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Summary

Optimization of complex functions, such as the output of computer simula-
tors, is a difficult task that has received much attention in the literature. A
less studied problem is that of optimization under unknown constraints, i.e.,
when the simulator must be invoked both to determine the typical real-valued
response and to determine if a constraint has been violated, either for phys-
ical or policy reasons. We develop a statistical approach based on Gaussian
processes and Bayesian learning to both approximate the unknown function
and estimate the probability of meeting the constraints. A new integrated
improvement criterion is proposed to recognize that responses from inputs
that violate the constraint may still be informative about the function, and
thus could potentially be useful in the optimization. The new criterion is
illustrated on synthetic data, and on a motivating optimization problem from
health care policy.
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1. INTRODUCTION

A common optimization problem that arises in fields ranging from applied engineer-
ing to public policy is to find x∗ = arg minx∈X f(x), subject to constraints: x∗

∈ C,
where we may only learn about the relationship between x and f(x) : X → R and
the constraint region C through expensive evaluations of the noisy joint process

Z(x) = f(x) + ε, ε ∼ N (0, η2) (1)

C(x) = c(x + εc) = I{x+εc∈ C} ∈ {0, 1}.

The real-valued noise variance, η2, is unknown but may be zero, and εc indicates
that the constraint mapping may be random. In particular, the constraint region
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C ⊂ X is well-defined but often non-trivial. Although it will typically be deter-
ministic (εc = 0), this is not required by our treatment. Finally, we suppose that
observing the joint response (Z, C)(x) is expensive. So we wish to keep the number
of evaluations, (x1, z1, c1), . . . (xN , zN , cN ), small. One way to do this is to build
regression and classification models fN (x) for f(x) and cN (x) for c(x) based on the
data. The surrogate surfaces may be searched to find x′ yielding a small objective
in expectation, and satisfying the constraint with high probability. We can then
repeat the process with N + 1 points, including (x′, Z(x′), C(x′)), stopping when
convergence in the location of x∗ is achieved, or when resources are exhausted.

To shed light upon the difficulty in solving this problem, and to thereby suggest
possible points of attack, consider the following simplification where the constraint
region C is known at the outset (i.e., there is no need to estimate cN ). In this case a
sensible approach is as follows. Obtain realizations z(x) of Z(x) only for x ∈ C with
the largest expected improvement (EI, Jones et al., 1998) under fN [more on this in
Section 2] and proceed to construct fN+1 by adding in the (x, z(x)) pair into the
design. This presumes that evaluating f(x) for x ∈ X \ C is a waste of resources.
But this need not be so, since Z(x), for any x, contains information about f , and
therefore about promising location(s) for x∗

∈ C. It could even be that x′ /∈ C
is best at reducing the overall uncertainty in the location of x∗

∈ C, through an
improved new surrogate fN+1. When this is the case [e.g., see Section 3.3] it makes
sense to sample Z(x′) for x′ /∈ C despite the constraint violation.

Assessing when this odd maneuver is advantageous requires a more global notion
of improvement; EI cannot directly quantify the extent to which x′ /∈ C improves
our information at x ∈ C. Finally, when C is not known a priori, new evaluations
(x′, z′ = z(x′)) provide information about both f and c through their surrogates fN

and cN . Thus incremental decisions toward solving the constrained optimization
problem must incorporate uncertainty from both surrogates. We propose a new
integrated improvement statistic to fit the bill.

The rest of the paper is outlined as follows. In Section 2 we outline EI for (un-
constrained) optimization and the GP surrogate models upon which it is based. In
Section 3 we develop the conditional and integrated expected improvement statis-
tic(s) for the case of known constraints, with an illustration. We extend the method
to unknown constraints in Section 4, and demonstrate the resulting constrained
optimization algorithm on synthetic data. In Section 5 we consider a motivating
problem from health care policy research, and conclude with some discussion and
extensions in Section 6.

2. PREVIOUS WORK

2.1. Surrogate Modeling

The canonical choice of surrogate model for computer experiments is the station-
ary Gaussian process (GP, Sacks et al., 1989; O’Hagan et al., 1999; Santner et al.,
2003), which is one way of characterizing a zero mean random process where co-
variance C(x, x′) = σ2K(x, x′) varies spatially depending upon the x locations.
Let ZN = (z1, . . . , zN )T be the vector of observed responses at the design points
x1, . . . , xN collected (row-wise) in XN . Conditional on this data DN = {XN , ZN},
the (posterior) predictive distribution of Z(x) at a new point x under the GP is
normal with
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mean ẑN (x) = kT
NK−1

N ZN ,
and variance σ̂2

N (x) = σ2[K(x, x) − kT
N (x)K−1

N kN (x)],
(2)

where kT
N (x) is the N -vector whose ith component is K(x, xi), and KN is the

N × N matrix with i, j element K(xi, xj). These are sometimes called the krig-
ing equations. Joint prediction at a collection of points X is multivariate normal

with mean vector ẑN (X) and covariance matrix Σ̂N (X) which are defined by the
straightforward matrix extension of kN (X) and K(X, X). We follow Gramacy and
Lee (2008) in specifying that K(·, ·) have the form K(x, x′|g) = K∗(x, x′) + ηδx,x′ ,
where δ·,· is the Kronecker delta function, and K∗ is a true correlation function.
The η term, referred to as the nugget, is positive (η > 0) and provides a mecha-
nism for introducing measurement error into the stochastic process—implementing
η2 > 0 in Eq. (1) (Gramacy, 2005, appendix). It causes the predictive equations
(2) to smooth rather than interpolate the data (XN , ZN ). It is common to take
K∗(·, ·) from a parametric family, such as the separable Matérn or power families
(e.g., Abrahamsen, 1997), which roughly model K∗(·, ·) as an inverse function of
coordinate-wise Euclidean distance. We prefer the power family, which is standard
for computer experiments.

2.2. Optimization by Expected Improvement

Conditional on a GP surrogate fN , a step towards finding the minimum may be
based upon the expected improvement (EI) statistic (Jones et al., 1998). For a
deterministic function (η = 0), the current minimum fmin = min{z1, . . . , zN} is
deterministic. In this case, the improvement is defined as I(x) = max{fmin −

Z(x), 0}. The next location is chosen as

x′ = arg max
x∈X

E{I(x)}, (3)

where the expectation is taken over Z(x) ∼ FN (x), the predictive distribution (2)
implied by fN evaluated at x. Jones et al. (1998) give an analytical expression for
the EI:

E{I(x)} = (fmin − ẑN (x))Φ

„

fmin − ẑN (x)

σ̂N (x)

«

+ σ̂N (x)φ

„

fmin − ẑN (x)

σ̂N (x)

«

. (4)

Basically, the EI is the cumulative distribution of the predictive density that lies
“underneath” fmin. A relevant diagram illustrating EI appears in Figure 1 in Section
3.1.1. Jones et al. (1998) also provide a branch and bound algorithm for performing
the maximization over X to find x′. Once x′ is chosen it is added into the design as
(xN+1, zN+1) = (x′, f(x′)) and the procedure repeats with fN+1. Jones et al. (1998)
use maximum likelihood inference to set the parameters for fN , i.e., d only since
η = 0, and call the resulting iterative procedure the efficient global optimization
(EGO) algorithm. The above choice of fmin is sensible but somewhat arbitrary.
Another reasonable choice that we promote in this paper is fmin = min ẑN (x), the
minimum of the (posterior) mean predictive surface.

The situation is more complicated for noisy responses. We must then estimate
the nugget, η, and extend the Jones et al. (1998) definition of fmin to be a random
variable: the first order statistic of Z1, . . . , ZN . Calculating the EI would thus
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require integrating over fmin in Eq. (3). This breaks the analytical tractability of
EGO algorithm, however one can always proceed by Monte Carlo methods. Once
in the Monte Carlo framework, extensions abound. For example, it is trivial to
take a Bayesian approach and thereby factor parameter uncertainty into the EI
calculation. Conditional on the parameters however, choosing fmin min ẑN (x) is still
deterministic. So this choice allows an analytical approach to proceed when point-
estimates (i.e., MLEs) of parameters are used, or it leads to a more efficient Monte
Carlo algorithm when sampling from the Bayesian posterior. The downside of the
Monte Carlo approach, whether taken for Bayesian or fmin considerations, is that
the branch and bound algorithm for determining x′ in Eq. (3) is no longer available.
However, proceeding with a discrete set of space-filling candidates, and leveraging
direct optimization methods in tandem, has proved fruitful (Taddy et al., 2009b).

2.3. Towards Constrained Optimization

Ours in not the first attempt at tackling the constrained optimization problem
via surrogate modeling. Schonlau et al. (1998) consider deterministic responses
(η = 0) where the known constraint region can be written as ak ≤ ck(x) ≤ bk,
for k = 1, . . . , K. They then treat the ck(x) as additional response variables that
co-vary with f(x). This breaks the analytical tractability of the EI calculation.
Assuming that the K+1 responses are independent the calculation is again tractable,
otherwise a Monte Carlo approach is needed. We are not aware of any previous
literature addressing our more general problem: where the function f may not be
deterministic, and when there are unknown constraints of arbitrary form. Even
in simpler settings, like the one above, it may be advantageous to sample outside
the constraint region. This requires a new improvement statistic—one that weighs
the overall expected improvement of the next sequentially chosen design point in
aggregate.

3. INTEGRATED EXPECTED CONDITIONAL IMPROVEMENT

Here we generalize the EI framework to accommodate the drawbacks outlined above.
To start with, we assume that constraints are deterministic, and known (with trivial
computation) in advance. Section 4 provides extensions for unknown constraints.

Define the conditional improvement as

I(y|x) = max{fmin − Z(y|x), 0}, (5)

where Z(y|x) ∼ FN (y|x), which is the predictive distribution of the response Z(y) at
a reference input location y under the surrogate model fN given that the candidate
location x is added into the design. We do not use an N + 1 subscript for the
posterior predictive distribution because the realization of the response z(x) is not
yet available.

The expected conditional improvement (ECI) at the reference point y is then
E{I(y|x)}. Here the expectation is over all of the random quantities: the distribution
of Z(y|x), and perhaps of fmin depending upon how it is defined. The ECI may be
evaluated at all pairs of inputs (x, y) ∈ X . The potential to generalize EI, which
accounts for improvement at the point x alone, comes by integrating over the choices
for y. Let g(y) denote a density over y ∈ X which may be uniform in a bounded
region. Then the integrated expected conditional improvement (IECI) is defined as

Eg{I(x)} = −

Z

X

E{I(y|x)}g(y) dy. (6)
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This suggests using x′ = arg maxx∈X Eg{I(x)} as the next adaptively sampled point.
As long as E{I(y|x)} ≤ E{I(y)} for all x ∈ X , this statistic (6) is defensible. Defining
fmin carefully [see Section 3.1.1] ensures that this monotonicity condition holds.

The negation in Eq. (6) keeps IECI in line with the convention of maximizing,
i.e., of preferring large EI statistics over small ones. To explain, consider how I(y|x)
“looks ahead”. We wish to measure an improvement at x, but in a roundabout way
we assess that improvement at a reference point y instead, supposing x has been
added into the design. If y still has high improvement potential after x has been
added in, then x must not have had much influence on the improvement at y. If x
is influential at y, then the improvement at y should be small after x is added in,
not large.

We can alternatively define IECI as the expected reduction in improvement at
the reference location, y, when x is added into the design:

Eg{I(x)} =

Z

X

(E{I(y)}− E{I(y|x)})g(y) dy, (7)

which is guaranteed to be positive under our monotonicity assumption. We would
then take the x′ which gave the largest reduction. But clearly this is within an
additive constant (the weighted-average EI over g(y)) of the definition given in
Eq. (6), and is thus equivalent.

The integrated approach allows constraints to be handled through g(y). E.g.,
g(y) can be uniform for y ∈ C and zero otherwise. Or, [as we discuss in Section
4] it can give higher weight to y with a greater chance of satisfying the constraint.
When there are no constraints, choosing g(y) uniform on y ∈ X yields an aggregated
statistic that will offer a more global search, compared to EI, in a manner similar
to how the expected reduction in variance generalizes the predictive variance for
sequential design by active learning (Seo et al., 2000; Gramacy and Lee, 2009).

3.1. Expected Conditional Improvement

The key ingredient in calculating the ECI is an assumption about how Z(y|x) be-
haves relative to Z(y). Let FN (y|x) denote the distribution of Z(y|x). Overloading
the notation somewhat, let fN (z(x)) denote the density of Z(x) under FN , and
likewise fN (z(y)|x) for Z(y|x). By the law of total probability,

fN (z(y)|x) =

Z

fN (z(y), z(x)|x) dz(x) (8)

=

Z

fN+1(z(y)|x, z(x))fN (z(x)) dz(x),

where fN+1(z(y)|x, z(x)) is the predictive density of Z(y) when the design matrix
and response vector are augmented by (x, z(x)). Note that the above expressions
involving z(y) have an implicit conditioning upon y. For an arbitrary surrogate,
computing the integral in Eq. (8) analytically would present a serious challenge.
However, under a GP surrogate it is trivial since FN and FN+1 are both (univari-
ate) normal distributions (2), and a convolution of normals is also normal. Trivially,
the mean and variance of the (normal) predictive density fN+1(z(y)|x, z(x)) is un-
changed after integrating out Z(x) since the GP is not dynamic, so there is no
update from fN without observing z(xN+1).
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But at the same time, the predictive variance (2) does not depend upon the
responses, ZN or z(x) via ZN+1. So we can deduce what variance of the predictive
density fN+1(z(y)|x, z(x)) will be once z(x) arrives. We will have σ̂2

N+1(y|x, z(x)) =

σ̂2
N+1(y|x) under the assumption that the evidence in z(x) does not update/change

parameters of the GP (which it can’t if it is not observed!). Now, σ̂2
N+1(y|x, z(x))

depends upon K−1
N+1(x) whose N +1st row and column are populated with K(xi, x)

for i = 1, . . . , N and with K(x, x) appearing in the bottom right-hand corner. So
K−1

N+1(x) can then be obtained in terms of K−1
N via partitioned inverse equations.

If

KN+1(x) =

»

KN kN (x)
kT

N (x) K(x, x)

–

, then

K−1
N+1(x) =

»

[K−1
N + g(x)gT (x)µ−1(x)] g(x)

gT (x) µ(x)

–

,

where g(x) = −µ(x)K−1
N kN (x) and µ−1(x) = K(x, x) − kT

N (x)K−1
N kN (x). This

saves us from performing any additional O(N3) matrix operations. So σ̂2
N+1(y|x) =

σ2[K(y, y) − kT
N+1(x; y)K−1

N+1(x)kN+1(x; y)] where kT
N+1(x; y) is an (N + 1)-vector

whose first N entries are identical to kN (y) and with an N + 1st entry of K(y, x).
The amount by which σ̂2

N+1(y|x, z(x)) is reduced compared to σ̂2
N (y) is then readily

available. Let G(x) ≡ g(x)gT (x). Then,

σ̂
2
N+1(y|x) = σ̂

2
N (y) − σ

2[kT
N (y)G(x)µ−1kN (y) (9)

+ 2kT
N (y)g(x)K(x, y) + K(x, y)2µ].

So we can see that the deduced predictive variance at y will be reduced when z(x)
is observed by an amount that depends upon how far apart y and x are. This
is not only sensible, but will also be helpful for determining the influence of x in
improvement calculations.

To sum up, we propose to define FN (y|x), for the purposes of sequential design,
to be a normal distribution with (true) mean ẑN (y|x) = ẑN (y) and deduced variance
σ̂2

N (y|x) ≡ σ̂2
N+1(y|x, z(x)) = σ̂2

N+1(y|x) as given in Eq. (9), above. As with the
kriging equations (2), joint sampling for a collection of (M) reference inputs YM is
possible via the appropriate matrix extensions to kN (YM ) and K(YM , YM ) in order

to derive ẑN (YM |x) and Σ̂N (YM |x).
Now, with an appropriate definition of a deterministic fmin, the same analytic

expression for the EI from Section 2 can be extended to the ECI:

E{I(y|x)} = (10)

(fmin − ẑN (y|x))Φ

„

fmin − ẑN (y|x)

σ̂N (y|x)

«

+ σ̂N (y|x)φ

„

fmin − ẑN (y|x)

σ̂N (y|x)

«

.

If we cared only about the ECI (without integration (6)), the branch and bound
algorithm given by Jones et al. (1998) would apply leading to a conditional EGO
algorithm.

3.1.1. Choosing fmin

Figure 1 illustrates how a deterministic choice of fmin can influence the ECI. Con-
sider two cases ((a) and (b)), which pertain to the choices for fmin introduced in
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Section 2.2 (represented by horizontal lines): (a) uses only the observed locations
and (b) uses the whole predictive curve. We will return to details of these choices
shortly. In the figure, the solid parabolic curve represents the predictive mean sur-
face E{Z(·)}. The EI is the area of the predictive density drawn as a solid line,
plotted vertically and centered at ẑ(y), which lies underneath the horizontal line(s),
representing choices of fmin. The ECI is likewise the area of the predictive den-

Z(y) ∼ fN(y)
Z(y|x) ∼ fN(y|x)

y x

(a): fmin ≡ ẑ

(b): fmin

Figure 1: Illustrating how the choice of fmin influences the ECI. The solid
curve represents the mean-predictive E{Z(·)}. The densities of Z(y) and
Z(y|x) are shown as solid and dashed “bell-curves”, respectively. In (a) fmin

is taken to be the mean predictive at the N input locations whereas in (b)
it is taken to be the minimum of predictive-mean surface. The respective
improvements are the areas of the densities underneath fmin.

sity drawn as a dashed line lying below the horizontal line(s). This dashed density
has the same mean/mode as the solid one, but it is more sharply peaked by the
influence of x. If we suppose that the densities, drawn as bell-curves in the fig-
ure, are symmetric (as they are for a GP), then it is clear that the relationship
between ECI and EI depends upon fmin. As the dashed line is more peaked, the
left-tail cumulative distributions have the property that FN (fmin|x) ≥ FN (fmin)
for all fmin ≥ E{Z(y|x)} = E{Z(y)}, to which choice (a) for fmin corresponds.
Therefore E{I(y|x)} ≥ E{I(y)} in this case, violating our desired monotonicity
property. But for choice (b) the ECI represents a reduction compared to the EI,
since fmin ≤ E{Z(y|x)}, thus satisfying the monotonicity property.

Case (a) in Figure 1 is meant to represent taking fmin = min{z1, . . . , zN}, de-
terministically. It may similarly represent the minimum of the mean-predictive at
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the XN locations, which would coincide with the minimum of the ZN values in the
no-noise (η = 0) case. In the noisy case (η > 0) fmin in Eq. (5) is a random variable
whose distribution can be approximated by simulation from FN . But this extra
computational effort would be in vain because the monotonicity property is not
guaranteed. Case (b) corresponds to taking fmin = min E{Z(·)}, the minimum of
the posterior mean-predictive—another deterministic choice. In this case it is clear
that fmin will always cut through the density of Z(y|x) at or below its mean/mode
E{Z(y|x)} = E{Z(y)} and ensure that the monotonicity property is satisfied. Ac-
cordingly, we shall use this choice throughout the remainder of the paper.

3.1.2. A Monte Carlo Approach for Calculating the ECI

The following Monte Carlo procedure may be used to obtain samples of the ECI via
the GP surrogate posterior predictive fN , taking full account of uncertainty in the
parameters θ = (σ2, d, η). The procedure is borne out via Monte Carlo sampling
for θ in Figure 2. If θ is considered known, or has been estimated offline, e.g., via

For t = 1, . . . , T , current design DN = (XN , ZN ), repeat:

(i) Sample θ
(t) from the posterior distribution conditional upon fN ,

priors, and DN , and possibly conditional upon θ
(t−1) in an MCMC

setup

(ii) Calculate fmin = min ẑN (·|θ(t))

(iii) Obtain the tth sample from E{I(y|x)} as
E

(t){I(y|x)} = E{I(x|y)|θ(t)}, following Eq. (??) with ẑN (y|x, θ(t))
and σ̂

2
N

(y|x, θ(t))

Figure 2: Monte Carlo approximation of the ECI statistic.

maximum likelihood, then we may skip the loop (and Step 1), taking T = 1 with

θ(1) = θ. In either case, an estimate of the ECI is obtained by ergodic averaging:

E{I(y|x)} ≈
1

T

T
X

t=1

E
(t){I(y|x)}. (11)

3.2. Integrated Expected Conditional Improvement Algorithm

Calculating the IECI (6) from the ECI requires integrating over y ∈ X according to
g(y), which may be uniform in a bounded (constraint) region. It will not generally
be possible to integrate analytically, so we propose to augment the Monte Carlo
procedure from Section 3.1.2. Given a large number of sampled reference locations

YM ≡ y(1), . . . , y(M) iid
∼ g, the IECI may be approximated with T Monte Carlo
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samples from the ECI as follows.

Eg{I(x)} ≈−
1

MT

M
X

m=1

T
X

t=1

E
(t){I(y(m)|x)} (12)

When the parameters θ are known, T = 1 as before. With larger M (and T ) we
obtain an improved approximation, and in the limit we have equality. In the case
where g is uniform over a convex region, a grid or maximum entropy design may be
preferred (Santner et al., 2003, Section 6.2.1). When the marginals of g are known,
a Latin Hypercube Design (LHD, Santner et al., 2003, Section 5.2.2) may be more
generally appropriate.

If we choose (or are required) to work with a size M grid, design, or LHD
of reference locations y ∈ X , we may view g as discrete and finite measure. An
alternate approach in this case is to forgo (re-)sampling from g and compute a
weighted average instead:

Eg{I(x)} ≈ −
1

T

T
X

t=1

1

M

M
X

m=1

E
(t){I(y(m)|x)}g(y(m)). (13)

This has the disadvantage that the ECI may be evaluated at many reference lo-
cations y(m) with low (or zero) probability under g. But it has the advantage of
an implementation that is easily adapted to the unknown constraint situations de-
scribed shortly.

3.3. Illustrating IECI

To illustrate IECI consider the following process E{Z(x)} = f(x) = sin(x) +
2.55φ0.45(x − 3), observed for x ∈ [0, 7]. As a mixture of a sinusoid and normal
density function (with µ = 3 and σ = 0.45) it has two local minima in this region.
To make things interesting, realizations of the process are observed with i.i.d. noise
so that Var{Z(x)} = 0.152. The top-left panel of Figure 3 shows one random realiza-
tion of this process at LHD inputs. The predictive mean and 90% interval obtained
by sampling from the posterior under the GP is also shown. A visual inspection of
the surface(s) reveals that, indeed, there are two local minima.

Below that panel, on the bottom-left, the EI (solid black) and IECI (dashed red)
surfaces are plotted, normalized to appear on the same [0, 1] scale. As a further
visual aid, the design XN is also shown, and the vertical lines crossing the x-axis
intersect with the curves at their maxima. We took a uniformly spaced set of 100
candidate locations in [0, 7], our X , and calculated the EI and IECI at x ∈ X .
Likewise, we took the same M = 100 points as reference locations YM = X for the
IECI calculations via Eq. (12). EI recommends taking a sample from the left local
minima, although the relative heights of the two disparate regions of highest EI
betrays that this decision is indeed a “close call”. In contrast, IECI suggests taking
the next sample from the right local minima, and with much greater decisiveness.
The lower concentration of samples nearby this right-minima lead to higher variance
in that region which may be pooled by the more globally-scoped IECI.

The right-hand panels in Figure 3 show a similar sequence of plots in the presence
of a known constraint C = [0, 2] ∪ [4, 7]. To illustrate EI and IECI in this scenario,
consider the random realization and corresponding posterior predictive surface in
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Figure 3: Comparing EI and IECI. The top panels show the design and pos-
terior predictive surface. The bottom panels show EI and IECI statistics for
the corresponding surfaces above. In the case of constrained optimization, in
the right panels, the constraint violation region Cc is shown with slashes.

the top-right panel. Here the XN design locations all reside inside C. The bottom-
right panel shows the EI statistic over the entire (discrete) range for x ∈ X , as above.
Those parts of the EI curve corresponding to inputs which violate the constraint are
dotted. The EI is maximized outside of the constraint region near x = 2.75, with
the maximal value inside C at the x = 4 boundary. The IECI statistic is also shown
over the entire range, but the y(m) locations are restricted to C. I.e., YM = X ∩ C.
This is so that we may consider the extent to which every location x ∈ X reduces
the average conditional improvement y ∈ C. Observe that the maximal IECI point
is x = 3.75. This point gives the greatest reduction in improvement averaged over
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the constraint region, even though it does not, itself, satisfy the constraint.

4. DEALING WITH UNKNOWN CONSTRAINTS

Here we extend the IECI to unknown constraints. Much of the necessary scaffolding
has already been built into the IECI via g(y), e.g., g(y) = P(C(y) = 1). It remains
for us to flesh out the Monte Carlo by incorporating the surrogate cN for C(y).
We extend the parameter vector θ to contain parameters for both surrogates: θ =
(θf , θc); and the data to include the class/constraint labels: DN = (XN , ZN , CN ).
Inference for unknown θ|DN is via samples from the joint posterior. An appropriate
choice of cN is discussed in Section 4.1.

For now, overload the generic classification surrogate notation to let cN (y(m)|θ(t)
c )

denote the probability input y(m) satisfies the constraint given parameters θ
(t)
c .

Then,

Ec{I(x)} ≈ −
1

T

T
X

t=1

1

M

M
X

m=1

E
(t){I(y(m)|x)} · cN (y(m)|θ(t)

c ). (14)

Note that in E
(t){I(y(m)|x)} there is an implicit dependence upon θ

(t)
f , unless these

parameters are taken as known. In that case we may drop the (t) superscript from
the ECI expression in Eq. (14), and re-arrange the order of summation to avoid
unnecessarily re-calculating the ECI for each t. Observe that Eq. (14) extends
Eq. (13) rather than (12). Sampling from the surrogate gN , rather than simply
evaluating the related quantity cN , would not generally be straightforward, and so
we prefer to work with design-based candidates y ∈ X .

4.1. An Appropriate Constraint Surrogate, and Sequential Inference

An appropriate partner to the canonical GP (regression) surrogate fN for f is a
classification GP (CGP) surrogate cN for c. For details on CGP specification and
corresponding Monte Carlo inference based on MCMC, see Neal (1998). As in the
regression case, the CGP model is highly flexible and competitive with, or better
than, the most modern models for non-parametric classification. However, batch
inference methods based on MCMC are at odds with the sequential nature of the
design strategy. Except to guide the initialization of the new Markov chain, it is not
clear how fits from earlier iterations may re-used in search of the next design point.
So after each sequential design step the MCMC must be re-started and iterated
until convergence. The result is a slow algorithm.

So instead of taking the traditional, established, MCMC approach to C/GP
inference we follow a new, promising, sequential Monte Carlo (SMC) approach out-
lined by Gramacy and Polson (2010). They show how GP and CGP models can be
implemented in an online setting, by efficiently updating a discrete approximation
to the posterior via particle learning (Carvalho et al., 2008). This approach leads to
fast online—and in some cases statistically superior (i.e., lower MC error)—posterior
summaries compared to MCMC. Gramacy and Polson (2010) go on to describe to
how EI for optimization and entropy based boundary exploration for classification
can proceed efficiently with particles. This is easy to extend to IECI by coupling
the regression and classification models (fN and cN ) via the Monte Carlo approxi-
mations described earlier in this paper.
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4.2. Illustrations and Examples

We provide two synthetic data examples where the constraint region is unknown.
In both cases we take the candidate and reference locations (identically: Ym = X )
as a LHD randomly generated at the beginning of each round and then augmented
with an oracle point (Taddy et al., 2009b). We follow Gramacy and Taddy (2010) in
taking the oracle point as the local maximum obtained via numerical non-derivative
minimization initialized at the last added design point and searched over the the
MAP predictive surface inferred in the previous round. An implementation via
particles is described by (Gramacy and Polson, 2010).

The objective function and constraint region for the first example was presented
in Section 3.3. We initialize the optimization with a size 20 LHD, and then collect
60 points by IECI with 100 fresh candidates/reference locations as described above.
Figure 4 summarizes the results after the 80 total samples were gathered. Observe
from the plots in the top row that most samples (after the 20 initial ones) were
gathered in the two local minima, with a few taken outside C. The oracle candidates
(solid circles) indicate the most likely locations of minima according to the posterior
predictive distribution. The bottom panes show an estimate of cN via the posterior

mean probability of violating the constraint (P̂ (cN (x) = 1)), and a progress meter
showing the largest (log) expected reduction in average improvement (7) at each
round. Observe how the ability to improve upon the current minimum decreases
over time, giving a heuristic indication of convergence.

In our second example, the objective function for 2-d inputs x = (x1, x2) is given
by

f(x1, x2) = −w(x1)w(x2), where (15)

w(x) = exp
`

−(x − 1)2
´

+ exp
`

−0.8(x + 1)2
´

− 0.05 sin (8(x + 0.1))

and observed without noise. The constraint (satisfaction) region is the interior of
an ellipse defined by the 95% contour of a bivariate normal distribution centered
at the origin, with correlation −0.5 and variance 0.752. The true global minimum
is at (x1, x2) = (−1.408,−1.408), which does not satisfy the constraint. There
are, however, three other local minima—two of which satisfy the constraint. The
setup is as described above for the 1-d example except that the optimization is
initialized with 25 LHD samples, after which 100 are gathered by IECI with 100
fresh candidates in each round. Figure 5 summarizes the results after the 125 total
samples were gathered. Observe that very few samples were gathered outside the
unknown constraint region, except near the local minima. It is sensible to sample
heavily on the boundary of the constraint region where the response is quickly
changing and local minima are likely to occur. This is in case the global minimum
is on the boundary, and also helps to extract the GP parameters in regions of highest
importance. Notice that large concentrations of samples occur for two minima well
inside the constraint region. But the bottom-right plot indicates that further progress
can be made by additional sampling.

5. HEALTH POLICY OPTIMIZATION

Our motivating example involves a simulation of health care policy in the United
States. The COMPARE simulator (Girosi et al., 2009) was developed at the RAND
Corporation to predict the effect of various health care policies in terms of individual
choices of health insurance and the associated costs. It is an agent-based microsim-
ulation model that uses a maximum utility approach to predict the health insurance
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Figure 4: Progress in 1-d optimization after 80 samples: top-left shows the
posterior mean predictive surface (of fN ); top-right shows sampled x-values
(open circles) and oracle candidates (closed) before and after the initial de-
sign, as separated by the vertical bar; horizontal lines indicate the unknown
constraint region; bottom-left posterior mean of constraint (violation) surface
(cN ); bottom-right the maximum of the log expected reduction in average
improvement (7) over time.

decisions of individuals, families, and firms as a function of a wide range of inputs on
available types of policies, and on taxes, penalties, and regulations. The population
is simulated based on Census Bureau data. Additional datasets provide values for
many of the parameters in the simulation, and other parameters are set as part of
the possible policy interventions. However, there are several calibration parameters
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Figure 5: Progress in 2-d optimization after 125 samples: top-left: posterior
mean predictive surface; top-right: sampled (x1, x2)-values (open) and oracle
candidates (closed); bottom-left: posterior mean of constraint surface; bottom-

right: the progress meter (7).

that are tuned so that when the simulator is run on current policies, it makes pre-
dictions as close as possible to the current observable situation in the United States.
Such a calibration can be viewed as a minimization problem, choosing the values
of the calibration parameters to minimize the discrepancy between predictions and
reality. This setup is common for computer simulators and has been investigated in
the unconstrained setting (e.g., Kennedy and O’Hagan, 2001). What differs from
the standard setup here is the presence of unknown constraints.

The simulator has a number of inputs and outputs, here we focus on a subset
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deemed most important by our collaborators, the designers of the simulator. The
inputs over which we optimize are a set of six calibration parameters: utility tuning
parameters for adults on ESI programs, adults on individual programs, and adults on
public programs, and an analogous set of three parameters for children. The outputs
of interest are the predicted counts in each type of insurance (or the uninsured
category) and the elasticities of response for the key categories of adults in individual
plans, adults in restricted individual plans, uninsured adults, children in individual
plans, children in restricted individual plans, and uninsured children. The objective
function specified by our collaborators is a combination of the absolute errors in the
predicted counts and the squares of the predicted elasticities:

Z(x) = α1

4
X

j=1

|yaj − ŷaj | + α2

4
X

j=1

|ycj − ŷcj | +
4

X

k=1

α3ky2
ekI{|yek|>1}

where α1, α2, and α3k are constants specified by our collaborators that weight
the pieces appropriately. Our goal is to minimize this objective function under the
constraint that the elasticities for the insured are negative and the elasticities for the
uninsured are positive. The elasticities can only be found by running the simulator,
so this set of constraints fits under our unknown constraints regime.
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Figure 6: Slices of the fitted response surface; dark shades are lower values.

Figure 6 shows pairwise slices of the fitted response surface. The left panel shows
how the fitted predicted surface varies as a function of the parameters for adult and
child ESI, when the other four parameters are held fixed at a value around that
which produces the minimum response. The middle and right panels vary by the
parameters for individual programs and public programs respectively. Dark shades
are lower values, so it can be seen that both ESI parameters need to be relatively
high, the child individual parameter needs to be low, and the other three parameters
are relatively less important. The points plotted in the figure are the 550 total inputs
sampled projected into the each of the three pairs of input coordinates.

Figure 7 shows the fitted probability of a constraint violation over the portions
of the space which were routinely sampled. As seen in Figure 6, some regions are
not well-sampled because they do not help in finding the minimum, the goal of
the problem. These sparsely sampled regions do not provide much information for
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Figure 7: Slices of the fitted probability of constraint violation; dark shades are
lower values; sampled points violating the constraint are shown with asterisks.

estimating the probability of a constraint violation (which is not the primary goal
of the problem), and so the estimated values are overly influenced by the prior
mean. Thus we only display parts of the regions in the first two plots to better
show the estimated probabilities. Sampled points which violated the constraints
are shown with asterisks. One can see that the largest probabilities of constraint
violations occurred for large values of the ESI parameter, for jointly small values
of the individual and child individual parameters, and for values of the public and
child public parameters which are in the corners of the space.

Figure 8: Progress meter (7) for the health policy optimization.

Figure 8 shows the progress meter (7) over the 500 optimization rounds which
can be used as a heuristic check of convergence. As in previous examples, the
noisiness in the meter is due to the LHD predictive grid of 100 candidates at which
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the IECI is evaluated in each round. After about 250 samples the IECI seems to have
“bottomed-out”. However, further progress can be made to reduce the frequency
and magnitude of the “up-spikes” in the remaining optimization rounds, and thereby
obtain higher confidence that the constrained global minimum has been obtained.

6. DISCUSSION

We have introduced a statistical approach to optimization under unknown con-
straints by an integrated conditional expected improvement (IECI) statistic. The
idea is consider how the improvement at reference locations (y) conditional on can-
didates (x) may be used to augment a design. Without considering constraints, the
resulting statistic is a less greedy—aggregated—version of the standard expected
improvement (EI) statistic. Another way to obtain a less greedy EI is to raise the
improvement to a power g (Schonlau et al., 1998). The IECI approach, by contrast,
does not require such a tuning parameter. In the presence of unknown constraints,
IECI allows us to coherently consider how design candidates adjust the improvement
at reference locations believed to satisfy the constraint. Our method was illustrated
on two synthetic examples and a motivating problem from health care policy.

We envisage many ways that our methodology may be extended and improved.
Understanding of convergence of statistical optimization algorithms is scant at best,
and IECI is no exception. While we provide a sensible heuristic that seems to work
well in our examples, much remains to be done in this area. It may also be sensible
to model the constraint as a function of the inputs (x) and the real-valued response
(Z(x)). An example of where this would be handy is when C = {x : Z(x) < k}, for
some constant c. Our dual-GP modeling framework may easily be extended to allow
uncertainty in Z (real-valued) responses to filter through, as predictors, into the
surrogate model for the classification labels. A more difficult extension to involves
accommodating hidden constraints (Lee et al., 2010): where evaluation of the real-
valued response fails, e.g., due to a lack of convergence in a simulation. Finally, it
may be worthwhile to consider surrogate models beyond GPs. Dynamic trees for
regression and classification show considerable promise (Taddy et al., 2009a).
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