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A large number of problems in production planning and scheduling, location,
transportation, finance, and engineering design require that decisions be made
in the presence of uncertainty. In the present paper, for improvement or optimi-
zation of statistical decisions under parametric uncertainty, a new technique of
invariant embedding of sample statistics in a performance index is proposed. This
technique represents a simple and computationally attractive statistical method
based on the constructive use of the invariance principle in mathematical statis-
tics. Unlike the Bayesian approach, an invariant embedding technique is inde-
pendent of the choice of priors. It allows one to eliminate unknown parameters
from the problem and to find the best invariant decision rule, which has smaller
risk than any of the well-known decision rules. In order to illustrate the appli-
cation of the proposed technique for constructing optimal statistical decisions
under parametric uncertainty, we discuss the following personnel management
problem in tourism. A certain company provides interpreter-guides for tourists.
Some of the interpreter-guides are permanent ones working on a monthly basis
at a daily guaranteed salary. The problem is to determine how many permanent
interpreter-guides should the company employ so that their overall costs will be
minimal? We restrict attention to families of underlying distributions invariant
under location and/or scale changes. A numerical example is given.
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1. Introduction

Most of the operations research and management science literature assumes
that the true distributions are specified explicitly. However, in many practical
situations, the true distributions are not known, and the only information
available may be a time-series (or random sample) of the past data. Analysis of
decision-making problems with unknown distribution is not new. Several
important papers have appeared in the literature. When the true distribution is
unknown, one may either use a parametric approach (where it is assumed that
the true distribution belongs to a parametric family of distributions) or a non-
parametric approach (where no assumption regarding the parametric form of the
unknown distribution is made). Under the parametric approach, one may
choose to estimate the unknown parameters or choose a prior distribution for
the unknown parameters and apply the Bayesian approach to incorporating the
past data available. Parameter estimation is first considered in (Conrad, 1976)
and further development is reported in (Liyanage and Shanthikumar, 2005).
Scarf (1959) considers a Bayesian framework for the unknown demand
distribution. Specifically, assuming that the demand distribution belongs to the
family of exponential distributions, the demand process is characterized by the
prior distribution on the unknown parameter. Further extension of this
approach is presented in (Chu, Shanthikumar and Shen, 2008). Within the non-
parametric approach, either the empirical distribution (Liyanage and
Shanthikumar, 2005) or the bootstrapping method (e.g. see Bookbinder and
Lordahl, 1989) can be applied with the available past data to obtain a statistical
decision rule. A third alternative to dealing with the unknown distribution is
when the random variable is partially characterized by its moments. When the
unknown demand distribution is characterized by the first two moments, Scarf
(1958) derives a robust min—-max inventory control policy. Further development
and review of this model is given in (Gallego and Moon, 1993). In the present
paper we consider the case, where it is known that the true distribution function
belongs to a parametric family of distributions. It will be noted that, in this case,
most stochastic models to solve the problems of control and optimization of
system and processes are developed in the extensive literature under the
assumptions that the parameter values of the underlying distributions are known
with certainty. In actual practice, such is simply not the case. When these models
are applied to solve real-world problems, the parameters are estimated and then
treated as if they were the true values. The risk associated with using estimates
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rather than the true parameters is called estimation risk and is often ignored.
When data are limited and (or) unreliable, estimation risk may be significant,
and failure to incorporate it into the model design may lead to serious errors. Its
explicit consideration is important since decision rules that are optimal in the
absence of uncertainty need not even be approximately optimal in the presence
of such uncertainty. The problem of determining an optimal decision rule in the
absence of complete information about the underlying distribution, i.e., when we
specify only the functional form of the distribution and leave some or all of its
parameters unspecified, is seen to be a standard problem of statistical estimation.
Unfortunately, the classical theory of statistical estimation has little to offer in
general type of situation of loss function. The bulk of the classical theory has
been developed about the assumption of a quadratic, or at least symmetric and
analytically simple loss structure. In some cases this assumption is made explicit,
although in most it is implicit in the search for estimating procedures that have
the “nice” statistical properties of unbiasedness and minimum variance. Such
procedures are usually satisfactory if the estimators so generated are to be used
solely for the purpose of reporting information to another party for an unknown
purpose, when the loss structure is not easily discernible, or when the number of
observations is large enough to support Normal approximations and asymptotic
results. Unfortunately, we seldom are fortunate enough to be in asymptotic
situations. Small sample sizes are generally the rule when estimation of system
states and the small sample properties of estimators do not appear to have been
thoroughly investigated. Therefore, the above procedures of the statistical
estimation have long been recognized as deficient, however, when the purpose of
estimation is the making of a specific decision (or sequence of decisions) on the
basis of a limited amount of information in a situation where the losses are
clearly asymmetric — as they are here. In this paper, we propose a new technique
to solve optimization problems of statistical decisions under parametric
uncertainty. The technique is based on the constructive use of the invariance
principle for improvement (or optimization) of statistical decisions. It allows one
to yield an operational, optimal information-processing rule and may be
employed for finding the effective statistical decisions for many problems of the
operations research and management science. The illustrative application of the
invariant embedding technique to personnel management problems in tourism
is given below
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2. Invariant Embedding Technique

This paper is concerned with the implications of group theoretic structure
for invariant performance indexes. We present an invariant embedding
technique based on the constructive use of the invariance principle for
decision-making. This technique allows one to solve many problems of the
theory of statistical inferences in a simple way. The aim of the present paper is
to show how the invariance principle may be employed in the particular case of
improvement or optimization of statistical decisions. The technique used here
is a special case of more general considerations applicable whenever the
statistical problem is invariant under a group of transformations, which acts
transitively on the parameter space (Nechval and Vasermanis, 2004; Nechval,
N.A., Berzins, Purgailis, Nechval, K.N. and Zolova, 2008; Nechval, N.A.,,
Nechval, K.N., Danovich and Liepins, 2011; Nechval, N.A., Nechval, K.N. and
Purgailis 2011; Nechval, N.A., Nechval, K.N., Purgailis, Rozevskis, 2012;
Nechval, N.A., Purgailis, 2012).

2.1. Preliminaries

Our underlying structure consists of a class of probability models (X, A, P),
a one-one mapping | taking P onto an index set ®, a measurable space of
actions (U, B), and a real-valued function r defined on ® x U . We assume that
a group G of one-one A - measurable transformations acts on X and that it
leaves the class of models (X, A, P ) invariant. We further assume that
homomorphic images G and G of G act on © and U, respectively. (G may be
induced on ® through y; G may be induced on U through 7). We shall say
that r is invariant if for every (Q,u) € @ x U

r(g0,gu)=r(0,u), geG. (1)

Given the structure described above there are aesthetic and sometimes
admissibility grounds for restricting attention to decision rules @: X — U
which are (G, G ) equivariant in the sense that

p(gx)=g¢(x), xeX, geG. )

If G is trivial and (1), (2) hold, we say @ is G-invariant, or simply
invariant.
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2.2. Invariant functions

We begin by noting that r is invariant in the sense of (1) if and only if r is a
G “-invariant function, where G ° is defined on ® x U as follows: to each geG,
with homomorphic images g, g in G.G respectively, let ¢"(0,u)=(g®0, gu),
(B,u)e(® x U ). It is assumed that G is a homomorphic image of &

Definition 1 (Transitivity). A transformation group G acting on a set © is
called (uniquely) transitive if for every 8, 8€® there exists a (unique) g € G
such that 6 = 8. When G is transitive on ©® we may index G by ©: fix an
arbitrary point 8@ and define g to be the unique g€ G satisfying g0 =
8. The identity of G clearly corresponds to 8. An immediate consequence is
Lemma 1.

Lemma 1 (Transformation). Let G be transitive on ©. Fix 0@ and define
8p, as above. Then

870, _ 980, for 00, geG.

Proof. The identity g;5,0=70, =gy ,0 shows that g7, and ggg both
take @ into @0 |, and the lemma follows by unique transitivity.

Theorem 1 (Maximal invariant). Let G be transitive on ©. Fix a reference
point 6,€® and index G by ©. A maximal invariant M with respect to G *
acting on ®@ x U is defined by

M@®,u)=g5'u, (O,u)c®xU .
Proof. For each (Bu)e(® xU)and g€ G
M (g0,8u) = (g7)3u=(38) 'Zu =55 & 'Gu=g5' u=M(0,u) (4)

(3)

by Lemma 1 and the structure preserving properties of homomorphisms.
Thus M is G *— invariant. To see that M is maximal, let M(0;,u;) = M(0:,u,).
Then gg'u, =gg u, or wi=g w, where g=gq Zg,. Since 0, = g5,0, =
20.%0.0,=29,, BLu) = g'(O,uw;) for some g'c G °, and the proof is
complete.
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Corollary 1.1 (Invariant embedding). An invariant function, r(8,u), can be
transformed as follows:

r(0,u)=r(g;'0,g5 u) = F(v,m), (5)

where v=v(9,é) is a function (it is called a pivotal quantity) such that the
distribution of v does not depend on 8; ‘r|='r|(u,§) is an ancillary factor; 0 is
the maximum likelihood estimator of © (or the sufficient statistic for 8).

Corollary 1.2 (Best invariant decision rule). If r(B,u) is an invariant loss
function, the best invariant decision rule is given by

o' (x)=u"=1"'(n".0), (6)
where
n :argiq]f E {F(v,m) } (7)

Corollary 1.3 (Risk). A risk function (performance index)
RO,0(x)) = Lo { r(8,0(x)) }= £, {#(v.,n.) | (8)

is constant on orbits when an invariant decision rule @(x) is used, where
v,=v,(0,x) is a function whose distribution does not depend on 6;
N, =M. (u,x) is an ancillary factor. For instance, consider the prob]em of
estimating the location-scale parameter of a distribution belonging to a family
generated by a continuous cdf F: P ={Pg: F((x-1)/0), x€R, 00O}, O={(1,0): .o
€R, o> 0} = U. The group G of location and scale changes leaves the class of
models invariant. Since G induced on ® by Py —> 0 is uniquely transitive, we
may apply Theorem 1 and obtain invariant loss functions of the form

r0,0(x)=r{(g(x)— 1)/ o, 0,(x)/ o], 9)
where
0=(1,0) and @(x )= (¢1(x),:(x)). (10)

Let @ =(/2,6) and u=(ui,u), then

f‘(ea“):i’("aﬂ):f'"("l +f?1"3,?}"31’3), (11)
where

VZ(V|,V2), V[Z(ﬁ—#)}(@, Va= OH_J"rO_, (12)
N=(m,m), m=(, — 1)/ &, m=u, /0. (13)
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3. Application to Personnel Management Problem in Tourism

Personnel management forms a significant proportion of overall costs in
hotels, tourism companies and fast food restaurants. A reduction in this by
even 1% represents considerable cost savings. Demand for services is not
generally known with certainty before hand and management often relies on a
combination of intuition, software systems and local knowledge (particularly of
marketing campaigns, events and attractions). Staff scheduling is a key element
of management planning in such circumstances. There have been a number of
general survey papers in the area of personnel management; these include
(Bechtold, Brusco and Showalter, 1991) and (Tien and Kamiyama, 1982). The
latter survey concentrates on general labour scheduling models. A survey of
crew scheduling is given in (Bodin, Golden, Asad and Ball, 1983). Surveys of
the literature in airline crew scheduling appear in (Arabeyre, Fearnley, Steiger
and Teather, 1969; Gamache and Soumis, 1998). A good survey of tools,
models and methods for bus crew scheduling is (Wren, 1981). A survey of the
nurse scheduling literature is provided in (Bradley and Martin, 1991; Sitompul
and Radhawa, 1990). As can be seen from this review, a large amount of work
has already been done in the area of personnel scheduling. Nevertheless there is
still significant room for improvements in this area. We see improvements
occurring not only in the area of tools, models and methods for personnel
management, but also in the wider applicability of these tools, models and
methods. In this paper, we consider the following personnel management
problem in tourism. A certain company provides interpreter-guides for
tourists. The number of permanent interpreter-guides employed by the
company is such that u of them are permanently working on a monthly basis at
a daily guaranteed salary c; (in terms of money); when the demand for their
services exceeds u, supplementary interpreter-guides or extras are taken on at a
daily salary ¢ (>¢;). Sometimes the shortage of extras will necessitate canceling
a tour, and when this happens, the loss is reckoned at ¢; (>c;). How many
permanent interpreter-guides should the company employ so that overall costs
will be minimal? Following Kaufmann and Faure (Kaufman and Faure, 1968),
we review the personnel management model and provide a broader
interpretation to the structure of its solution. In development of the personnel
management model, we will assume that the daily demand for tours X is a
continuous nonnegative random variable with the probability density function
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fo(x) and cumulative distribution function Fy(x). The notation, we use for the
personnel management model, is given below.

X Random variable representing the daily demand for tours
fo(») Probability density function of a demand X
Fo(y) Cumulative distribution function of a demand X
6 Parameter (in general, vector)
Y Random variable representing the daily supply of extras
p) Probability of a supply y, where y=0, 1, ..., ©
o Daily guaranteed salary for the permanent interpreter-guide
1o Daily salary for the supplementary (or extra) interpreter-guide
C3 Shortage cost per unit of X
u  Variable representing the number of the permanent interpreter-guides
u Optimal quantity of the number of the permanent interpreter-guides
C(u) Expected overall costs as a function of u

Thus, the function of overall costs is given by
cu, 0<X<u

cu, X,Y)=qcu+c,(X —u), u<X<u+Y . (14)
cu+cY +e,(X-u-Y), u+¥ <X <ow

We write the expected overall costs as

Cu=EE, cuXY :Zpyfcuxyﬁjxdx:ZpyCuy (15)
¥ ¥

where

Cuy:jcuxyfﬂxdx
s (16)
=cu+c J X—u ﬂj,xderJ- cy+c x—u-y f, xdx

wty

The function C(u) can be shown to be convex in u, thus having a unique
minimum. Taking the first derivative of C(u) with respect to u and equating it
to zero, we get
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o ut+y o

Y p) e | fodx—c; [ fy(x)dx|=0. (17)
y=0 u u+y
The value of u that minimizes (17) is the one that satisfies
szi(u*)—l-(cs—CZ)ZP(y)E(Mt+y):c3—cl, (18)

¥=0

where
Fy(x) =1—-F,y(x). (19)

If p(y=0) = 1, then

Fy ™) = ﬂ
L

In this case, we should choose the ' such that the cumulative distribution

function of u" equals the ratio of the difference of the underage and overage

costs to the underage cost. A relatively high underage cost results in a higher

number of the permanent interpreter-guides, whereas a relatively high overage

(20)

cost leads to a lower number of the permanent interpreter-guides, as one would
expect. If the daily demand for tours X follows the exponential distribution
with the probability density function

f.(x)=c"exp(-x/0o), 0>0, (21)

and the cumulative distribution function

EF(x)=1-exp(—x/0), (22)

where o is the scale parameter (¢ > 0), then

Clu)= ip(y)(?(u, »), (23)

where "

Clu,y)= O'[C; L Cy expL— EJ +(c; —¢,) exp(— i yJJ (24)
o o o

and the value of u that minimizes (23) is the one that satisfies
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G exp[—u—J+(c3 —cz)zp(y)exp[—” +yJ:C1- (25)
c = o

If p(y=0) = 1, then

U = amLﬁJ (26)
<

and

Cu™) = clll - ln[i—%JJa (27)
1

Parametric uncertainty. Consider the case when the parameter o is
unknown. Let X; < ... < X, be the past observations (of the daily demand for
tours) from the exponential distribution (21). Then

s=3x, (28)
i=1

is a sufficient statistic for o; Sis distributed with
g, (8)=[C(n)a"T's"  exp(—s/c) (s>0), (29)

To find the best invariant decision rule u"' we use the invariant
embedding technique (Nechval and Vasermanis, 2004; Nechval, N.A., Berzins,
Purgailis, Nechval, K.N. and Zolova, 2008; Nechval, N.A., Nechval, K.N,,
Danovich and Liepins, 2011; Nechval, N.A., Nechval, K.N. and Purgailis 2011;
Nechval, N.A., Nechval, K.N., Purgailis, Rozevskis, 2012; Nechval, N.A.,
Purgailis, 2012). to transform (24) to the form, which depends on the pivotal
quantity v=s/o, the ancillary factor n=u/s and y/s,

C(u,y)= 0'[(;] T C, exp{— s iJ +(c3—¢,) exp[— i 4 iJJ
so 5o s

o

=onwmﬁm@m44q—@wmtw+§}JAmewn. (30)

We find the expected overall costs for the statistical decision u=7 S as

Cn1$)=Y pC@y19), (31)

y=0
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where w
C@n.y|9) = [COry.v| g0y,
0 AN
=o|enn+c, +(C3—C-,)[1+?}+i] i (32)
(1+n)" B K}
go) =[]V exp(—v) (v>0). (33)
The value of 77 that minimizes (31) is the one that satisfies
o0 —(n+1)
. = V
Gy (6 —¢,) p(}r‘)[Hry +'—] =c. (34)
A+n'y ;U s !
Thus,
u® =n*S. (35)

If p(y=0) = 1, then

M+
n = [‘—‘J -1 (36)
(,‘1
and
1 1(n+1)
Cn"|s)= G{Cﬁ?* n+cy e } =¢ [CiJ (n+l)—-njo. (37)
(I+n°) ¢

Comparison of decision rules. For comparison, consider the maximum
likelihood decision rule that can be obtained from (26) as

WM = &m{‘iJ =ML, (38)
G

where o =S5/n is the maximum likelihood estimator of o,

1/n
™M =1n [0—3} : (39)

9

Since #”'and #™" belong to the same class
C ={u:u=nS}, (40)
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it follows from the above that #™" is inadmissible in relation to u"'. If,
say, c1=50, c3=3500 (in terms of money), and n=1, we have that
rel.eff.c(,}lx){MMI‘,HBI,0'} =C(y’ |.s‘)/(,‘(?}ML |s)
1

an’ n+e——m— -
_ (”’3; ) _0.90. (41)
ML
an o nto i
+7M)

Thus, in this case, the use of #"'leads to a reduction in the expected overall
costs of about 10 % as compared with ™" . The absolute expected overall costs
will be proportional to oand may be considerable.

Predictive inference. It will be noted that the predictive probability density
function of the daily demand for tours, X, which is compatible with (15), is
given by

. nl( £y
x| 9= 1+=— (x>0). (42)
s s
Using (42), the predictive overall costs are determined as
CPu|s)=> py)XP(u,y|s), (43)
y=0
where

15

CP(u,y|s)=cu+ c; jly(x —u) f(x|s)dx+ jr[czy +o,(x—u—y))f(x]|s)dx

u+y

:‘—Y{CIEIHC{HEJ +(c3—cz){1+ﬂ+lj J, (44)

nl s s s 8

which can be reduced to

(.1("’)(;;;,};):i enn+c, l +(c;—¢;) ]+I}'+X : (45)
n “(I+n)" . B

Thus, It follows from (32) and (45) that #® can be found immediately from
(43) as

u® =argmin C7 (u| s). (46)
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4, Conclusions and Directions for Future Research

In this paper, we propose a new technique to improve or optimize
statistical decisions under parametric uncertainty. The method used is that of
the invariant embedding of sample statistics in a performance index in order to
form pivotal quantities, which make it possible to eliminate unknown
parameters (i.e., parametric uncertainty) from the problem. It is especially
efficient when we deal with asymmetric performance indexes and small data
samples. More work is needed, however, to obtain improved or optimal
decision rules for the problems of unconstrained and constrained optimization
under parameter uncertainty when: (i) the observations are from general
continuous exponential families of distributions, (ii) the observations are from
discrete exponential families of distributions, (iii) some of the observations are
from continuous exponential families of distributions and some from discrete
exponential families of distributions, (iv) the observations are from
multiparametric or multidimensional distributions, (v) the observations are
from truncated distributions, (vi) the observations are censored, (vii) the
censored observations are from truncated distributions.
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OPTIMIZACIJA U USLOVIMA NEIZVESNOSTI
SA PRIMENAMA U UPRAVLJANJU
LJUDSKIM RESURSIMA U TURIZMU

Sazetak

Brojni problemi koji nastaju prilikom planiranja, proizvodnje, zakazivanja, lokacija, tran-
sporta, finansija i potrebnom inzinjerskom dizajnu, zahtevaju da se odluke donose s dozom
neizvesnosti.

Za poboljsanje i optimizaciju odluka, predloZena je jedna nova tehnika. Ona predstavlja
jednostavnu i atraktivnu statisticku metodu koja se bazira na osnovu konstruktivnog koris¢enja
matematicke statistike. Suprotno Bajesovskom pristupu, ova tehnika ne dozvoljava slobodu
izbora ali dopusta eliminaciju nepoznatih parametara u odnosu na problem.

S ciljem predstavljanja primene predlozenih tehnika razradeni su problemi koji se pojavl-
juju prilikom upravljanja u turizmu, na primeru kompanije koja pruza usluge prevodilaca/
vodica turistima.

Kljucne reci: optimizacija, problem upravljanja ljudskim resursima
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