Optimization Techniques in Statistics

Jagdish S. Rustagi

Department of Statistics The Ohio State University Columbus, Ohio

ACADEMIC PRESS

Harcourt Brace & Company, Publishers

Boston San Diego New York London Sydney Tokyo Toronto

Contents

Preface		ix	
Acknowledgments			
Chap	oter 1. Synopsis	1	
1.1	Introduction	1	
1.2	Classical Optimization Techniques	2	
1.3	Optimization and Inequalities	3	
1.4	Numerical Methods of Optimization	3	
1.5	Linear Programming Techniques	4	
1.6	Nonlinear Programming Techniques	5	
1.7	Dynamic Programming Methods	6	
1.8	Variational Methods	7	
1.9	Stochastic Approximation Procedures	8	
1.10	Optimization in Simulation	9	
1.11	Optimization in Function Spaces	10	
Chap	oter 2. Classical Optimization Techniques	11	
2.1	Introduction	11	
2.2	Preliminaries	12	
2.2	Nagagary and Sufficient Conditions for an Extramum	1.4	

vi	Optimization Techniques in	Statistics
2.4	Constrained Optimization—Lagrange Multipliers	25
2.5	Statistical Applications	32
2.6	Exercises	39
Chaj	pter 3. Optimization and Inequalities	41
3.1	Introduction	41
3.2	Classical Inequalities	42
3.3	Matrix Inequalities	46
3.4	Applications	. 47
Chap	pter 4. Numerical Methods of Optimization	53
4.1	Introduction	53
4.2	Numerical Evaluation of Roots of Equations	55
4.3	Direct Search Methods	64
4.4	Gradient Methods	71
4.5	Convergence of Numerical Procedures	75
4.6	Nonlinear Regression and Other Statistical Algorithms	79
4.7	Exercises	87
Chap	pter 5. Linear Programming Techniques	89
5.1	Introduction	89
5.2	Linear Programming Problem	91
5.3	Standard Form of the Linear Programming Problem	102
5.4	Simplex Method	105
5.5	Karmarkar's Algorithm	110

Zero-Sum Two-Person Finite Games and Linear Programming

Nonlinear Programming Methods

112

118

122

129

131

131

132

135

142

146

148

5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

6.5

6.6

Chapter 6.

Integer Programming

Exercises

Introduction

Applications

Statistical Examples

Kuhn-Tucker Conditions

Quadratic Programming

Convex Programming

Statistical Applications

Contents		vii
6.7	Statistical Control of Optimization	155
6.8	Stochastic Programming	159
6.9	Geometric Programming	162
6.10	Exercises	168
Chap	oter 7. Dynamic Programming Methods	171
7.1	Introduction	171
7.2	Regulation and Control	172
7.3	Functional Equation and Principles of Optimality	177
7.4	Dynamic Programming and Approximation	191
7.5	Patient Care through Dynamic Programming	194
7.6	Pontryagin Maximum Principle	195
7.7	Miscellaneous Applications	201
7.8	Exercises	204
Chap	eter 8. Variational Methods	209
8.1	Introduction	209
8.2	Statistical Applications	210
8.3	Euler-Lagrange Equations	215
8.4	Neyman-Pearson Technique	221
8.5	Robust Statistics and Variational Methods	234
8.6	Penalized Maximum Likelihood Estimates	240
8.7	Exercises	242
Chap	ter 9. Stochastic Approximation Procedures	247
9.1	Introduction	247
9.2	Robbins-Monro Procedure	250
9.3	General Case	255
9.4	Kiefer-Wolfowitz Procedure	259
9.5	Applications	262
9.6	Stochastic Approximation and Filtering	264
9.7	Exercises	267
Chap	ter 10. Optimization in Simulation	269
10.1	Introduction	269
10.2	Optimization Criteria	270
10.3	Optimality of Regression Experiments	273

viii	Optimization T	Techniques in Statistics
10.4	Response Surface Methods	285
10.5	Miscellaneous Stochastic Methods	289
10.6	Application	295
Chap	oter 11. Optimization in Function Spaces	297
11.1	Introduction	. 197
11.2	Preliminaries	298
11.3	Optimization Results	309
11.4	Splines in Statistics	320
11.5	Exercises	323
Biblio	ography	325
Author Index		343
Subject Index		340