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   

Abstract — This paper presents a two-stage stochastic pro-

gramming model for provision of flexible demand response (DR) 

based on thermal energy storage in the form of hot water stor-

age and/or storage in building material. Aggregated residential 

electro-thermal technologies (ETT), such as electric heat pumps 

and (micro-) combined heat and power, are modeled in a uni-

fied, non-technology specific way. Day-ahead optimization is 

carried out considering uncertainty in outdoor temperature, 

electricity and hot water consumption, dwelling occupancy, and 

imbalance prices. Building flexibility is exploited through 1) 

specification of a deadband around the set temperature, or 2) a 

price of thermal discomfort applied to deviations from the set 

temperature. A new expected thermal discomfort (ETD) metric 

is defined to quantify user discomfort. The efficacy of exploiting 

the flexibility of various residential ETT following the two ap-

proaches is analyzed. The utilization of the ETD metric to facili-

tate quantification of the expected total (energy and thermal 

discomfort) cost is also demonstrated. Such quantification may 

be useful in the determination of DR contracts set up by energy 

service companies. Case studies for a UK residential users’ 

aggregation exemplify the model proposed and quantify possible 

cost reductions that are achievable under different flexibility 

scenarios.  

 
Index Terms — Demand response, electric heat pump, com-

bined heat and power, thermal energy storage, user comfort, 

energy service company. 

NOMENCLATURE 

A. Acronyms 

ASHP Air Source Heat Pump 

CHP  Combined Heat and Power 

DA  Day Ahead 

DHW Domestic Hot Water 

DR  Demand Response 

ETD  Expected Thermal Discomfort 

ETDC Expected Thermal Discomfort Cost 

EHP  Electric Heat Pump 

 
Nicholas Good is sponsored by E.ON New Build & Technology. 

Alejandro Navarro-Espinosa is sponsored by Electricity North West. 

Nicholas Good, Alejandro-Navarro Espinosa and Pierluigi Mancarella are 

with the School of Electrical and Electronic Engineering, University of 
Manchester, Manchester, M13 9PL, UK. (e-mail: {nicholas.good, alejan-

dro.navarroespinosa, p.mancarella}@manchester.ac.uk). 

Efthymios Karangelos is with the University of Liege, Liege 4000, Bel-
gium (e-mail: e.karangelos@ulg.ac.be). 

ESCo Energy Service Company 

ETT  Electro Thermal Technology 

ICE  Internal Combustion Engine 

mu  monetary unit 

PDF  Probability Density Function 

SE  Stirling Engine 

SH  Space Heating 

TES  Thermal Energy Store 

B. Indices 

𝑠    scenario index, from 1 to 𝑁𝑠 

𝑖    time step index, from 0 to 𝑁𝑖 

𝑏    dwelling index, from 1 to 𝑁𝑏 

C. Parameters 

1) Resource 

𝜏𝑏 binary heater type indicator (1 for electricity con-

suming, 0 for electricity generating) 

𝑃𝑏
𝑚𝑖𝑛  min electrical power of unit (kW) 

𝑃𝑏
𝑚𝑎𝑥  max electrical power of unit (kW) 

𝜌𝑠,𝑖,𝑏   ratio of heater thermal output to electrical input 

𝜂𝑏         combined heat and power unit electrical efficiency 

𝑇𝑖,𝑏
𝑠𝑒𝑡     set temperature of dwelling (°C) 

𝛿𝑖,𝑏
𝑙𝑜𝑤     max down-variation from set temperature (°C) 

𝛿𝑖,𝑏
ℎ𝑖𝑔ℎ

   max up-variation from set temperature (°C) 

𝑅𝑏   thermal resistance of dwelling (°C/kW) 

𝐶𝑏   thermal capacitance of dwelling (kWh/°C) 

𝑋𝑏
𝑚𝑎𝑥  max temperature of TES (°C) 

𝑋𝑏
𝑚𝑖𝑛   min temperature of TES (°C) 

𝑅𝑏
𝑥    thermal resistance of TES (°C/kW) 

𝐶𝑏
𝑥    thermal capacitance of TES (kWh/°C) 

2) Consumer Energy/Occupancy Scenario Profiles 

𝐿𝑠,𝑖,𝑏
𝐷𝐻𝑊   domestic hot water load (kWh) 

𝐸𝑠,𝑖,𝑏        non-heating (base) electricity load (kWh) 

𝑂𝑠,𝑖,𝑏   binary indicator of active occupancy 

3) Price/Temperature Profiles and Parameters 

𝜆𝑖
−   day-ahead electricity import price (£/kWh)

1
 

𝜆𝑖
+    day-ahead electricity export price (£/kWh)

1 

𝜇𝑠,𝑖
−    imbalance electricity import price (£/kWh)

1 
 

𝜇𝑠,𝑖
+     imbalance electricity export price (£/kWh)

1 

 
1 Includes energy costs, network charges, and other relevant retail costs as 

applicable. 
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𝛾𝑖      gas price (£/kWh) 

𝜑𝑖
−   penalty for deficient temperature (£/(°C·h)) 

𝜑𝑖
+   penalty for excess temperature (£/(°C·h)) 

𝑇𝑠,𝑖
𝑜𝑢𝑡    outside temperature (°C) 

𝑝𝑠    scenario probability 

4) Time-band Length 

𝑙     length of time step (h) 

D. Variables 

𝐷𝑖
−   day-ahead energy import (kWh) 

𝐷𝑖
+   day-ahead energy export (kWh) 

𝐷𝑖     day-ahead energy (kWh) 

𝐼𝑠,𝑖
−    imbalance energy import (kWh) 

𝐼𝑠,𝑖
+    imbalance energy export (kWh) 

𝐼𝑠,𝑖   imbalance energy (kWh) 

𝐻𝑠,𝑖,𝑏  heating electricity consumption (kWh) 

𝑋𝑠,𝑖,𝑏   energy level of thermal energy store (kWh) 

𝑇𝑠,𝑖,𝑏   internal temperature of dwelling (°C) 

𝑇𝑠,𝑖,𝑏
+    temperature surplus (°C) 

𝑇𝑠,𝑖,𝑏
−    temperature deficit (°C) 

𝐿𝑠,𝑖,𝑏
𝑆𝐻    space heating load (kWh)  

𝐺𝑠,𝑖         gas consumption (kWh) 

I. INTRODUCTION 

ISPATCHABLE generating assets have traditionally 

been the main source of flexibility in electricity systems. 

However, there is a need for incorporating new sources of 

flexibility in system operation [1], such as demand response 

(DR). DR is defined as any action on the demand side of the 

meter in response to price signals [2]. Any device which 

features some storage (of the end product or within a process) 

has the potential to provide flexibility for DR purposes [3]. 

Therefore of particular interest, for DR applications, are elec-

tro-thermal technologies (ETT). These include electric (resis-

tive) heating, electric heat pumps (EHP) and combined heat 

and power (CHP). Such technologies have substantial ther-

mal storage potential (in physical stores such as hot water 

TES or in dwelling materials exploiting embedded thermal 

inertia), and thus are a major source of potential flexibility. 

The problem of optimization of storage-type customers 

under time-varying prices, in particular the complexity intro-

duced by inter-temporal constraints, has long been recog-

nized [4]. A key observation on this topic has been that bene-

fits from operating storage are only realized if the price dif-

ference between storage charge and discharge periods ex-

ceeds losses associated with storage [3]. This observation 

drives the need to understand the physical basis of relevant 

storage resources and their associated losses and inertia. In 

this respect, with regards thermal modeling of dwellings, 

electrical analog models [5], which feature equivalent ther-

mal resistances and capacitances, have been proposed as a 

suitable option. It should be noted that this option also pro-

vides the potential for linear optimization, as a model for the 

relevant decision-making process. For maximum scalability 

such models have been reduced to single-node lumped-

system models [6]. With regards to modeling of TES, less 

work has been conducted (despite the developments that are 

making TES increasingly interesting [7]). Nevertheless, also 

for TES, there is a wide range of modeling approaches, from 

multi-nodal to single-node models [8]. However, it is notable 

that, in the current literature, a systematic unified model of 

both dwelling and TES, suitable to fully explore the benefit 

and interactions of such storage resources, does not exist. 

Moreover, when dealing with thermal storage based re-

sources, technology specificity appears to be another limit. In 

fact, most of the current literature refers to a specific technol-

ogy. This includes [3] and [7] pertaining to electric resistive 

heating, [4], [5] and [8]–[10] to air-conditioning for cooling, 

[12] to EHP for heating, and [13] to CHP for heating. How-

ever, limiting to one specific technology precludes the study 

of the complementarity of different ETT, such as EHP (con-

suming electricity when heat is needed) and CHP (producing 

electricity when heat is needed). This limitation also does not 

allow the study of relevant optimal portfolio analyses, con-

sidering the possibility of DR  through day-ahead (DA) or 

real-time arbitrage among different energy vectors
2
 [14].  

Besides shifting between energy vectors, thermal storage 

based resources may also offer DR from curtailment or shift-

ing in time of the final energy service  [15]. Exploitation of 

such flexibility necessitates the consideration of user prefer-

ence [16] (equivalently comfort [17] or utility [18]). Such 

preference may be expressed as limits on service levels [16], 

[19]–[21], or through specification of the value of the energy 

service to be incorporated into a generalized cost objective 

function [6], [12], [22]–[24]. Focusing particularly on gener-

alized cost approaches, [22] includes, in addition to monetary 

cost, costs related to waiting (for appliance operation). Simi-

larly, [24] defines a transfer coefficient which can be con-

ceived of as a measure of the willingness of the user to shift 

their appliance consumption in time. Another component of 

the objective can be a cost associated with thermal discom-

fort, as implemented in [6], [12], [23]. Outside of mathemati-

cal programming approaches, heuristic based methods have 

also been employed. In [17], for example, a demand aggrega-

tor seeks to deliver a given amount of demand reduction with 

minimal loss of user comfort, using genetic algorithms. 

Following a level of service approach, flexibility in the 

heat stored in dwelling material may be exploited by allowing 

the temperature to vary within a certain deadband. However, 

this will result in the dwelling temperature usually, assuming 

a cost minimization objective, tending towards the lower 

bound [9]. To counter this effect, penalties on deviation of 

the temperature from the set temperature may be combined 

with the temperature bounds to enable a cost/comfort multi-

objective optimization. These non-monetary penalties may be 

based on the predicted mean vote method, such as in [10], 

[25]. However, such measures are not completely generaliza-

ble as they are designed for measuring the comfort of large 

groups of people over extended periods of time [26]. A popu-

lar, more general, alternative approach is to explicitly place a 

price on deviations of the dwelling temperature from the set 

temperature (which may vary by dwelling and time). Such a 

price is often termed the “price of discomfort”. This kind of 

approach is, for instance, followed in [6], [12], [23]. Notwith-

 
2 “energy vector” is synonymous with “energy carrier”, denoting a sub-

stance that contains energy for use or conversion at a later stage 

D 
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standing the difficulty of determining an appropriate price for 

thermal discomfort, this approach may be considered practi-

cal. More specifically, in [6] a mu/(°C)
2
 coefficient is applied 

to the square of the deviation of the dwelling temperature 

from the set temperature for each dwelling class and time 

period. However, given that quantification of the price of 

discomfort may need to be clearly integrated into a contract 

between the party exploiting the flexibility (a “flexibility 

aggregator”, such as an ESCo, or energy retailer) and the 

dwelling occupants, such a price coefficient may be inade-

quate. This is due to the failure to explicitly consider the 

duration of the deviation and therefore its comfort level im-

pact, which will be crucial in specifying acceptable service 

levels in DR contracts. In [23], the price coefficient has unit 

mu/°C which, although more intuitive than the unit mu/(°C)
2
 

in [6], similarly does not explicitly consider the length of the 

deviation. In [12] these weaknesses are addressed though 

specification of the price of discomfort coefficient in the form 

mu/(°C·h). However, the application of this coefficient to the 

absolute value of the deviation precludes specification of 

different values for up/downward deviations. Also the ap-

proaches in [12], [23] preclude a price of discomfort which 

varies over time and across dwellings. Therefore, current 

approaches which consider the value of thermal comfort in 

exploitation of dwelling flexibility may be considered incom-

plete. Hence, such approaches may be unsuitable as a basis 

for specification of contracts between users and flexibility 

aggregators. 

On the above premises, this work formally describes a 

comprehensive techno-economic model for aggregation of 

generic ETT with thermal storage (in the form of TES and/or 

dwelling material) for DR optimization, in a DA market con-

text, with consideration of thermal comfort. The proposed 

model incorporates ETT and storage with dynamical equa-

tions, so as to allow linear optimization. Given the high de-

gree of uncertainty inherent in the operation of ETT (primari-

ly dictated by thermal requirements, as well as in market 

prices), a two-stage stochastic programming approach is 

employed [27]. This represents a simplification of the most 

comprehensive approach, a multi-stage framework. Under the 

assumption that uncertain parameters change relatively little 

during the considered period, the two-stage approach can be 

considered to provide a good estimate of the result of a full 

multi-stage problem. Additionally, the two-stage approach 

may be considered more practical given the complexity of a 

multi-stage approach. The stochastic programming approach 

includes consideration of the effect of uncertainty in outdoor 

temperature (a major determinant of space heating load), 

DHW load, base electricity load, occupancy and imbalance 

prices. This provides a full consideration of uncertainty af-

fecting DR from ETT. Optimization is undertaken by a bal-

ancing responsible party fulfilling both a retailer (for inflexi-

ble base electricity demand) and ESCo role (providing ther-

mal comfort and DHW to dwelling occupants).  

Thermal discomfort is quantified using a new expected 

thermal discomfort (ETD) metric. The ETD metric is intend-

ed as a standard metric focused on the loss of energy service, 

rather than energy itself. Through application of a price of 

discomfort, such a metric can, as will be demonstrated, be 

incorporated into an ESCo optimization to produce more 

efficient results than alternative methods for exploiting flexi-

bility. Further, the ETD can serve as a standard basis for 

determining user compensation for lost comfort, via the ex-

pected thermal discomfort cost (ETDC) measure, in DR con-

tracts. This represents a different direction for specification of 

remuneration for space conditioning related DR contracts. 

Such contracts, in the past, have largely been specified based 

on available electrical power [28], [29], with no explicit ap-

preciation of lost thermal comfort. 

Following initial modeling carried out in [30], the formali-

zation of a linear, non-technology specific unified stochastic 

programming model of both dwelling and TES, which ena-

bles appreciation of the complementarity of electricity con-

suming and generating ETT, is the major novel contribution 

of this paper. The consideration of all available storage (as 

opposed to previous limited approaches [6]–[8], [31]), in a 

stochastic fashion, considering the complexity of multiple 

scenarios and of inter-temporal constraints dictated by stor-

age operation, is also a significant contribution. A further 

contribution lies in the explicit consideration of occupant 

thermal discomfort, via the ETD metric, for more efficient 

exploitation of flexibility and determination of compensation 

for lost comfort in DR contracts. 

The remainder of the paper is organized as follows. Sec-

tion II details the optimization problem formulation. Section 

III introduces and details case studies, showing the applica-

tion of the formulation to a residential scenario with in-

dwelling heating units and TES. Section IV provides the 

concluding remarks and bridges to future work. 

II. PROBLEM DESCRIPTION 

The problem described is that of a balancing responsible 

retailer-ESCo. The retailer-ESCo retails electricity for fulfil-

ment of base electricity demand, while exercising direct con-

trol over ETT and TES to provide thermal comfort to con-

tracted standards. In this work the contract between the 

dwelling occupants and the retailer-ESCo specifies a dead-

band (which may in case be zero) at times of active occupan-

cy. Prices are specified for thermal discomfort (payable by 

the retailer-ESCo to the dwelling occupant, in the form of 

£/(°C·h)) for deviations below or above the limits of the spec-

ified deadband. Such an arrangement might be considered 

contentious given the necessity of sharing potentially sensi-

tive data on building energy usage between the dwelling 

occupants and the actor fulfilling the retailer-ESCo role [32]. 

However, given the growing importance for society of CO2 

reduction (which in turn motivates reduction in energy con-

sumption and hence interest in the ESCo model [33]) it can 

be expected that such concerns will be mitigated appropriate-

ly. This will enable the retailer-ESCo access to the required 

information. Concerns may also be counteracted by the po-

tential rewards available (in terms of CO2 reduction for socie-

ty and bill reduction for the consumer).  

Each dwelling has a thermal load (SH and DHW) and a 

(non-heat related) “base” electrical load, all subject to uncer-

tainty. The retailer-ESCo’s objective is to minimize the ex-

pected cost over the day considering DA market purchases, 

imbalance costs (additional cost for balancing its position 

which it might incur in real time due to demand forecast 

uncertainty), gas purchases, and payments to dwelling occu-
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pants for violation of contracted thermal comfort standards. 

Intra-aggregation balancing is assumed to be possible (e.g., in 

line with microgrid applications [34]), with import and export 

prices applied, to the aggregation’s net import/export. The 

dwellings’ thermal demand is served by an (electricity con-

suming or generating) ETT. The retailer-ESCo may create 

flexibility in each dwelling, to respond to uncertainty, 

through exploitation of a TES and/or through heat storage 

(thermal inertia) in building material. TES and dwellings are 

modeled as lumped systems [6], with one equivalent thermal 

resistance (modeling heat losses) and one thermal capacitance 

(modeling thermal inertia). Uncertainty in some problem 

parameters (see Section III.B) is modeled through use of 

scenarios, and the problem is cast as a two-stage stochastic 

optimization problem [35]. More specifically, decisions on 

DA purchases are made in the first (day-ahead) stage, while 

recourse decisions (ETT and TES set-points and imbalance 

settlement purchases) are made at the second stage (real 

time). Scenarios to model the relevant uncertainties can be 

formed with reference to parameter forecasts or through utili-

zation of past records (or a combination of both). If past rec-

ords are used, scenario reduction [35], [36] may be required 

to reduce the number of scenarios, in order to reduce model 

run-time to practical levels. 

Energy prices include all relevant additional costs (such as 

network charges). In this respect, the formulation allows for 

separate directional (import and export) DA and imbalance 

prices. This is done so that some of these additional costs can 

be applied differently to import and export prices and in order 

to accommodate double and single pricing arrangements for 

imbalance prices.  

A. Retailer-ESCo’s Objective Function 

The retailer-ESCo’s objective (1) is to minimize its overall 

expected (day ahead and imbalance) electricity and gas costs 

over the day while maintaining contracted levels of thermal 

comfort (violations of which are penalized). Relevant uncer-

tainties are considered. These are modeled through 𝑁𝑠 scenar-

ios, each with probability of occurrence 𝑝𝑠. 

𝑀𝑖𝑛 {∑ [𝜆𝑖
−𝐷𝑖

− − 𝜆𝑖
+𝐷𝑖

+ + ∑ 𝑝𝑠(𝜇𝑠,𝑖
− 𝐼𝑠,𝑖

− − 𝜇𝑠,𝑖
+ 𝐼𝑠,𝑖

+ +
𝑁𝑠
𝑠=1

𝑁𝑖−1
𝑖=0

𝛾𝑖𝐺𝑠,𝑖 + ∑ 𝑂𝑠,𝑖,𝑏(𝜑𝑖
+𝑇𝑠,𝑖,𝑏

+ + 𝜑𝑖
−𝑇𝑠,𝑖,𝑏

− )
𝑁𝑏
𝑏=1 )]}  

(1) 

B. ETT/TES Modeling 

A key feature of the proposed formulation is the conceptu-

alization of the ETT/storage resource. In this formulation the 

thermal load (𝐿𝑠,𝑖,𝑏
𝑆𝐻 + 𝐿𝑠,𝑖,𝑏

𝐷𝐻𝑊) is always non-negative, but the 

accompanying ETT electricity variable 𝐻𝑠,𝑖,𝑏 will be either 

non-negative (for electricity consuming ETT) or non-positive 

(for electricity generating ETT) for each dwelling, depending 

on the technology type. Hence, an electricity consuming ETT 

and electricity generating ETT can be modeled in the same 

way, differentiated only by the ratio of the thermal output to 

the electrical input 𝜌𝑠,𝑖,𝑏. 𝜌𝑠,𝑖,𝑏 will take a positive value for 

an electricity consuming ETT (e.g., an EHP) and a negative 

one for an electricity generating ETT (e.g., a CHP). 

Limits on the operating range of each ETT are described in 

(2) and (3). 𝑃𝑏
𝑚𝑖𝑛 and 𝑃𝑏

𝑚𝑎𝑥 are the electrical consumption 

power limits of the technology, which are transformed into 

heat energy limits by the application of 𝜌𝑠,𝑖,𝑏 and the time 

step duration 𝑙. Since 𝐻𝑠,𝑖,𝑏 and 𝜌𝑠,𝑖,𝑏 may be non-negative or 

non-positive, the formulation of (2) avoids the need for tech-

nology specific constraints
3
: 

 𝜌𝑠,𝑖,𝑏𝑃𝑏
𝑚𝑖𝑛𝑙 ≤ 𝜌𝑠,𝑖,𝑏𝐻𝑠,𝑖,𝑏 ≤ 𝜌𝑠,𝑖,𝑏𝑃𝑏

𝑚𝑎𝑥𝑙 (2) 

For all 𝑠 = 1 to 𝑁𝑠, 0 = 1 to 𝑁𝑖, 𝑏 = 1 to 𝑁𝑏. 

In line with most heating system arrangements, heat passes 

from the ETT to the TES and then to the dwelling/DHW 

loads. Heat input from the ETT is specified by the second 

term on the right hand side of (3), followed by terms for in-

advertent loss
4
 and SH and DHW loads. Constraint (4) limits 

the SH load to non-negative values: 

𝑋𝑠,𝑖+1,𝑏 = 𝑋𝑠,𝑖,𝑏 + 𝜌𝑠,𝑖,𝑏𝐻𝑠,𝑖,𝑏 − 𝑋𝑠,𝑖,𝑏𝑙(𝑅𝑏
𝑥𝐶𝑏

𝑥)−1 − 𝐿𝑠,𝑖,𝑏
𝑆𝐻

− 𝐿𝑠,𝑖,𝑏
𝐷𝐻𝑊 

(3) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖−1, 𝑏 = 1 to 𝑁𝑏. 

 𝐿𝑠,𝑖,𝑏
𝑆𝐻 ≥ 0 (4) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖, 𝑏 = 1 to 𝑁𝑏. 

Energy content limits of the TES energy level variable, 

𝑋𝑠,𝑖,𝑏, are related to the minimum/maximum TES tempera-

ture, as described in (5). 

 (𝑋𝑏
𝑚𝑖𝑛 − 𝑇𝑠,𝑖,𝑏)𝐶𝑏

𝑥 ≤ 𝑋𝑠,𝑖,𝑏 ≤ (𝑋𝑏
𝑚𝑎𝑥 − 𝑇𝑠,𝑖,𝑏)𝐶𝑏

𝑥 (5) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖, 𝑏 = 1 to 𝑁𝑏. 

The dwelling system is modeled in (6). The state of the 

dwelling is determined by its temperature 𝑇𝑠,𝑖,𝑏. The heat loss 

is described via the indoor-outdoor temperature differential 

and the dwelling resistance value: 

𝑇𝑠,𝑖+1,𝑏 = 𝑇𝑠,𝑖,𝑏 + (𝐿𝑠,𝑖,𝑏
𝑆𝐻 − (𝑇𝑠,𝑖,𝑏 − 𝑇𝑠,𝑖

𝑜𝑢𝑡)𝑙(𝑅𝑏)−1

+ 𝑋𝑠,𝑖,𝑏𝑙(𝑅𝑏
𝑥𝐶𝑏

𝑥)−1)(𝐶𝑏)−1 
(6) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖−1, 𝑏 = 1 to 𝑁𝑏. 

The limits on a dwelling’s state (temperature) are de-

scribed in (7). The basis of the limits is the set temperature of 

the dwelling 𝑇𝑠,𝑖,𝑏
𝑠𝑒𝑡 . As the set temperature is only required 

when the dwelling is occupied, the binary parameter 𝑂𝑠,𝑖,𝑏 is 

used to switch the constraint off when the dwelling is unoc-

cupied. Without loss of generality 𝛿𝑖,𝑏
𝑙𝑜𝑤and 𝛿𝑖,𝑏

ℎ𝑖𝑔ℎ
 define the 

deadband around the set temperature, which may also be 

conceived of as limits on the storage capability of the dwell-

ing, and therefore a measure of its flexibility. 𝑇𝑠,𝑖,𝑏
+  and 𝑇𝑠,𝑖,𝑏

−  

define the surplus and deficit temperature respectively, which 

are penalized, as appropriate, in the problem objective (1). 

𝑂𝑠,𝑖,𝑏(𝑇𝑖,𝑏
𝑠𝑒𝑡 − 𝛿𝑖,𝑏

𝑙𝑜𝑤) ≤ 𝑂𝑠,𝑖,𝑏(𝑇𝑠,𝑖,𝑏 − 𝑇𝑠,𝑖,𝑏
+ + 𝑇𝑠,𝑖,𝑏

− ) ≤

𝑂𝑠,𝑖,𝑏(𝑇𝑖,𝑏
𝑠𝑒𝑡 + 𝛿𝑖,𝑏

ℎ𝑖𝑔ℎ
)  

(7) 

𝑇𝑠,𝑖,𝑏
− ,  𝑇𝑠,𝑖,𝑏

+ ≥ 0 (8) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖, 𝑏 = 1 to 𝑁𝑏. 

Equalities (9) and (10) set the initial (at time step 1, also 

equal to the first time step of the next day) and final states of 

the dwelling temperature and TES energy variables to be 

equal. Such constraints are necessary so that results are not 

 
3 Note that 𝑃𝑏

𝑚𝑖𝑛, 𝑃𝑏
𝑚𝑎𝑥 and 𝜌𝑠,𝑖,𝑏 take non-negative values for electricity 

consuming devices, and non-positive values for electricity producing devices 

(producing non-negative/non-positive values for heating electricity consump-

tion 𝐻𝑠,𝑖,𝑏, respectively). 
4 As the TES energy content is measured relative to the dwelling tempera-

ture, the full loss term can be simplified as ((𝑋𝑠,𝑖,𝑏(𝐶𝑏
𝑥)−1 + 𝑇𝑠,𝑖,𝑏) −

𝑇𝑠,𝑖,𝑏) 𝑙(𝑅𝑏
𝑥)−1 = 𝑋𝑠,𝑖,𝑏𝑙(𝑅𝑏

𝑥𝐶𝑏
𝑥)−1 . 
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distorted through the setting of high temperatures at the start 

of the scheduling period and/or low temperatures at the end 

of the scheduling period. 

 𝑇𝑠,0,𝑏 = 𝑇𝑠,𝑁𝑖,𝑏 (9) 

 𝑋𝑠,0,𝑏 = 𝑋𝑠,𝑁𝑖,𝑏 (10) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑏 = 1 to 𝑁𝑏. 

C. Energy Balance and Market Trading Constraints 

Equation (11) balances economic and physical electricity 

variables considering flexible ETT and inflexible (base) elec-

tricity consumption: 

 𝐷𝑖 + 𝐼𝑠,𝑖 = ∑ (𝐻𝑠,𝑖,𝑏 + 𝐸𝑠,𝑖,𝑏)
𝑁𝑏
𝑏=1   (11) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖. 

 Key to note is that it is the net physical consump-

tion/generation of the aggregation that is considered in (11). 

This implicitly allows the aggregation to self-serve electricity 

load, where possible. This may be especially attractive given 

a difference in import/export prices which will motivate arbi-

trage across time periods to increase self-consumption and 

reduce grid import. 

Constraint (12) sets the DA import and export energy val-

ues to be non-negative, while (13) sets the net DA energy 

purchase equal to the DA import and export purchases.  Con-

straint (14) sets the imbalance import/export energy values to 

be non-negative, while (15) sets the net imbalance energy 

purchase equal to the imbalance import and export purchases.  

 𝐷𝑖
−,  𝐷𝑖

+ ≥ 0 (12) 

 𝐷𝑖
− − 𝐷𝑖

+ = 𝐷𝑖 (13) 

 𝐼𝑠,𝑖
− , 𝐼𝑠,𝑖

+ ≥ 0 (14) 

 𝐼𝑠,𝑖
− − 𝐼𝑠,𝑖

+ = 𝐼𝑠,𝑖 (15) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖. 

In order to account for gas consumption by gas powered 

electricity generating ETT (e.g., CHP), (16) calculates gas 

usage of the aggregation as derived from the ratio of the elec-

trical output 𝐻𝑠,𝑖,𝑏  to the electrical efficiency 𝜂𝑏 (assumed 

constant with different operation levels). The constraint is 

applied only to electricity generating ETT by means of the 

binary technology indicator (𝜏𝑏). 

 𝐺𝑠,𝑖 = − ∑ (1 − 𝜏𝑏)𝐻𝑠,𝑖,𝑏𝜂𝑏
−1

𝑁𝑏

𝑏=1
 (16) 

For all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖. 

III. CASE STUDY APPLICATIONS 

Several case study applications, involving an aggregation 

of fifty
5
 well-insulated residential flat dwellings, are consid-

ered. The retailer-ESCo procures (and, in case, sells) whole-

sale electricity at market prices, considering participation in 

the DA wholesale market. Non-energy costs (e.g., network 

charges, metering costs, customer services, taxes) are added 

to the import price of electricity. For comparison purposes, a 

‘No storage’ test is defined. The results for each aggregation 

case (i.e., ETT selection) in the ‘No storage’ test are com-

pared to a gas boiler load following case, to demonstrate 

comparison with the common present situation. The analysis 

will then consider several tests on the effect of utilizing TES 

 
5 In this case study, due to the saturation of benefits from diversity, there 

are insignificant marginal gains from increasing the aggregation size further. 

and dwelling storage potential to minimize expected opera-

tional costs. According to the considered test, thermal storage 

is exploited through either a) specifying a deadband around 

the set temperature (up/down or up only), with no 

price/penalty for deviations from the set temperature within 

this deadband, and a £1000/(°C·h) penalty for deviations 

outside this deadband; or b) specifying a price of thermal 

discomfort (£/(°C·h)), set to be the same for upward and 

downward deviation from the set-point for these case studies, 

which is applicable to any deviation from the set temperature. 

The resultant ETDC is payable by the retailer-ESCo to the 

occupants, as part of the DR contract. Results are presented 

firstly considering only the expected energy costs. Subse-

quently expected thermal discomfort costs are presented. 

Analysis is undertaken for typical shoulder (spring/autumn, 

March-May and September-November), winter (December-

February) and summer (June-August) days, which are used to 

calculate the annual expected costs. The five aggregation 

cases considered are shown in Table I. The fourteen storage 

tests, plus the ‘No storage’ test, are shown in Table II. Flexi-

bility parameters in the tests are arbitrary (the possibilities in 

reality are many, likely to vary widely between dwellings and 

poorly understood), but serve to usefully demonstrate the 

comparative results from the different approaches and sensi-

tivity to the flexibility parameters. For exhaustive considera-

tion, further investigation (including determination of flexi-

bility parameters) would be required. All tests are repeated 

four times with different occupancy, base electricity, DHW 

and building parameters, so as to nullify any bias related to 

parameter selection. Time step length is set to 30 minutes 

(corresponding to the length of the UK trading period), pro-

ducing 48 time steps for each day modeled. 

TABLE I 
AGGREGATION CASES 

Aggregation case Description 

1 Stirling engine CHP (SE) 

2 Air source heat pump (ASHP) 

3 SE/ASHP (equal mix) 

4 Internal combustion engine CHP (ICE) 

5 ICE/ASHP (equal mix) 

TABLE II 

DESCRIPTIONS OF THE TESTS, WITH ASSOCIATED TEST NUMBER 

  No TES 300 litre TES 

 No storage 0  

Deadband 
around set 

temperature 

+/-2°C 1 8 

+/-1°C 2 9 

+2°C 3 10 

+1°C 4 11 

Price of 
thermal 

discomfort 

£1/(°C·h) 5 12 

£0.5/(°C·h) 6 13 

£0.1/(°C·h) 7 14 

A. Resource Parameter Synthesis 

Each resource is composed of three parts: the ETT, the 

dwelling, and, in case, the TES. ETT are defined by their 

operating limits (𝑃𝑏
𝑚𝑎𝑥 and 𝑃𝑏

𝑚𝑖𝑛) and performance parame-

ters (𝜌𝑠,𝑖,𝑏 and 𝜂𝑏). 𝑃𝑏
𝑚𝑎𝑥 is set such that the ETT is able to 

heat the dwelling during design conditions (assumed here 

𝑇𝑠,𝑖
𝑜𝑢𝑡=-4°C and 𝑇𝑠,𝑖,𝑏=21°C for all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖 and 

𝑏 = 1 to 𝑁𝑏) while supplying the maximum possible DHW 

demand. 𝑃𝑏
𝑚𝑖𝑛 is set to 0 for all 𝑏 = 1 to 𝑁𝑏. For ASHPs the 
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performance parameters are taken from the brochure of a 

commercially available model [37]. COP values are given for 

0°C (1.97) and 20°C (3.51). From these values a linear 

COP/outdoor temperature function is derived. For SE units 

𝜂𝑏=0.13 and 𝜌𝑠,𝑖,𝑏=-6 for all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖 and 𝑏 = 1 

to 𝑁𝑏 (thermal/electrical efficiency of 78%/13%). For ICE 

units 𝜂𝑏=0.24 and 𝜌𝑠,𝑖,𝑏=-2.83 for all 𝑠 = 1 to 𝑁𝑠, 𝑖 = 0 to 𝑁𝑖 

and 𝑏 = 1 to 𝑁𝑏 (thermal/electrical efficiency 68%/24%). 

Each dwelling is defined by a series of set-point controls 

and operating limits, and by dwelling characteristics, which 

are consistent across all tests. The set-temperatures  𝑇𝑖,𝑏
𝑠𝑒𝑡  are 

set according to a pseudo-random process based on the distri-

bution of observed set-temperatures [38]. The dwelling oper-

ating limits are defined by 𝛿𝑖,𝑏
𝑙𝑜𝑤 and 𝛿𝑖,𝑏

ℎ𝑖𝑔ℎ
, which are both set 

equal to 0 for all 𝑖 = 0 to 𝑁𝑖  and 𝑏 = 1 to 𝑁𝑏 as a default. The 

dwelling characteristics (𝑅𝑏
𝑏 and 𝐶𝑏

𝑏) are derived as in [30]. 

The TES are defined by their operating limits and charac-

teristic parameters. The operating limits (𝑋𝑏
𝑚𝑎𝑥 and 𝑋𝑏

𝑚𝑖𝑛) 

vary with the ETT unit used. Upper (lower) limits are 80°C 

(55°C) for CHP units and 55°C (40°C) for an ASHP for all 𝑏 

= 1 to 𝑁𝑏. The characteristic parameters of the TES (𝑅𝑏
𝑥 and 

𝐶𝑏
𝑥) are derived from a brochure for a commercially available 

range of heat stores [39] (𝑅𝑏
𝑥=568 °C/kW, 𝐶𝑏

𝑥= 

0.3483kWh/°C for all 𝑏 = 1 to 𝑁𝑏). For all tests the same 

resource parameters are used so that results are comparable 

across tests. 

B. Scenario Formulation 

At the DA stage, uncertainty exists in several sets of pa-

rameters, namely: DHW load, active occupancy, and outside 

temperature (determinants of demand for heat); base electrici-

ty load (which affects the aggregation diversity and the mar-

ket for generated electricity); and imbalance prices for devia-

tions from the DA position. Of particular note is the uncer-

tainty in outside temperature and imbalance prices given the 

coincidence of such parameters across the aggregation. Any 

party utilizing an approach such as described here would 

undoubtedly develop bespoke methods utilizing extensive 

historical information. For the purposes of this work scenari-

os are formulated as described below. 

1) Temperature Profile Scenario Formulation 

For this work three outdoor temperature scenarios were 

formed using synthesized forecasts and information on fore-

cast accuracy. A central scenario is set to the forecast (emu-

lated by selecting a representative temperature profile from 

past records). High/low scenarios are set by constructing a 

probability density function (PDF) for the actual-forecast 

temperature deviation variable, using data on the day ahead 

forecast accuracy statistics [40], and assuming a normal dis-

tribution. The temperature profile for the high/low scenarios 

are then set according to the derived PDF, given probability 

0.9/0.1, respectively. The scenarios are then assigned user 

defined probabilities; 0.6 for the central forecast and 0.2 for 

the high and low forecasts. The utilized profiles for winter 

and shoulder seasons (heating not required in the summer 

season) are shown in Fig. 1.  

 
Fig. 1. Temperature scenarios. 

2) Price Profile Formulation 

Imbalance price scenarios are formed using past records 

(from the relevant season/day of week from UK data from the 

period 01/01/2009-31/07/2012) of imbalance price [41] (im-

port/export) deviation from the DA (import/export) price 

[42]. A simultaneous backward reduction algorithm [43] is 

used to reduce the scenarios to find the ten most representa-

tive sets of imbalance price deviations for each season. These 

sets of deviations are then applied to the DA price to produce 

the imbalance price scenarios required for the optimiza-

tion.Utlised price data is referenced online [44]. The ten im-

balance price scenarios are combined with the three outdoor 

temperature scenarios to form thirty scenarios, in total. The 

gas price was taken as the prevailing retail gas price, 

£0.038/kWh. 

3) Consumer Energy/Active Occupancy Scenarios  

To adequately model the variability of consumer ener-

gy/occupancy profiles, a consistent set of base electricity, 

DHW, and active occupancy profiles for each dwelling is 

randomly assigned to each scenario. Dwelling active occu-

pancy (𝑂𝑠,𝑖,𝑏) and base electricity demand (𝐸𝑠,𝑖,𝑏) are synthe-

sized utilizing the residential electricity model found in [45]. 

The accompanying DHW demand (𝐿𝑠,𝑖,𝑏
𝐷𝐻𝑊) profile is synthe-

sized using a bespoke tool, as described in [46].  

C. Results 

The first set of results compare expected energy and dis-

comfort costs for the ‘No storage’ test, for the various aggre-

gation cases, to a gas boiler load following case (i.e., the 

standard technology and control policy currently employed in 

the UK). In the load following case heating is operated when 

there is an active occupant to maintain the target temperature 

(a simplification on the usual hysteresis approach, maintain-

ing temperature between two points rather than at one specif-

ic temperature). This enables the advantages of the proposed 

cases over the current situation to be understood. Secondly 

results are presented for the storage tests, considering ex-

pected energy and discomfort costs.  

1) ‘No Storage’ Tests 

Fig. 2 shows the expected energy costs for each case for 

the ‘No storage’ test. The greatest expected energy cost sav-

ings, compared to the gas boiler/load following case, are in 

the CHP (ICE and SE) cases. Although the relative perfor-
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mance of the given heating technologies is the primary factor 

in the cost savings, the application of non-energy costs to 

imported energy but not exported energy, which rewards self-

consumption of electricity, also contributes. An important 

point of note is that the ASHP/CHP case studies are not di-

rectly comparable to the gas boiler case. This is because in 

the ASHP/CHP cases thermal comfort is guaranteed (see (7)), 

while there is no such guarantee in the gas boiler load follow-

ing case. For complete comparison of the cases presented in 

Fig. 2, the ETD metric is required. The ETD metric measures 

the expected difference between required and delivered ther-

mal comfort, i.e., the deviation of the indoor temperature 

from the set-point, integrated over time. For the gas boiler 

case in Fig. 2 the ETD is 5957°C·h/year, while in the other 

presented cases, it is 0°C·h/year. 

2) Storage Tests-Expected Energy Cost 

Fig. 3 and Fig. 4 show the results, in terms of expected en-

ergy cost for the No TES tests (tests 1-7) and 300 liter TES 

tests (tests 8-14) respectively. The tests based on definition of 

a non-zero deadband consistently produce lower expected 

energy costs than the price of discomfort cases. Both with 

and without presence of a TES, expected energy costs are 

least for all aggregation types in the +/-2°C tests followed by 

the +/-1°C tests. Expected energy costs are similar, with and 

without TES, in the +2°C and +1°C tests. This is due to the 

dwelling thermal conductance being such that storing more 

than 1°C of heat in the dwelling material is economically 

inefficient (for the given case). For the price of discomfort 

tests, expected energy costs are correlated with the price of 

discomfort, as lower prices enable more comfort to be traded 

for energy. Notable, however, is the relatively insignificant 

difference in expected energy costs for the three price of 

discomfort tests, given presence of a TES (see Fig. 4), as 

opposed to notable differences in the No TES tests. This is 

because the potential value from deployment of storage is 

limited so that the marginal reduction in expected energy 

costs decreases with every additional ‘unit’ of storage. 

 
Fig. 2. Expected energy costs and cost savings on the gas boiler case per 
dwelling, no storage. 

While, in the tests demonstrated, the full potential energy cost 

reduction is not achieved, the marginal reduction does be-

come nearly insignificant. Also of note are the lower ex-

pected energy costs in the No TES tests compared to the TES 

tests for some aggregations involving CHP plant. This is due 

to the tension between the value brought by the flexibility of 

TES and the extra cost associated with the TES heat loss, 

which is greater for TES attached to CHP plant, given the 

higher temperature of heat storage. This effect is most 

marked for cases which assign low price of thermal discom-

fort (including tests 1-4 and 8-11), as the flexibility of the 

TES has higher potential value in the tests with higher price 

of thermal discomfort. This means that the value produced by 

the addition of the TES outweighs costs associated with the 

attendant heat loss. 

 
Fig. 3. Expected energy cost in the No TES tests (1-7) by aggregation 

type. 

 
Fig. 4. Expected energy cost in the 300 liter TES tests (8-14) by aggrega-

tion type. 

3) Storage Tests- Expected Discomfort Cost 

For tests 5-7 and 12-14 the ETDC is shown in Table III. 

Notable is the clear difference between the No TES and TES 

tests. This is a consequence of the previously highlighted 

limited total available benefit of storage. Such information 

may be useful in any business case assessment for TES de-

ployment, as the business case for any TES deployment 

clearly may vary dependent on the price of discomfort of the 

dwelling occupants. 

TABLE III 

ANNUAL AVERAGE ETDC PER DWELLING FOR PRICE OF DISCOMFORT TESTS, 

BY AGGREGATION TYPE 

 No TES 300 litre TES 

Price £/(°C·h) £1 £0.5 £0.1 £1 £0.5 £0.1 

ICE  £0 £1  £2   £0   £0   £0  

ICE/ASHP mix  £2   £4   £4   £0   £0   £0  

SE/ASHP mix  £1   £2   £4   £0   £0   £0  

SE  £0   £1   £4   £0   £0   £0  

ASHP  £2   £4   £2   £0   £0   £0  

Although no price of discomfort is specified in the dead-

band tests (and hence there is no payment from the retailer-

ESCo to the occupants for any deviation from the set-point) it 
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is instructive to consider the possible value of lost comfort to 

the occupant. In this case, the ETDC may be considered a 

measure of the un-monetized transfer of benefits from the 

occupants to the retailer-ESCo. Fig. 5 shows these results for 

the No TES test, given various values for the price of discom-

fort (the results of the equivalent TES tests (8-11) is omitted 

here given their indiscernible similarity at the given scale). In 

the most extreme case (for an ICE aggregation test 8 with a 

price of discomfort of £1 and test 12) adoption of the price of 

discomfort approach (total expected costs £385) over the 

deadband approach (costs and disbenefits of £6509) reduces 

the total costs/disbenefits by 94%. 

 
Fig. 5. Expected cost of energy and discomfort for the No TES tests (tests 

1-4), by aggregation type. 

IV. CONCLUSION 

This paper presents a physically based model which is ap-

plicable to both electricity consuming and electricity generat-

ing ETT. The model physically characterizes the main ele-

ments of storage associated with ETT, namely a TES and the 

dwelling material. This enables assessment of the ability of 

such resources to optimize operation through utilization of 

the flexibility from the available storage potential. Explicit 

consideration is given to thermal comfort of dwelling occu-

pants through the introduced ETD metric. Market participa-

tion is modeled through DA market trading with imbalance 

responsibility. The problem is formulated as a two-stage 

stochastic problem. 

The presented case study, of a retailer-ESCo optimizing 

various cases (varying by ETT and flexibility) of a portfolio 

of 50 residential flats, illustrates how the presented model can 

determine the expected energy and discomfort costs for a 

variety of cases. The power of the model lies in the ability to 

identify and quantify specific effects of a given case. Particu-

lar findings of note include: the substantial cost reduction 

resulting from the introduction of an optimized ETT, which is 

achieved despite the accompanying decrease in ETD; the 

decreasing marginal benefit of increasing flexibility, suggest-

ing a saturation point for flexibility benefits; tension between 

operational benefits and costs from inclusion of a TES, as 

thermal losses from heat storage at high temperature weigh 

down on benefits; the superior efficiency (in terms of retailer-

ESCo costs and benefits) of exploiting flexibility through 

specification of a price for thermal discomfort; the limited 

sensitivity of ETDC to the presence of a TES, given em-

ployment of the thermal discomfort price approach, which is 

particularly relevant for TES business case appraisal; and the 

substantial transfer of benefits from dwelling occupants to a 

retailer-ESCo given employment of a deadband around the 

set temperature. It should be noted, however, that the numeri-

cal results demonstrated are case specific and should not be 

generalized.  

Further development of the presented model includes inte-

gration into a tool for determination of contract terms for 

exploitation of flexibility through utilization of the ETD 

metric, reducing run-times by reducing complexity and gen-

eral efficiency, and moving to a full multi-stage approach. 

Other markets, such as for ancillary services, may be investi-

gated too.  

ACKNOWLEDGEMENT 

The authors thank the anonymous reviewers for their com-

prehensive and diligent comments, which have contributed 

significantly to improving the paper. 

REFERENCES 

[1] G. Strbac, D. Pudjianto, P. Djapic, and S. Gammons, “Understanding 

the Balancing Challenge,” Imperial College London, London, UK, 

Aug. 2012. 
[2] M. H. J. Bollen, The Smart Grid: Adapting the Power System to New 

Challenges, 1st ed. Morgan & Claypool Publishers, 2011, p. 180. 

[3] D. S. Kirschen, “Demand-Side View of Electricity Markets,” IEEE 
Trans. Power Syst., vol. 18, no. 2, pp. 520–527, 2003. 

[4] B. Daryanian, R. E. Bohn, and R. D. Tabors, “Optimal Demand-Side 

Response to Electricity Spot Prices for Storage-Type Customers,” 
IEEE Power Eng. Rev., vol. 9, no. 8, pp. 36–36, Aug. 1989. 

[5] A. Molina-García, A. Gabaldon, J. A. Fuentes, and C. Alvarez, “Im-

plementation and assessment of physically based electrical load mod-
els: application to direct load control residential programmes,” in IEE 

Proc. – Gen., Transm. and Distr., 2003, vol. 150, no. 1, p. 61. 

[6] D. Menniti, F. Costanzo, N. Scordino, and N. Sorrentino, “Purchase-
Bidding Strategies of an Energy Coalition With Demand-Response 

Capabilities,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1241–1255, 

2009. 

[7] A. Arteconi, N. J. Hewitt, and F. Polonara, “State of the art of thermal 

storage for demand-side management,” Appl. Energy, vol. 93, pp. 

371–389, Jan. 2012. 
[8] L. Paull, H. Li, and L. Chang, “A novel domestic electric water heater 

model for a multi-objective demand side management program,” 

Electr. Power Syst. Res., vol. 80, no. 12, pp. 1446–1451, Dec. 2010. 
[9] J. Cigler, S. Prívara, Z. Váňa, E. Žáčeková, and L. Ferkl, “Optimiza-

tion of Predicted Mean Vote index within Model Predictive Control 

framework: Computationally tractable solution,” Energy Build., vol. 
52, pp. 39–49, Sep. 2012. 

[10] R. Z. Freire, G. H. C. Oliveira, and N. Mendes, “Predictive controllers 

for thermal comfort optimization and energy savings,” Energy Build., 
vol. 40, no. 7, pp. 1353–1365, Jan. 2008. 

[11] N. Ruiz, I. Cobelo, and J. Oyarzabal, “A Direct Load Control Model 

for Virtual Power Plant Management,” IEEE Trans. Power Syst., vol. 
24, no. 2, pp. 959–966, 2009. 

[12] T. S. Pedersen, P. Andersen, K. M. Nielsen, H. L. Starmose, and P. D. 

Pedersen, “Using heat pump energy storages in the power grid,” in 
Control Applications (CCA), 2011 IEEE International Conference on, 

2011, pp. 1106–1111. 
[13] N. J. Kelly, J. A. Clarke, G. Burt, and A. Ferguson, “Developing and 

testing a generic micro-combined heat and power model for simula-

tions of dwellings and highly distributed power systems,” Proc. Inst. 
Mech. Eng. Part A J. Power Energy, vol. 222, no. 7, pp. 685–695, 

Nov. 2008. 

[14] P. Mancarella and G. Chicco, “Real-Time Demand Response From 
Energy Shifting in Distributed Multi-Generation,” IEEE Trans. Smart 

Grid, vol. 4, no. 4, pp. 1928–1938, 2013. 

[15] P. Siano, “Demand response and smart grids—A survey,” Renew. 
Sustain. Energy Rev., vol. 30, pp. 461–478, Feb. 2014. 

[16] M. C. Bozchalui, S. A. Hashmi, H. Hassen, C. A. Cañizares, and K. 

Bhattacharyya, “Optimal Operation of Residential Energy Hubs in 



IEEE Transactions on Smart Grid – Accepted for publication – February 2015 

 

9 

Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1755–1766, 

2012. 
[17] Y. Shimomura, Y. Nemoto, F. Akasaka, R. Chiba, and K. Kimita, “A 

method for designing customer-oriented demand response aggregation 

service,” CIRP Ann. - Manuf. Technol., vol. 63, no. 1, pp. 413–416, 
2014. 

[18] G. Koutitas, “Control of Flexible Smart Devices in the Smart Grid,” 

IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1333–1343, Sep. 2012. 
[19] M. A. A. Pedrasa, T. D. Spooner, and I. F. Macgill, “Coordinated 

Scheduling of Residential Distributed Energy Resources to Optimize 

Smart Home Energy Services,” IEEE Trans. Smart Grid, vol. 1, no. 2, 
pp. 134–143, 2010. 

[20] Z. Chen, L. Wu, and Y. Fu, “Real-Time Price-Based Demand Re-

sponse Management for Residential Appliances via Stochastic Opti-
mization and Robust Optimization,” IEEE Trans. Smart Grid, vol. 3, 

no. 4, pp. 1822–1831, 2012. 

[21] P. Du and N. Lu, “Appliance commitment for household load schedul-
ing,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 411–419, May 2011. 

[22] A.-H. Mohsenian-Rad and A. Leon-garcia, “Optimal Residential Load 

Control With Price Prediction in Real-Time Electricity Pricing Envi-
ronments,” IEEE Trans. Smart Grid, vol. 1, no. 2, pp. 120–133, 2010. 

[23] D. T. Nguyen and L. B. Le, “Joint Optimization of Electric Vehicle 

and Home Energy Scheduling Considering User Comfort Preference,” 
IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 188–199, 2014. 

[24] B. Liu and Q. Wei, “Home energy control algorithm research based on 

demand response programs and user comfort,” in Proc. of 2nd Int. 
Conf. on Measurement, Information and Control, 2013, pp. 995–999. 

[25] P. O. Fanger, “Thermal comfort. Analysis and applications in envi-

ronmental engineering.” Copenhagen, Danish Technical Press, 1970. 
[26] M. Castilla, J. D. Álvarez, M. Berenguel, F. Rodríguez, J. L. Guzmán, 

and M. Pérez, “A comparison of thermal comfort predictive control 

strategies,” Energy Build., vol. 43, no. 10, pp. 2737–2746, Oct. 2011. 
[27] A. J. Conejo, M. Carrión, and J. M. Morales, Decision making under 

uncertainty. Springer, 2010, p. 542. 

[28] P. Cappers, C. Goldman, and D. Kathan, “Demand response in U.S. 
electricity markets: Empirical evidence,” Energy, vol. 35, no. 4, pp. 

1526–1535, Apr. 2010. 

[29] Federal Energy Regulatory Commission, “Assessment of Demand 
Response and Advanced Metering Staff Report,” Washington, D.C. 

[30] N. Good, A. Navarro-Espinosa, E. Karangelos, and P. Mancarella, 

“Participation of electric heat pump resources in electricity markets 
under uncertainty,” in Proceedings of 10th International Conference 

on the European Energy Market, EEM 2013, 2013. 

[31] M. D. Ilic, L. Xie, and J. Joo, “Efficient Coordination of Wind Power 
and Price-Responsive Demand - Part II: Case Studies,” Trans. Power 

Syst., vol. 26, no. 4, pp. 1885–1893, 2011. 

[32] P. McDaniel and S. W. Smith, “Security and Privacy Challenges in the 
Smart Grid,” IEEE Secur. Priv., vol. 7, no. 3, pp. 75–77, 2009. 

[33] M. J. Hannon, T. J. Foxon, and W. F. Gale, “The co-evolutionary 

relationship between Energy Service Companies and the UK energy 
system: Implications for a low-carbon transition,” Energy Policy, vol. 

61, pp. 1031–1045, Jul. 2013. 
[34] C. Schwaegerl, L. Tao, P. Mancarella, and G. Strbac, “A multi-

objective optimization approach for assessment of technical , com-

mercial and environmental performance of microgrids,” Eur. Trans. 
Electr. Power, vol. 21, pp. 1271–1290, 2011. 

[35] J. M. Morales, S. Pineda, A. J. Conejo, and M. Carrión, “Scenario 

Reduction for Futures Market Trading in Electricity Markets,” IEEE 
Trans. Power Syst., vol. 24, no. 2, pp. 878–888, 2009. 

[36] J. Dupacova, N. Growe-Kuska, and W. Romisch, “Scenario reduction 

in stochastic programming An approach using probability metrics,” 
Math. Program., vol. 95, pp. 493–511, 2003. 

[37] Calorex, Maldon, Essex, UK, Domestic Heat Pumps. (2010) Availa-

ble: http://www.calorex.com/heat-pumps-domestic/air-source-
domestic-ashp 

[38] M. Shipworth, S. Firth, M. Gentry, A. Wright, D. Shipworth, and K. 

Lomas, “Central heating thermostat settings and timing: building de-
mographics,” Build. Res. Inf., vol. 38, no. 1, pp. 50–69, Jan. 2010. 

[39] Dimplex, Southampton, Hampshire, UK , Unvented Hot Water Cylin-

ders. (2011) Available: http://www.dimplex.co.uk/products/ renewa-
ble_solutions/accessories/Heat_Pump_Cylinders/index.htm. 

[40] Met Office, “How accurate are our public forecasts?,” 2012. [Online]. 

Available: http://www.metoffice.gov.uk/about-
us/who/accuracy/forecasts. Accessed on Oct. 15, 2012. 

[41] Elexon, “SSP/SBP/NIV,” 2014. [Online]. Available: 

www.elexonportal.co.uk/sspsbpniv. Accessed on Nov. 10, 2014. 
[42] APX-ENDEX, “APX Power UK,” 2014. [Online]. Available: 

https://www.apxgroup.com/market-results/apx-power-uk/ukpx-rpd-

historical-data/. Accessed on Nov. 10, 2014. 
 [43 H. Heitsch and W. Romisch, “Scenario Reduction Algorithms in 

Stochastic Programming,” Comput. Optim. Appl., vol. 24, no. 2–3, pp. 

187–206, 2003. 
[44] N. Good, E. Karangelos, A. Navarro-Espinosa, and P. Mancarella, 

“TSG-00781-2014 price data,”, 2015. [Online]. Available: 

http://goo.gl/zkAwpZ. Accessed on Jan. 31, 2015. 
[45] I. Richardson, M. Thomson, D. Infield, and C. Clifford, “Domestic 

electricity use: A high-resolution energy demand model,” Energy 

Build., vol. 42, no. 10, pp. 1878–1887, Oct. 2010. 
[46] N. Good, L. Zhang, A. Navarro-Espinosa, and P. Mancarella, “High 

resolution modelling of multi-energy domestic demand profiles,” 

Appl. Energy, vol. 137, pp. 193–210, Jan. 2015.  
 

 

 
 Nicholas Good (S’11) received the B.Sc (Hons) 

degree in mathematics, statistics and operational 

research from the University of Manchester, UK, in 
2004 and the M.Sc degree in energy and the envi-

ronment from Lancaster University, UK, in 2011. 

He is currently pursuing a Ph.D degree in electrical 
engineering from the University of Manchester. His 

research interests include multi-energy modelling 

and optimization of distributed energy resources 
and associated business case development. 

 

 
Efthymios Karangelos (M’13) received the Di-

ploma in mechanical engineering from the National 

Technical University of Athens, Greece, in 2005, 
the M.Sc. degree in power systems engineering and 

economics in 2007, and the PhD degree in electrical 

engineering in 2012, both from the University of 
Manchester, UK, In 2012, he joined the department 

of electrical engineering and computer science of 

the University of Liège, Belgium, as a postdoctoral 
researcher. His research interests include power 

system modeling, reliability, economics and optimization. 

 
 

Alejandro Navarro-Espinosa (S’08) received the 

Industrial Engineer and M.Sc. degrees from the 
Pontificia Universidad Catolica (PUC) in Chile in 

2004 and 2007, respectively. He also holds a M.Sc. 

in Power Systems from The University of Man-
chester, UK, in 2011. Currently, he is pursuing a 

Ph.D. in future low voltage distribution networks at 
The University of Manchester. Previously, he was 

Technical Chief Executive at Systep and lecturer at 

Universidad de los Andes, Chile. 
 

 

Pierluigi Mancarella (M’08, SM’14) received the 
Ph.D. degree in Power Systems from the Politec-

nico di Torino, Italy. After being a Research Asso-

ciate at Imperial College London, he is currently a 
Reader in Future Energy Networks at the Universi-

ty of Manchester. His research interests include 

multi-energy systems modelling, business models 
for low carbon technologies, and network invest-

ment under uncertainty. 


