBLOCK FTP;
ENDBLOCK STACK_block;

Table 2: Part 2 of the SDL-PR specification



Figure 1: Common path graph with control (solid ar-
row) and data (dashed arrow) dependency relations

UDP. The TCP process checks the validity of the data,
whether the relevant connection is established, and
whether flags are set in the TCP_packet header field
in which case exception handling is carried out. Oth-
erwise, normal TCP operations will be performed, the
sequence number will be checked, and if this check is
successful the TCP_packet.data field will be conveyed
to FTP in case FTP is the upper layer protocol by
an TCP_FTP_SDU. FTP translates the data to internal
ASCII representation and conveys it to the user.

3 Parallelization and Optimization

Decomposition into operations. At first we de-
compose the specification of the protocol stack into
operations. An operation is either a single or grouped
data access statement, or a decision that leads to
branching. An iteration loop defined over the elements
of a set of data (e. g. checksum calculation) is defined
as one operation. The control dependencies between
the statements define a control dependency graph con-
sisting of statement and decision nodes, one graph for
every SDL process.

Common Path analysis. Based on a stochastic
protocol analysis we distinguish the branches (outgo-
ing edges of a decision node) of the dependency graph
into those which are taken with stochastic certainty
(the common ones) and those for which the proba-
bility is below a certain statistical confidence value
(the uncommon ones). This is a generalization of the
Common Path optimization in [CJRS89]. Tt defines a
common path graph which i1s a subgraph of the con-
trol dependency graph in every SDL process. Our fur-
ther optimization will only address the common way a
packet takes through the protocol stack, along a com-
mon path, and not the uncommon cases. We drop the
uncommon branches from every decision node. We
call those decision nodes for which there remain mul-
tiple outgoing branches branching nodes. They enclose
non-branching segments on the common path graph.
Classic cases of decision nodes that have only com-
mon branches are nodes representing error checking
or connection opening or closing, branching nodes of-
ten handle multiplexing or selection of an upper layer
protocol. To facilitate the presentation of our method
we assume that the code we analyze contains no loops
and no recursive procedure calls which implies that
the resulting common path graph is acyclic.

Composing the common path graphs. We now
combine the common path graphs of the SDL pro-
cesses to form a monolithic common path graph for the
entire protocol stack. We start the construction of the
graph at that node at which the data unit whose pro-
cessing we consider is read from the medium. In SDL
this is indicated by an INPUT from the environment,
we call the corresponding node root node. We com-
pose two graphs at those nodes where the first process
conveys a data unit by means of an OUTPUT statement
to an adjacent layer process, which in turn receives
it by an INPUT statement. We consider the QUTPUT
and INPUT statements simply to define synchronous
operations. Furthermore we abandon at this stage of
transformation the fact that in SDL the specified pro-
cesses run independently and concurrently, only syn-
chronizing by asynchronous communication over in-
finite process-unique input queues. The process we
obtain by this composition forms a monolithic process
space with one global data space and a unique pro-
cess control token. The composition ends when an
SDL process outputs a data unit to the environment,
we call the respective nodes exit nodes. Again, for
simplicity we assume that the code of the SDL spec-
ification is structured so that the resulting structure,
which we call the monolithic common path graph, is



acyclic.

Figure 1 presents a monolithic common path graph
obtained by transforming the SDL specification ex-
ample in Tables 1 and 2. In the SDL specification we
have marked the statements which lie on the common
path by asterisks. Non-decision statements are anno-
tated by Sn, where n is an enumeration, and decision
statements are annotated by Dn. Common branches of
decisions are annotated with CP and uncommon ones
with BP. Figure 1 presents the control dependencies,
indicated by solid line arrows, which form the mono-
lithic common path graph after composing the indi-
vidual common path graphs of the processes. S1 is
the root node. D4 and D9 are branching points. For
reasons of conciseness we do not consider the entire
common path graph and omit the subgraphs starting
with branches *UDP’ and ’TELNET’. S10 is the exit
node for the common path graph we consider.

Data dependency analysis. Based on the com-
mon path graph we analyze data dependencies be-
tween the nodes by classical data flow analysis. The
data dependency graph constitutes a criterion for the
maximum possible parallelization of the protocol be-
cause two operations may only be executed in parallel
if they are not data dependent.

The statements in the specification of the proto-
col stack can be classified as follows. An assignment
statement? S which assigns a value to a variable v is
a define statement with respect to v, and a use state-
ment with respect to variable w if w appears on the
right hand side of the assignment. A procedure call is
a define statement with respect to a result parameter
and a use statement with respect to a non-result pa-
rameter. A decision statement with a data parameter
v 18 a use statement with respect to v. An OUTPUT(v)
statement 1s a use statement with respect to v. An
INPUT(v) statement is a define statement with respect
to v. The dependencies between statements can then
be determined as follows. A statement S; is data de-
pendent on a statement S; iff there is a variables v so
that a) S; is a define and S; is a use statement with
regard to v, b) S; precedes S; in the sequential con-
trol flow and S; is a use and 5; is a define statement
with regard to v, or ¢) S; precedes S; and there is an
intervening statement S} so that S; and S; are define
statements and S; i1s a use statement with regard to

v3.

2All statements are assumed to be single assignment
statements.

3For an overview on data and control dependency analysis
see for example [PW86].
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Figure 2: The relaxed dependence graph

The result of the data dependency analysis for our
example protocol stack is shown in Figure 1.

Relaxation of control depen-
dencies. The branching nodes in the common path
graph and their successor nodes represent system ex-
ecutions which are almost certainly taken. We there-
fore replace the control dependency relations usually
connecting neighboring program statements by a re-
laxed control dependency relation, namely that every
non-branching node only depends on its closest pre-
ceding branching node. We define that dependencies
along the common path are always transitive. There-
fore, whenever a non branching node is transitively
depending on a branching node by the data depen-
dency relation then we do not need to introduce a
new dependency edge. Furthermore, we need to in-
troduce a relaxed control dependency between every
non-branching node and every of those reachable exit
nodes which are not already transitively depending.
In our example we need to introduce relaxed con-
trol dependencies from D4 to S2, and from D9 to S8,
plus the edges leading from D1, D2, D3, D5, D8,
D7, D8 and S5 to the exit node S10 (see Figure 2).

Lazy Message processing. The idea behind Lazy
Message processing (see [OP91]) is that combining
data manipulation operations (DMOs) can be very ef-
ficient. A big portion of the execution time for DMOs
can very often be attributed to fetching the operands



whereas processing the operands is neglegible. Exe-
cution time can be saved if DMOs which have identi-
cal operands are executed in a combined fashion, thus
saving unnecessary repeated fetch operations. It is
therefore desirable to defer the execution of DMOQO’s
as much as possible in order to be able to combine as
many DMOs as possible.

In order to perform Lazy Mesage processing we
have to firstly identify all DMO operations that ac-
cess entire packets and not only headers. Branching
node control decisions do usually not depend on the
packet data. In most cases they depend on the packet
header. This implies that only exit nodes depend on
DMOs and thus that DMOs can usually be deferred
to the exit nodes. A DMO is deferred by removing it
from a segment and replicating it in each segment de-
pending on the next branching node. The deferral and
replication is recursively repeated on every subgraph
having its root in the branching node which delimits
the segment graph from which the DMO is removed.
This means that in general all DMOs will be repli-
cated in all exit nodes which are reachable from their
original location. In the exit nodes they are grouped
and executed. However, it is still desirable to execute
grouped DMOs as early as possible. Therefore they
should be grouped and executed at that point in the
graph in which no further DMOs can be added on the
way down to all reachable exit points.

In our example we combine the DMOs D5 and S9
and we execute them together right before the exit
node S10 is reached.

Exiting the common path and ensuring consis-
tency. The operations at the exit node now have to
be modified to test all the results of the operations
they depend on against the predicted results. If there
is a match the normal exit node operations can be
executed. However, if there is a mismatch the whole
processing has to be restarted from the root node us-
ing a non-optimized code version of the protocol stack.

As the different tests have been decoupled from the
operations which these tests ‘guard’ some consistency
ensuring mechanisms have to be applied. For example,
a division by zero may be executed concurrently with
the test for non-zeroness of the respective operand.
Thus the division operation must be made robust such
that a system failure is excluded. Secondly, the oper-
ations which are executed concurrently with the test
operations have to be be reversible. This can be en-
sured by restricting the code to read-only operations
or by performing write operations only locally and per-
forming a commit operation on the actual data when
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Figure 3: A hardware architecture for the receive path

the exit node is reached and all tests have had a pos-
itive result.

4 Scheduling the parallel operations

We now describe the compile time scheduling of
the parallelized operations on a given hardware archi-
tecture. We consider the classic resource constrained
Jjob scheduling problem (see [CS90]). Both the classic
problem formulation as well as our algorithm do not
take delays induced by data transfers into account. We
implemented a tool that in the current version uses an
enumerative scheduling algorithm.

e First we have to compile a list of all independent
resources available in the system on which the
protocol is executing. For each operation of the
common path graph we need to define which re-
sources will be needed and estimate the execution
time.

e Secondly, given this information all possible
schedules can be enumerated and the ones min-
imizing the time at which the exit node are
reached can be selected. Note that due to the re-
laxation of dependencies there are many degrees
of freedom for the schedules. In particular it may
be that operations of different layers turn out to
possibly execute faster in a reverse order com-
pared to the original specification.

The common path of the protocol will then be imple-
mented according to the optimized schedule.

For this example we will use a simple hardware
architecture (see Figure 3). It represents a network



adapter board with two interfaces: the medium ac-
cess interface (MAC) to the network and the host in-
terface (HI) to the host machine. Only the receive
path is covered by our example. There are two dual-
port RAMs acting as FIFO’s between the interfaces
and the processing part. The processing part is made
of a general purpose RISC microprocessor containing
a cache, its program RAM (which also contains the
state information for all open connections) and a Data
Manipulation Unit (DMU), typically a Digital Signal
Processor or a Field Programmable Gate Array. The
DMU reads packets from FIFO1, does the necessary
translations and calculations and stores the resulting
packet in FIFO2. The microprocessor processes the
headers and updates the state of the connections. Its
bus (Bus2) can be isolated from the bus that connects
FIFO 1 to the DMU (Busl) to allow parallel process-
ing. This is achieved using a bidirectional three-state

buffer.
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Table 3: Required resources and execution time for
each operation

For our example we will assume that the board 1s
connected to a link delivering packets of 1500 bytes
at 600 Mb/s, that the hardware is clocked at 25 Mhz,
that the busses are 32 bits wide and that they can
transfer one word per clock cycle.

Table 3 gives the list of resources and indicates
which resources will be used for each operation as

well as how many cycles are needed for execution?.

4Operations $3, $4, 87 and $8 are not represented in the
tables as they do not require any processing.

Note that the processor will access the packet header
only once in FIFO1l. Afterwards the header is re-
tained in the processor cache. The time for trans-
ferring the header from FIFO1 to the cache has ar-
bitrarily been attributed to operation D1. With an
improved scheduling algorithm implicit data transfers
like this one would be generated automatically and
scheduled optimally.

operation | starting | end operation | starting | end
time time time time
S1 0 1
D4 1 2
S2 2 3
D9 3 5
S6 5 7
D1 7 27
D2 27 32 D5+59 27 402
D3 32 33
D6 33 83
D7 83 84
S5 84 284
D8 284 285
Di1o 402 403
S10 403 413

Table 4: An optimal schedule on the proposed hard-
ware architecture

The optimal solution requires 413 cycles to reach
exit node S10 from root point S1. One optimal sched-
ule is given in Table 4. Tt corresponds to a maximum
throughput of 728Mb/s which is about 21% more than
the maximum throughput of the network. Whether
these 21leave the common path is under investigation.
The sequential execution of the original common path
suite of operations on the same hardware would take
1036 cycles, which is more than twice as long as with
the ompitimzed graph.

The total packet processing time is mainly to be
attributed to the compund processing of the DMOs
D5 and S9. However, the compound execution of the
DMOs is responsible for the considerable gain in effi-
ciency in processing the whole packet.

5 Conclusions

We presented a method for the derivation of opti-
mized parallel protocol implementations from formal
specifications. The parallelization covers multiple pro-
tocol layers which distinguishes our method from the
existing previously cited approches. Also, the degree
of parallelism in the architecture we used as exam-



ple 1s relatively limited compared to other approaches
([BZ92], [TZ93]). However, we have shown that even
with this limited parallelism we gained considerably
in efficiency. We claim that further parallelization will
not improve our realtively good cost efficiency ratio,
in particular because we saw that the most time con-
suming part of the packet processing is the data access
related to data manipulation operations.

Further research will address incorporating our
method into an integrated protocol engineering
methodology which will cover all aspects of protocol
specification, verification, performance evaluation, de-
sign and implementation. Our method is well suited
for being integrated into a more complex context be-
cause it 1s relatively formal, even if not all parts are
fully formalized yet. The incorporation of our method
into a protocol engineering tool as well as improve-
ments on the scheduling algorithm are further goals
for future research.
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