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Abstract. This paper presents a modification of the particle swarm optimization
algorithm (PSO) intended to combat the problem of premature convergence
observed in many applications of PSO. In the new algorithm, each particle is
attracted towards the best previous positions visited by its neighbors, in addition to
the other aspects of particle dynamics in PSO. This is accomplished by using the
ratio of the relative fitness and the distance of other particles to determine the direc-
tion in which each component of the particle position needs to be changed. The
resulting algorithm, known as Fitness-Distance-Ratio based PSO (FDR-PSO), is
shown to perform significantly better than the original PSO algorithm and several
of its variants, on many different benchmark optimization problems. Avoiding pre-
mature convergence allows FDR-PSO to continue search for global optima in diffi-
cult multimodal optimization problems, reaching better solutions than PSO and
several of its variants. 

1  Introduction

The Particle Swarm Optimization algorithm (PSO), originally introduced in terms of
social and cognitive behavior by Kennedy and Eberhart in 1995 [1], [2], has proven to be
a powerful competitor to other evolutionary algorithms such as genetic algorithms [3]. 
The PSO algorithm simulates social behavior among individuals (particles) “flying”
through a multidimensional search space, each particle representing a single intersection
of all search dimensions[7]. The particles evaluate their positions relative to a goal (fit-
ness) at every iteration, and particles in a local neighborhood share memories of their
“best” positions, then use those memories to adjust their own velocities and positions as
shown in equations (1) and (2) below. The PSO formulae define each particle as a poten-
tial solution to a problem in a D-dimensional space, with the ith particle represented as

, .. ... .. . Each particle also remembers its previous best position,

designated as pbest, ,.....  and its velocity

,..........  [7]. In each generation, the velocity of each particle is

updated, being pulled in the direction of its own previous best position (pi) and the best of
all positions (pg) reached by all particles until the preceding generation. 

Xi xi1 xi2 xi3, ,(= xiD )

Pi pi1 pi2 pi3, ,(= piD )

Vi vi1 vi2 vi3, ,(= viD )



The original PSO formulae developed by Kennedy and Eberhart were modified by Shi

and Eberhart [4] with the introduction of an inertia parameter, , that was shown empir-

ically to improve the overall performance of PSO.

(1)

(2)

Several interesting variations of the PSO algorithm have recently been proposed by
researchers in [12], [13], [14], [15], [16], [17]. Many of these PSO improvements are
essentially extrinsic to the particle dynamics at the heart of the PSO algorithm and can be
applied to augment the new algorithm presented in this paper. By contrast to most other
PSO variations, this paper proposes a significant modification to the dynamics of parti-
cles in PSO, moving each particle towards other nearby particles with a more successful
search history, instead of just the best position discovered so far. This is in addition to the
terms in the original PSO update equations. 

Section 2 motivates and describes the new Fitness- Distance-Ratio based PSO (FDR-
PSO) algorithm. Section 3 defines the benchmark continuous optimization problems used
for experimental comparison of the algorithms, and the experimental settings for each
algorithm. Section 4 presents and discusses the results. Conclusions and future work are
presented in Section 5.

2  FDR-PSO Algorithm

Theoretical results [10][13] have shown that the particle positions in PSO oscillate in
damped sinusoidal waves until they converge to points in between their previous best
positions and the global best positions discovered by all particles so far. If some point vis-
ited by a particle during this oscillation has better fitness than its previous best position
(as is very likely to happen in many fitness landscapes), then particle movement contin-
ues, generally converging to the global best position discovered so far. All particles fol-
low the same behavior, quickly converging to a good local optimum of the problem.
However, if the global optimum for the problem does not lie on a path between original
particle positions and such a local optimum, then this convergence behavior prevents
effective search for the global optimum. It may be argued that many of the particles are
wasting computational effort in seeking to move in the same direction (towards the local
optimum already discovered), whereas better results may be obtained if various particles
explore other possible search directions. This paper explores an alternative in which each
particle is influenced by several other particles, not just moving towards or away from the
best position discovered so far.

The most logical choices, for deciding which other particles ought to influence a given
particle, are drawn from natural observations and expectations of animal behavior: 

1. An organism is most likely to be influenced by others in its neighborhood. 

ω

Vid
t( 1 )+ ω Vid× t )( ψ1 pid Xid

t( )
–( )× ψ2 pgd Xid

t( )
–( )×+ +=

Xid
t 1+( )

Xid
t( )
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t( 1 )+
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2. Among the neighbors, those that have been more successful ( than itself) are likely to
affect its behavior.

 Attempting to introduce the effects of multiple other (neighboring) particles on each
particle must face the possibility of crosstalk effects encountered in neural network learn-
ing algorithms. In other words, the pulls experienced in the directions of multiple other
particles may mostly cancel each other, reducing the possible benefit of all the associated
computations. To counteract this possibility, the FDR-PSO algorithm selects only one
other particle when updating each velocity dimension, which is chosen to satisfy two cri-
teria:

 1. It must be near the particle being updated.
 2. It should have visited a position of higher fitness.

Experiments have been conducted with several possible ways of selecting particles that
satisfy these criteria, without significant difference in the performance of the resulting
algorithm. The simplest and most robust variation was to update each velocity dimension
by selecting a particle that maximizes the ratio of the fitness difference to the one-dimen-
sional distance. In other words, the dth dimension of the ith particle’s velocity is updated
using a particle called the nbest, with prior best position Pj, chosen to maximize 

(3)

where |...| denotes the absolute value, and it is presumed that the fitness function is to
be maximized. The above expression is called the Fitness-Distance-Ratio, suggesting the
name FDR-PSO for the algorithm; for a minimization problem, we would instead use
(Cost (Pj) - Cost(Xi)) in the numerator of the above expression.

This version of the algorithm has been more successful than variations such as select-
ing a single particle in whose direction all velocity components are updated. The
pseudocode for this algorithm is given in Figure 1. 

3  Experimental Settings and Benchmark Problems

Experiments were conducted with several variations of FDR-PSO, obtained by changing
the parameter values , , . The results in the tables and figures use the notation

“FDR-PSO( , , )”. Note that FDR-PSO(1,1,0) is the same as the usual PSO algo-

rithm described by Kennedy and Eberhart. On the other hand, FDR-PSO(0,1, ) and

FDR-PSO(1,0, ) correspond to the variations in which one of the main components of

the old PSO algorithm is completely deleted.
“FDR-PSO (1,1, )” refers to an instance of the new algorithm in which the relative

weightage of the new term is “ ” and the terms of the old PSO algorithm remain

unchanged. In all the implementations, the inertia parameter is decremented with number
of iterations as in [11].

FDR j i d, ,( )
Fitness Pj( ) Fitness Xi( )–

Pjd Xid–
-----------------------------------------------------------------=

ψ1 ψ2 ψ3

ψ1 ψ2 ψ3

ψ3

ψ3

ψ3

ψ3



(4)

where =0.9;
where gsize is the maximum number of generations for which the algorithm runs, i is

the present generation number. 
 FDR-PSO was compared against two variants of random search algorithms, to verify

whether the particle dynamics are of any use at all. In the “Random Velocity Update algo-
rithm” the new velocity term = old velocity term + a number chosen from the interval [-
width/10, width/10], where “width” is the difference between the max. and min. possible
values for that dimension. In the “Random Position Update algorithm”, with no explicit
velocity contributing, new position = old position + a random number chosen in the same
manner.

Algorithm FDR-PSO:
    For t= 1 to the max. bound of the number on generations, 
        For i=1 to the population size,
            For d=1 to the problem dimensionality, 
                Apply the velocity update equation:                      

                     + 

                    where Pi is the best position visited so far by Xi,

                    Pg is the best position visited so far by any particle
                    and Pn is chosen by maximizing

                              ;

                 Limit magnitude:

                     ;   

                 Update Position:             

                     ;

            End- for-d; 

            Compute fitness of ( );

            If needed, update historical information regarding Pi and Pg;
        End-for-i;
        Terminate if Pg meets problem requirements;
    End-for-t; 
End algorithm. 

Fig. 1. Pseudocode for FDR-PSO algorithm

All the experiments were conducted using a population size of 10, with each algorithm
executed for a maximum of 1000 generations. Experiments were conducted with the fol-
lowing benchmark problems for a dimensionality of n=20. All the benchmarks have glo-
bal minima at the origin.
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3.1 De Jong’s function 1

where (5)

3.2 Axis parallel hyper-ellipsoid

where (6)

3.3 Rotated hyper-ellipsoid

where (7)

3.4 Rosenbrock’s Valley (Banana function)

where (8)

3.5 Griewangk’s function 

where (9)

3.6 Sum of different powers 

where (10)

4  Results and Discussion

Figures 2 through 7 present the results on the optimization functions defined in the previ-
ous section. The graphs show results averaged over 30 trials. In each trial, the population
is randomly initialized and the same population is used for PSO and FDR-PSO. 

As shown in Figures 2, 3, 4, 5, 6, 7 and Table 1, the new FDR-PSO algorithm outper-
forms the classic PSO algorithm on each of the benchmark problems on which the exper-
iments have been conducted so far. In each case, the original PSO algorithm performs
well in initial iterations but fails to make further progress in later iterations.

The significant improvement achieved by the FDR-PSO algorithm can be attributed to
the near neighbor interactions. Population diversity is achieved by allowing particles to
learn from their nearest best neighbor which may be of poorer fitness than the global best.
FDR-PSO’s learning is consistent with the social behavior of the individuals in groups,
i.e., learning from the nearest best neighbors with successful search history rather than
learning from only the global best. In some cases, the nearest best neighbors can be the
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global best itself and hence can imply re-emphasizing the social learning. However, the
probability of the nearest best neighbor being the global best decreases with the increase
in population as well as the dimensionality of the problem. The algorithm in this paper
has been implemented for a population of 10. The probability of the global best being the
nearest best neighbor was observed to be as low as 0.4. Increasing the population size
would result in a more robust implementation of this algorithm and is expected to result
in a more diverse population. Such an implementation can be used for a more difficult
multimodal search space where a diverse and localized PSO is a requirement. 

The population diversity that is achieved can be demonstrated by the fact that the best
fitness and average population fitness became identical within 500 generations when the
PSO algorithm was applied to Rosenbrock’s problem, whereas this did not occur until
about 1000 generations when the FDR-PSO algorithm was applied. Similar results were
observed for all the other benchmark problems, this shows that the new algorithm is less
plagued by the premature convergence problem faced by the PSO.

TABLE 1. Minima achieved for different optimization functions using different          
algorithms 

The results also show that the FDR-PSO algorithm can perform well in the absence of
the social or cognitive terms. By ranking the algorithm in the decreasing order of their
performance, it can be seen that the top three positions are shared by FDR-PSO(112),
FDR-PSO(012), FDR-PSO(102) with FDR-PSO(112) being the best in most of the
benchmark problems. It is interesting to note that FDR-PSO(111) has always been a poor
performer in the FDR-PSO family. This demonstrates the sensitivity of the algorithm to
the weight given to the “nbest” term. The “near neighbor” term, however, remains the
most important term of the new algorithm with PSO related terms adding a little more to
the performance. This can be seen from the fact that the FDR-PSO(002) outperforms the
standard PSO and the FDR-PSO(111) in four benchmark problems. The versions, random
velocity update and random position updates are worst performers of all. 

Algorithm
De 
Jong’s 

Rosenbr
ock’s

Axis 
Parallel 
Hyper-
Ellipsoid

Rotated 
Hyper-
Ellipsoid

Griewang
k’s

Sum of 
Powers

 PSO 0.0239  6.8309 0.1250 55.85  5.0501 1.8e-7

FDR(111) 0.0027 6.0802 0.0230 20.5686  3.6946 7.32e-11

FDR (112) 2.02e-5 4.8717 1.07e-5 1.2776 0.0475 5.3e-19

FDR (102) 2.63e-7 5.7389 7.6e-5 365.0034 0.4172 4.8e-17

FDR (012) 8.36e-6 5.0130 3.6e-4 0.9080 0.0308 3.8e-11

FDR(002) 0.0010 8.2869  0.0035 1513.2  2.1735 3.3e-12



Fig. 2. Best minima plotted against the number of generations for each algorithm, for 
DeJong’s function, averaged over 30 trials 

Fig. 3. Best minima plotted against the number of generations for each algorithm, for 
Axis parallel hyper-ellipsoid, averaged over 30 trials
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Fig. 4. Best minima plotted against the number of generations for each algorithm, for 
Rotated hyper-ellipsoid, averaged over 30 trials

Fig. 5. Best minima plotted against the number of generations for each algorithm, for 
Rosenbrock’s Valley, averaged over 30 trials 

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

GENERATIONS------->

LO
G

 (
B

E
S

T
 M

IN
IM

A
)-

--
--

>

Minima Achieved Vs Number of Iterations

PSO
FDR-PSO(111)
FDR-PSO(112)
FDR-PSO(102)
FDR-PSO(012)
FDR-PSO(002)
Random Velocity
Random Postion Update

0 100 200 300 400 500 600 700 800 900 1000
0.5

1

1.5

2

2.5

3

GENERATIONS------->

LO
G

 (
B

E
S

T
 M

IN
IM

A
)-

--
--

>

Minima Achieved Vs Number of Iterations

PSO
FDR-PSO(111)
FDR-PSO(112)
FDR-PSO(102)
FDR-PSO(012)
FDR-PSO(002)
Random Velocity
Random Postion Update



  

Fig. 6. Best minima plotted against the number of generations for each algorithm, for 
Griewangk’s Function, averaged over 30 trials

Fig. 7.  Best minima plotted against the number of generations for each algorithm, for 
Sum of Powers, averaged over 30 trials
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 Several other researchers have proposed different variations of PSO. For example,
ARPSO[17] uses a diversity measure to have the algorithm alternate between two phases
i.e., attraction and repulsion. In this algorithm, 95% of the fitness improvements were
achieved in the attraction phase and the repulsion phase merely increases the diversity. In
the attraction phase the algorithm runs as the basic PSO, while in the repulsion phase the
particles are merely pushed in opposite direction of the best solution achieved so far. 

The random restart mechanism has also been proposed under the name of “PSO with
Mass Extinction”[15]. In this, after every “Ie” generations, called the extinction interval,

the velocities of the swarm are reinitialised with random numbers. Researchers have also
explored increasing diversity by increasing randomness associated with velocity and
position updates, thereby discouraging swarm convergence, in the “Dissipative
PSO”[16]. Lovbjerg and Krink have explored extending the PSO with “Self Organized
Criticality”[14], aimed at improving population diversity. In their algorithm, a measure,
called “criticality”, describing how close to each other are the particles in the swarm, is
used to determine whether to relocate particles. Lovbjerg, Rasmussen, and Krink also
proposed in [6], an idea of splitting the population of particles into subpopulations and
hybridizing the algorithm, borrowing the concepts from Genetic algorithms. All these
variations perform better than the PSO. These variations however seem to add new con-
trol parameters, such as, extinction interval in [15], diversity measure in [17], criticality
in[14], and various genetic algorithm related parameters in [6], which can be varied and
have to be carefully decided upon. The beauty of FDR-PSO lies in the fact that it has no
more additional parameters than the PSO and achieves the objectives achieved by any of
these variations and reaches a better minima. Table 2 compares the FDR-PSO algorithm
with these variations. The comparisons were performed by experimenting FDR-PSO(1,
1, 2) on the benchmark problems with approximately the same settings as reported in the
experiments of those variations. In all the cases the FDR-PSO outperforms the other vari-
ations.

TABLE 2. Minima achieved by different variations of PSO and FDR-PSO

Algorithm Dimensions Generations
Griewangk’s 
Function

Rosenbrock’s 
Function

PSO 20 2000 0.0174 11.16

GA 20 2000 0.0171 107.1

ARPSO 20 2000 0.0250 2.34

FDR-PSO(112) 20 2000 0.0030 1.7209

PSO 10 1000 0.08976 43.049

GA 10 1000 283.251 109.81

Hybrid(1) 10 1000 0.09078 43.521



5  Conclusions 

This paper has proposed a new variation of the particle swarm optimization algorithm
called FDR-PSO, introducing a new term into the velocity component update equation:
particles are moved towards nearby particles’ best prior positions, preferring positions of
higher fitness. The implementation of this idea is simple, based on computing and maxi-
mizing the relative fitness-distance-ratio. The new algorithm outperfoms PSO on many
benchmark problems, being less susceptible to premature convergence, and less likely to
be stuck in local optima. FDR-PSO algorithm outperforms the PSO even in the absence
of the terms of the original PSO.
    From one perspective, the new term in the update equation of FDR-PSO is analogous
to a recombination operator where recombination is restricted to individuals in the same
region of the search space. The overall evolution of the PSO population resembles that of
other evolutionary algorithms in which offspring are mutations of parents, whom they
replace. However, one principal difference is that algorithms in the PSO family retain his-
torical information regarding points in the search space already visited by various parti-
cles; this is a feature not shared by most other evolutionary algorithms. 

In current work, a promising variation of the algorithm, with the simultaneous influ-
ence of multiple other neighbors on each particle under consideration, is being explored.
Future work includes further experimentation with parameters of FDR-PSO, testing the
new algorithm on other benchmark problems, and evaluating its performance relative to
EP and ES algorithms.  
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