
International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 20, April 2015

16

Optimization Techniques in C – A Survey

Pratibha Singh
M.Tech (I.T) Student
Banasthali Vidyapith

 Rajasthan, India

Smriti Sonker
M.Tech (C.S) Student
Banasthali Vidyapith

 Rajasthan, India

Prabhat Verma

Assistant Professor
CSE Department
HBTI, U.P, India

ABSTRACT

Programmers spent most of their time in speeding up a

program. Sometimes, speeding up a program leads to increase

in the code size that adversely affects the readability as well

as the complexity of the program, which makes the code less

efficient. Thus, in-order to make the code efficient to work,

optimization of the code is needed. There are a number of

compilers available which can automatically optimize the

code which dominates the kind of manual optimization. In this

work, we have studied the different techniques which can be

applied to improve the way of writing program in C language,

such that the code becomes more efficient. Also, the term

optimization is being explained, along with when and where

the optimization is to be applied.

General Terms

Machine dependent techniques, Machine independent

techniques, Optimization levels.

Keywords

Optimization, Complexity, Efficient code, Function.

1. INTRODUCTION
Sometimes, it is difficult to find out the part of the program

which consumes most of the resources and results into an un-

efficient code. In compiler design, there is one of the

technique in which a piece of code is being transformed to

make it more efficient as well as to improve the performance

such that the output remains same, termed as optimization.

Code optimization aims to make high quality code with best

complexity (time and space) such that it should not affect the

exact result of the code. It is mainly based on the criterion to

preserve the semantic equivalence of the program, such that

the algorithm must not be modified. On an average, the

transformation should speed up the execution of the program.

Optimization includes finding a bottleneck, a critical part of

the code which is the primary consumer of the needed

resources. Basically Code optimization concerns on

correctness, it means the correctness of the generated code

should not be changed.

On using different optimization techniques, the code can be

optimized without affecting the original (actual) algorithm

and final output with the intent of high performance. When

performance is to be considered, then there is need to choose

an algorithm which runs quickly and the available computing

resources are being used efficiently. Basically, Code

optimization involves the employment of rules and algorithms

to the program segment with the goal such that the code

becomes faster, smaller, more efficient and so on.

Optimization is classified as high level optimization and low

level optimization. High level optimization are usually

performed by those programmers who handles abstract

entities and also keeps in mind the general framework of the

task to optimize design of a system. On the other hand, low

level optimization is performed at the stage when source code

is compiled into a set of machine instructions.

2. WHEN AND WHERE IT IS NEED TO

BE OPTIMIZED?
There are a number of strategies to achieve optimization.

Some of the techniques are applied to the intermediate code

in-order to reduce the size of the TAC instructions. And some

other techniques are implemented as final code generation

which involves selection of the instructions that are need to be

omitted as well as allocation of registers. There are also some

techniques that could be applied after the final code

generation to make it more efficient.

3. OPTIMIZATION TECHNIQUES IN C
There are different optimization techniques through which an

un-optimized code will be easily transformed to optimized

one, in which some of the techniques are machine

independent while others are machine dependent techniques.

There also exist different optimization tools. After going

through the different papers the techniques which are being

used to optimize the codes in C are :

3.1 Machine Dependent Techniques
Machine dependent optimizations are those which requires

knowledge of target machine architecture. Some of the

strategies used are :

3.1.1 Minimize local variable:
On minimizing local variables in a function, the compiler will

be able to fit them into registers, and hence the frame pointer

operations on local variables that are kept on stack will be

avoided. If all the variables are mentioned as register, then the

performance will be improved since it will be accessed from

register instead of memory which will always be faster. Also,

when no local variables required to be saved on the stack, it

will not incur any overhead of setting up and restoring frame

pointer [7].

3.1.2 Number of parameters to be minimized
With large number of parameters function calls may be

expensive because a large number of parameter pushes on

stack on each call. Hence for this reason, to pass complete

structures as parameters is being avoided and in this case

pointers and references are to be used [7].

3.1.3 Ignore defining a return value if not used:
The return value is being always passed by the called

function, because the called function does not “know” if the

return value is being used or not, so it is being advisable that

this return value may be avoided by not defining a return

value which is not being used [7].

3.1.4 Prefer int instead of char and short:
Always it is being preferred to use int instead of char and

short because in C, all operations of char is being performed

with integer. If char is used in operations like passing char to

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 20, April 2015

17

a function or any arithmetic operation, first compiler will

convert the value of char into integer and after performing the

operations it will again be converted into char. If a single char

is used then it may not be efficient but if the same operations

are performed number of times in a loop then the efficiency of

a program may be decreased [7].

3.1.5 Optimizing switch statement:
Switch statement is being translated in different ways .If case

labels are in a narrow range, an if-else-if cascade for the

switch statement is not generated, instead if-else-if a jump

table of case labels is originated and the originated code is

faster in comparison to if-else-if cascaded code, also,

performance of a jump table based switch statement is not

dependent of the number of case entries in switch statement.

If case labels are far apart, by placing the frequent case labels

first, number of comparisons can be reduced. It means the

class label which is being used least number of times should

be at last and the frequently used label to be placed first.

In some cases the above techniques will not work where the

compiler not originate the cascade of if-else-if, in such

condition to get the same effect nested switch statement can

be used.

In case of big switch statements, to minimize the number of

comparisons being performed, big switch statements is to be

break down into nested switch statements. In this condition

the more frequently occurring case labels is placed into one

switch and the rest are in other switch [7].

3.1.6 Prefer pre increment/decrement over post

increment/decrement:
When pre increment/decrement and post increment/decrement

are used for same operation, using pre increment/decrement

will be more efficient. When post increment/decrement is

used a copy of the object is produced, then

increment/decrement is executed and the value is copied to

the variable location. Instead using pre increment/decrement,

the value is incremented first and the value is copied to

variable location [7].

3.2 Machine Independent Techniques
Machine Independent optimization can be performed

independently of the target machine for which the compiler is

generating the code.

3.2.1 Inlining:
Inlining is one of the commonly used optimization technique

which is used to” inline” the contents of function –basically

instead of traditional call to that function, because it

eliminates the need to jump, creation of a new stack frame

and to reverse the process at the end of the function[5].

Inlining can be easily understand with the below given piece

of code.

 Old code

New code

 Fig 1: Example of Inlining

3.2.2 Code Motion:
This optimization technique is also known as code hoisting

which unifies sequences of code that are same to one or more

basic blocks such that code size be reduced and hence

expensive re-evaluation will be potentially avoided. Loop

invariant code motion is most common form of code motion,

in which if a computation inside a loop produces same results

for all iterations, it may be possible to move the computation

outside the loop [1]. An example is shown in Fig.2

Fig 2: Example of Code Hoisting

3.2.3 Constant propagation and Constant folding:
Constant propagation is an optimization technique in which, if

a constant value is assigned to a variable, then the subsequent

use of that variable is replaced by the constant, i.e. in this

integer constants are move to the place they are used [1].

Advantage of this technique is that both the number of

registers and instructions executed reduces. On the other side,

Constant Folding is the replacement of expressions that can be

evaluated at compile time by their computed values. This

technique is mostly applied to the expressions which have

constant operands and can be evaluated at time. By this

technique, the runtime performance will be increased because

the code size will be returned by avoiding evaluation at

compile time. Folding does not require additional pass in the

analysis phase and hence it can be applied (used) to the entire

program, most of the time it is preferred to perform folding

during the production of intermediate language. Folding can

be easily performed w.r.t to the basic block which is passed

and so it is commonly thought of as a kind of local

optimization technique.

Fig 3: Example of Constant Propagation and Folding

int fn(x , y)

{ x=x-y;

 y++ ;

 x=x*y ;

 return x;

}

#define fn(x,y) (((x)-((y)) * ((y) + 1))

Star

t

void f(int a, int b)

{ int i;

 for (i=1; i<10; i++)

 { ar[i]=a+b;

 }

}

void f(int a, int b)

{ int i;

 int tmp=a+b;

 for (i=1; i<10; i++)

 { ar[i]=tmp;

 }

}

 Start

x=10

y=20

If y==20 goto B3

x=30

z=x+5

 Stop

Start

x=10

y=20

x=30

z=35

Stop

Before Constant

Propagation

After Constant

Propagation and Folding

International Journal of Computer Applications (0975 – 8887)

Volume 115 – No. 20, April 2015

18

3.2.4 Strength Reduction:
Is an optimization technique in which a type of operation is

replaced by another type of operation, or it can be understood

as those operations which are computationally expensive are

replaced by the simpler ones having an equivalent effect. As

an example of this, addition takes less time in comparison to

multiplication operator, hence the multiplication operation is

being replaced by the addition operation which is a classical

example of strength reduction.

Fig 4: Example of Strength Reduction

3.2.5 Common Sub-Expression Elimination:
Two operations are common if they produce the same result.

In such a case, it is likely more efficient to compute the result

once and reference it the second time rather than re-evaluate

it. The operands which is used to calculate the expression,

have not been altered, then the expression will be alive. An

expression that is no longer alive is dead [1].

Fig 5: Example of Common Sub-Expression Elimination

3.2.6 Dead Code Elimination:
This consists of eliminating the instruction or code that is

never used in a program and so it is considered as “dead” [1].

Fig 6: Example of Dead Code Elimination

3. CONCLUSION
This paper describes about the optimization and the different

techniques along with how and where to optimize. The

techniques can be applied by the programmer to make the

code work better and hence to increase its efficiency. As the

main section of the paper (Section 3) is divided into two parts

in which first section focuses on machine dependent

techniques. The second part describes about the different

machine independent techniques. Hence, going through all the

section of the paper, need of optimization can be easily

understood, also when and where it is needed and finally how

to apply different optimization techniques to a piece of source

code. Further in future two or more techniques can be used

together in order to make the optimization more fruitful.

4. ACKNOWLEDGMENTS
We are thankful to Mr. Prabhat Verma, Assistant Professor,

CSE Department, HBTI Kanpur, who have contributed

towards the successful completion of this paper.

5. REFERENCES
[1] Michael E. Lee, “Optimization of Computer Programs in

C”, Ontek Corporation, USA “Code Optimization”

article. Available: http://leto.net/docs/C-optimization.php

Forman, G. 2003.

[2] Maggie Johnson, “Code Optimization”, Handout 20,

August 04, 2008.

[3] Mohammed Fadle Abdulla, “Manual and Fast C Code

Optimization”, Anale. Seria Informatica. Vol. VIII fasc.

I-2010.

[4] Mr. Chirag H. Bhatt, Dr. Harshad B. Bhadka, “Peephole

Optimization Technique for analysis and review of

Compile Design and Construction”, IOSR Journal of

Computer Engineering (IOSR-JCE), Volume 9, Issue 4

(Mar. - Apr. 2013).

[5] “Optimization Techniques in C”, Fall, 2013. Available:

http://cs.brown.edu/courses/cs033/docs/guides/c_optimiz

ation_notes.pdf.

[6] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto,

“Source–Level Execution Time Estimation of C

Programs”, Proceedings of the ninth international

symposium on Hardware/software code design.

[7] The EventHelix website. [Online] “Optimizing C and

C++ code” Available:

http://www.eventhelix.com/realtimemantra/basics/optimi

zingcandcppcode.htm#.VCpsxfmSyFM.

[8] Tips for “Optimizing C/C++ Code”. Available:

http://people.cs.clemson.edu/~dhouse/courses/405/papers

/optimize.pdf

[9] “Writing Efficient C and C Code Optimization”. Article:

http://www.codeproject.com/Articles/6154/Writing-

Efficient-C-and-C-Code-Optimization

[10] “Optimizing C++/ Code Optimization/ Faster operations”

Available:

http://en.wikibooks.org/wiki/Optimizing_C%2B%2B/Co

de_optimization/Faster_operations.

[11] “Research on code optimization when develop highway

network monitoring software based on Trimedia”.

Available:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6

843485&url=http%3A%2F%2Fieeexplore.ieee.org%2Fx

pls%2Fabs_all.jsp%3Farnumber%3D6843485

[12] “Continuous Compilation: A New Approach to

Aggressive and Adaptive Code Transformation”.

Available:

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1

213375&url=http%3A%2F%2Fieeexplore.ieee.org%2Fx

pls%2Fabs_all.jsp%3Farnumber%3D1213375\

[13] S. K. Srivastava, Deepali Srivastava, “C in Depth” 3rd

edition.

for i=1 to 10 do

……..

……..

a=i*5;

……..

……...

end

tmp =5;

for i=1 to 10 do

……..

a=tmp;

……...

tmp=tmp+5;

end

int global;

void fn()

{ int a;

a=1;

global=1;

global=2;

return;

}

int global;

void fn()

{

global=2;

return;

}

a = x+y

…........

b = x+y

t = x+y

a = t

……

b = t

IJCATM : www.ijcaonline.org

