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Efficient methods for global aerodynamic optimization using computational fluid
dynamics simulations should aim to reduce both the time taken to evaluate design
concepts and the number of evaluations needed for optimization. This paper investigates
methods for improving such efficiency through the use of partially converged
computational fluid dynamics results. These allow surrogate models to be built in a
fraction of the time required for models based on converged results. The proposed
optimization methodologies increase the speed of convergence to a global optimum while
the computer resources expended in areas of poor designs are reduced. A strategy which
combines a global approximation built using partially converged simulations with
expected improvement updates of converged simulations is shown to outperform a
traditional surrogate-based optimization.
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1. Introduction

Computational fluid dynamics (CFD) can have the largest impact on aircraft
design by its inclusion in the conceptual design process. This is the stage
where important design configuration decisions are made and global
optimization can play a key role. After the conceptual stage, the design
process is based increasingly on local optimization to fine-tune the design.
Currently, most optimization at the conceptual stage is carried out using
empirical design tools based on previous aircraft and engineers’ experience.
These tools may be unable to predict the behaviour of radical geometries at
this, the only, point in the design process where they may be considered
seriously (Giannakoglou 2002). Thus, a key challenge is to be able to perform
global optimization using physics-based simulations in an efficient manner, so
as to allow these methods to be used within the short time-scales of conceptual
design.
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This work concentrates on the use of surrogate models’ in optimization
(Box & Draper 1987; Schonlau 1997; Jones 2001), which are used in lieu of direct
calls to a CFD code. A global surrogate model, of the drag of an aircraft for
example, is not as accurate as individual simulations, but gives almost
instantaneous results allowing exhaustive global searches to be performed.
This meta model must first be built using a number of initial simulations defined
by a design of experiment (DoE). Commonly, when dealing with a global model,
there is no prior knowledge of the shape of the objective function landscape, and
so the same amount of computing effort is normally applied in all areas via the
even distribution of the initial simulations throughout the design space.
Significant time savings could be achieved if more effort were directed at finding
the optimum rather than modelling regions of poor designs. This is, of course, the
logic of purely local models, but they forgo any wider exploration of radical
designs. An optimization design space with widely set bounds (to encompass
radical designs) can be searched effectively using local methods if the design
space is uni-modal, i.e. there is only one basin of attraction for the search to
descend into. However, it must be assumed that there may be many local basins
of attraction—the probability of this increasing along with widening the bounds
and increasing the dimensionality of the design space. Thus, a global search is
required to increase the chances of isolating the global optimum.

The literature contains a number of examples of previous attempts to direct
more high-fidelity (physics based) design evaluation at promising designs within
a global optimization environment. Mason et al. (1998) present a review of work
on the conceptual design of a high speed civil transport (HSCT) aircraft, in which
DoE, variable complexity analysis using the ‘reasonable design space’ approach
(Balabanov et al. 1999), and polynomial response surface modelling are used to
incorporate high-fidelity analysis into conceptual design. Knill et al. (1999) make
use of the same HSCT problem to investigate using a low-fidelity model to
decrease the number of terms used to build a polynomial RSM and so reduce the
number of high-fidelity simulations required. The University of Southampton
multi-level wing design environment (Keane & Petruzzelli 2000) attempts to
combine the merits of varying fidelity computer models in the conceptual design
of a commercial airliner wing. A more exhaustive search can be performed using
a quick empirical code (Tadpole; Cousin & Metcalf 1990) than is feasible with a
more expensive Euler code, so an extensive search using the empirical code is
used to seed a narrower search using Euler simulations. The wing design
environment is used again by Keane (2003) to evaluate the use of data fusion
(Vitali et al. 1999; Alexandrov et al. 2001) in wing design. Computation time is
dramatically reduced while the accuracy of the two computer models is combined
to give a better optimum than either code in isolation.

The above methods have relied on the availability of a suitable low-fidelity
model for a preliminary evaluation of the design space. Often this model will be
empirically based and may not be applicable for new areas of research or radical
designs. In contrast to the above strategies, this paper investigates methods for
improving the efficiency of optimization through the use of partially converged
CFD simulations using a high-fidelity physics-based code. These allow surrogate

! Surrogate models are often referred to as approximation, meta, or response surface models
(RSMs—usually associated with polynomial functions).
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models to be built in a fraction of the time required for models based on converged
results. Such surrogates will be applicable in areas outside of the domain of
empirical models and may be able to identify possible radical designs (should
a suitable correlation between partially and fully converged simulations be
achieved). No separate low-fidelity model is required and the same physics-based
model is used throughout the optimization process. In essence, we propose that
partially converged high-fidelity simulations are used as a low-fidelity model in a
multi-level environment.

Using partially converged results in optimization is not an entirely new idea.
Kuruvila et al. (1995) make modifications to the geometry based on gradient
information from an adjoint solution (Jameson 1988) at stages throughout a
multi-grid cycle to arrive at an optimal design for the cost of approximately two
to three CFD solutions. Gumbert et al. (1999) pause a simulation to make
changes to the geometry, again based on gradient information. The partially
converged simulation is then interpolated onto a new grid and the procedure
repeated until convergence, at which point an optimal design is achieved.
Reported costs range from 15 standard simulations for a two variable
optimization to 130 for eight variables. Dadone & Grossman (2003) use a
similar method, but also refine the computational mesh as the solution
progresses. The dependence of these methods on gradient information rather
than objective function values means that only local optimization through
gradient descent methods is possible.? Such methods are unsuitable for use with
direct global optimization routines such as a genetic algorithm or a dynamic
hill climber, since the convergence would have to start from scratch at each
restart. Of course, multiple restarts are possible, but this will naturally increase
the computational expense. Further work in this area is reported by Newman
et al. (1999).

The techniques described above take advantage of gradient information and,
furthermore, that this gradient takes approximately the correct value at an early
stage in the convergence of the simulation. Thus, the direction an optimization
process should take is known before the final objective function value is
converged. By thinking in terms of surrogate models, this characteristic of the
convergence of CFD simulations can be utilized to enhance the efficiency of
global optimization: if the gradients of individual simulations take approximately
the correct value early in convergence, it follows that the shape of a surrogate
built from a number of partially converged simulations will already have taken
on a useful form. The surrogate may not be accurate in regions of near zero
gradient, but promising areas are likely to have been revealed. This evolutionary
characteristic of partially converged surrogate models has been demonstrated by
Forrester et al. (2003). The partially converged surrogate model can be used in
lieu of other low-fidelity models within a multi-level or data fusion based
approach, and so enables high-fidelity CFD simulations to be used in conceptual
design, thus combining the benefits of partially converged data, previously
exploited in local optimization, with global response surface techniques.

% Gradient-based search, if the gradients are able to be computed efficiently, e.g. through an adjoint
or automatic differentiation, is of most use in problems of very high dimensionality, where

sampling-based methods become extremely expensive.
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Figure 1. Two-stage surrogate model-based optimization strategy.

This paper examines the number of simulations and the level of convergence
necessary to perform such optimization. Methods are investigated for
determining when satisfactory convergence has been reached and also if the
design space has been sampled sufficiently. Section 2 applies traditional
surrogate-based optimization to an example problem for use as a comparison
with methods outlined in further sections. Section 3 discusses, and presents
results in answer to the question: ‘how many designs should the initial DoE
comprise and to what extent should the simulation of these designs be
converged?’ Section 4 describes and demonstrates an optimization scheme
based on the results from §3, while §5 presents and demonstrates a possible
optimization method for the scenario of there being no prior knowledge of the
problem. This method is then applied to a more complex and time-consuming
wing design problem in §§6 and 7, with extension to further complexity and
increases in dimensionality discussed in §8. Finally, conclusions are drawn in §9.

2. Traditional surrogate model-based optimization

The use of surrogate models in optimization is becoming increasingly popular
and we begin this section with a short introduction to the process. The surrogate
model is not in itself an optimizer, but rather a tool for increasing the speed of
optimization. Instead of making direct calls to an expensive computer code, an
optimization routine takes values from a cheap surrogate model of it.

The popularity of such methods has probably increased due to the
development of surrogate model based methods, which are better able to
capture the nature of a multi-modal design space. Low-order polynomials (Box &
Draper 1987) are notorious for predicting erroneous optima of complex functions,
while the more advanced method of Kriging® (Sacks et al. 1989; Cressie 1989) has
been shown by Jones et al. (1998) (in a refreshingly transparent manner) to be a
robust, though complex method able to predict even the most deceptive of global
optima.

380 called by Matheron (1963) after D. G. Krige—a South African mining engineer who developed
the method in the 1950s for determining ore grade distributions based on core samples (Krige
1951).
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Figure 2. Orthogonal basis function aerofoil parameterization (axes not to scale).

This paper is limited to the so-called two-stage approach (as defined by Jones
(2001) and depicted in figure 1), where, in the first stage, a surrogate model is
built on the basis of a number of function evaluations (chosen on the basis of a
DoE), before a search and update strategy is performed on the surrogate in the
second stage. Each update simulation enhances the accuracy of the surrogate
model in areas of promising designs. This process is iterated until the optimum of
the function is found or a stopping criterion is met. This search and update
strategy is demonstrated here via its application to the optimization of the shape
of an aerofoil.

The aerofoil is defined by five orthogonal shape functions (Robinson & Keane
2001) and a thickness to chord ratio ¢/c. The first function, which represents the
shape of a NASA supercritical SC(2) aerofoil (Harris 1990), and t/c¢ are kept
constant (¢/cis fixed at 10%). The first function, fi, is in fact a smooth least-squares
fitting to the coordinates of the SC(2) series of aerofoils. Each of the four subsequent
functions, f, 5 is aleast-squares fitting to the residuals of the preceding fit, and can
be added to f; with a greater or lesser weighting, w;, in order to vary the aerofoil
geometry. Figure 2 shows the effect of adding each function with a weighting of
w; =—0.5 to f;. Nonsensical aerofoils are produced by adding individual functions
with such large weightings, but a high degree of geometry control is achieved by
combining the functions and optimizing their weightings.

The drag coefficient (Cp) of the aerofoil is to be minimized subject to a fixed
lift constraint, Cp, = 0.6, at free-stream Mach number, M, = 0.73 and standard
atmosphere conditions at 10 000 m. The drag is calculated in the commercial
CFD solver Fruent (Fluent 2003) using surface pressure integration over the
aerofoil. This is not necessarily the most accurate way to calculate the drag
(Levy et al. 2002), but is used throughout this paper and so results are directly
comparable with each other. Euler simulations are performed on unstructured
meshes of approximately 13 000 triangular cells. Studies performed show that the
mass continuity converges to 107 ¢ after 2500 iterations, but that the force
coefficients remain constant (+0.1 drag counts) after 1500 iterations. Since it is
the force coefficients that are used as a figure of merit for optimization,
simulations run for 1500 iterations are deemed to be, and referred to in this paper
as, ‘fully converged’. The use of this aerofoil optimization as an example problem
enables quick evaluation of designs using two-dimensional inviscid transonic flow
simulations (approx. 5 min per simulation), allowing optimization methodologies
to be examined without the hindrance of lengthy computation times.

Proc. R. Soc. A (2006)
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Figure 3. Expected improvement Cp optimization history starting from a 10-point LP7 initial DoE
(using Kriging interpolation).

The constant lift constraint is maintained by varying the angle of attack («) of
each aerofoil. At low to moderate values of «, i.e. before flow separation and stall, Cf,
varies linearly with a. The first aerofoil geometry is simulated at an initially guessed
«y, and at as determined by the result of the first simulation and an estimate of
ACi/Aa. A third simulation at «j, found from a linear interpolation through
(ay, Crp)and (g, Cpo),issufficient to attain the desired lift and an accurate value of
ACr,/Aa. Subsequent geometries are simulated using «; and Cp,; from the closest
previously computed aerofoil, in terms of the Euclidean distance between variables,
such that, after the first few geometries, it is rarely necessary to proceed further than
oy before the desired lift is met to within 1%.*

An initial set of 10 designs chosen by an LP7 DoE (Sobol 1979; Statnikov &
Matusov 1995) are simulated before constructing a Kriging model of the expected
improvement (Schonlau 1997) in the objective function (the hyper-parameters of
which are selected by a maximization of the likelihood of the DoE data using a genetic
algorithm and dynamic hill climber; e.g. Keane & Nair 2005)—stage one in figure 1
(a straightforward and intuitive description of Kriging and likelihood is presented
by Jones (2001); see also Sacks et al. 1989). The number of initial simulations is
chosen rather arbitrarily, since there is no clear consensus in the literature as to how
many points should be used. Jones et al. (1998) suggest 10 points for every dimension,
while Sobester et al. (2005) indicate that one-third of the total number of simulations
available (dictated by time or cost) should make up the initial sample. This issue will
be addressed further in §3. Although an optimal Latin hypercube DoE (Morris &
Mitchell 1995) produces a more even space filling design than the LP7 method, the
latter is attractive (particularly for use in future sections of this paper), since subsets
taken from a larger LP7 DoE are, in themselves, space filling. The same DoE method
is used throughout so as to maintain comparability of results.

4 Equality constraints are difficult to handle when using surrogate models. The procedure outlined
here effectively removes the Cf, constraint from the optimization by making it a condition which
each simulation must satisfy. The optimization is simplified both by the removal of the constraint
and by reducing the dimensionality of the problem, since « is not used as an optimization variable.

Proc. R. Soc. A (2006)
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Following the initial DoE, a new simulation is performed, and desired lift
attained, for an aerofoil defined by variables that maximize the expected
improvement in Cp. This simulation is then added to the Kriging model and the
process continues, as per stage two in figure 1.

The objective function history is shown in figure 3, where the minimum Cy, is
plotted against the number of designs that have been evaluated (the first 10
being from the initial DoE). The individual Cp values for each aerofoil shape are
also shown and, in order to display the degree of dependence on the initial DoE,
error bars indicate the range of values obtained from five independent
optimizations using a series of random Latin hypercube DoEs. This form of
surrogate-based optimization represents the current practice in many major
aerospace companies and as such is used as a basis for comparison with methods
discussed in subsequent sections of this paper. Of course, the Euler calculated Cp
does not necessarily represent the true drag characteristic of the aerofoil and the
results are suitable only for comparison with similarly computed Cp values.

3. Building the initial dataset

A sensible location at which to position an update simulation, i.e. the combination of
design variables which will lead to an improved objective function, is chosen on the
basis that the objective function has been adequately approximated by the surrogate
model. The initial DoE must contain sufficient data, in terms of both quantity and
quality (accuracy of data), to build an effective surrogate model in order to allow
further computing effort to be directed at optimal regions of the design space. Too
much data (either quantity or quality) will lead to wasted effort in sub-optimal areas,
since the initial DoE is constructed so as to give an even spread of data throughout the
domain of interest. Too little data may result in erroneous predictions of optimal
regions with poor positioning of update simulations as a consequence.

(a) Determining the quality of a surrogate model

The quality of a surrogate model can be assessed a posteriori by comparing an
independent set of objective function data with values taken from the surrogate
at points corresponding to the variables at which the independent objective
function values are calculated, i.e. exact data is compared with approximate
data. The data is compared using the correlation coefficient or coefficient of
determination, r* (Edwards 1976):

2

2 A .
r2:< % ) _ NS H-SI5] 5.1)
G707 -2 . ’ ’
Vi) \YINS =S IV S F - (577

where N is the number of results to be compared, f denotes objective function
values from the independent test set and f are approximate objective function
values taken from the surrogate at the locations of f. If the correlation is equal to
1, the surrogate is exactly predicting the test data, while 7> =0 indicates no
correlation between the surrogate and the objective function.

It is noted here that a surrogate model may be assessed without the
need for an extra set of test data using leave-one-out cross-validation

Proc. R. Soc. A (2006)
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Figure 4. 72 correlation versus number of points in the LP7 DoE.

(Myers & Montgomery 1995).> However, it will be seen that this is not an
appropriate method for assessing the majority of surrogate models considered in
this paper.

In the following sections, r? is calculated using objective function values of
L/D instead of Cp since, although as a post-process it is possible to use Cp
results from simulations that meet a fixed lift criterion, it is impracticable to do
so at early stages of convergence during the process of performing surrogate
model updates (as is done later in this paper). As L/D is directly related to both
(1, and Ch, it is assumed that a good correlation in L/ D indicates that a similarly
accurate model may be produced for Cp at a fixed Cy,.

(b) DoFE size

The initial surrogate model in the previous example had a correlation
coefficient of 72 = 0.5215 when compared to 10 independent simulations from an
optimal Latin hypercube DoE (not shown): far from an exact representation of
the objective function and inappropriate for the selection of update points—as
demonstrated by the lack of improvement in Cp immediately following the initial
DoE seen in figure 3. It takes 10 further simulations before an improvement is
made on the lowest DoE value. It is expected that the quality of the surrogate
would diminish with fewer DoE points and increase with a greater number. This
assertion is tested by comparing surrogate models built using varying numbers of
points from the LP7 DoE with the 10-point optimal Latin hypercube dataset.
The resulting 72 plot is shown in figure 4. Note that at 10 points, the LP7 DoE is
the same as that used in the previous example and so the correlation is identical.

®In leave-one-out cross-validation, the model is constructed using all but one of the available data
values and the distance of this value from the resulting surface, i.e. the error in the surface at this
point, is evaluated. The process is repeated for all points and the mean square of these errors is
used as a measure of the quality of the surface.

Proc. R. Soc. A (2006)
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Figure 5. r2 versus number of points for four random Latin hypercube DoEs.

The correlation is indeed poor when using a small DoE, with a dramatic drop in
surrogate model quality when fewer than eight points are used. The surrogate
becomes erratic due to the Kriging model being unable to fit such a sparsity of
data: one model, with one set of hyper-parameters, produces a similarly poor
likelihood of the data as another model with another set of hyper-parameters.
The correlation improves as more points are added, though there is little to be
gained by using an initial DoE with greater than 20-25 points. At this stage,
% levels off and further addition of points does not globally improve the surface,’
although the accuracy of the surface in the region immediately surrounding an
added point is likely to be enhanced.

These observations of the effect of DoE size are not unique to the DoE which
has been chosen. DoE independence is shown by averaging the correlation
obtained for four surrogate models built from independent random Latin
hypercubes. These correlations are shown in figure 5. The same test data of 10
optimal Latin hypercube points have been used. It is seen that 72 is largely
unaffected by the choice of DoE for this problem. The averaging means that the
correlation is slightly less erratic than that shown in figure 4, but a similar trend
is seen between both plots.

The notion that increasing the number of DoE points increases the accuracy of
the surrogate model is rather straightforward, but here we have shown that there
is a limit beyond which adding more points gives minimal return in terms of
increasing surface accuracy. We now go on to discuss the main thrust of this
paper, which is the use of partially converged simulations to build surrogate
models.

5The correlation fails to reach a perfect value of 1, not only because a surrogate model can never
precisely match the true function, but also due to the noise in the data from varying discretization
error caused by changes in the mesh as the aerofoil shape alters. However, it is seen in figure 4 that
regressing the data leads to no improvement in the correlation—indicating that it is noise in the
test data that is producing the lack of correlation. This subject is considered in more depth by
Forrester (2004).
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Figure 6. Convergence of r2 for a surrogate built using the 50-point LP7 DoE.

(¢) Simulation convergence

The 72 correlation indicates whether the surrogate model’s shape is accurate,
but is unaffected by global changes in the magnitude of the objective function.
Surrogate models built using the original 10 simulations at stages throughout
their convergence are in fact still correlated with the converged 10-point optimal
Latin hypercube dataset (as previously demonstrated by Forrester et al. (2003)).
Note that a leave-one-out cross-validation on a partially converged surrogate
would simply show how well the surrogate is approximating the partially
converged data it is built from and provide no indication of the quality of the
surrogate model in terms of the converged design space.

The r? correlation history throughout the convergence of a surrogate built
with 50 partially converged simulations is shown in figure 6, while the L/D
convergence history for the mean aerofoil (defined by just the first basis function
and t/c, with wy ;= 0) is displayed in figure 7. It is seen that the shape of the
design space is approximated successfully long before L/D has reached a stable
value, with 7%= 0.8 after just 80 iterations. This indicates that the surrogate
model assumes a characteristic shape early in the convergence of the CFD and
experiences mean shifts as the simulations progress. Note that while a consistent
value of a force coefficient from iteration to iteration must be seen before a
simulation is considered converged, an individual high r? value indicates that
the surrogate model is accurate in terms of its shape. It is argued here that the
position of update points could therefore be selected at a very early stage in the
iterative process of CFD simulations. However, caution is required since
significant irregularity can occur in the convergence of both r? and the objective
function—as observed, for this example, in figures 6 and 7 between 220 and 290
iterations. Inspection of the flow over the baseline geometry reveals that the
iterative simulation produces a large area of supersonic flow at this stage, with
associated dramatic changes in pressure, before reverting to largely subsonic
flow. Figure 8 shows a large pressure drop behind this area of supersonic flow (at
200 iterations), moving forward (250 iterations) and approaching the position of

Proc. R. Soc. A (2006)
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Figure 8. Cp at 200, 250 and 300 iterations (Cp=0.7).

the shock predicted by the converged simulation (300 iterations) in phase with
the irregularities in convergence seen in figures 6 and 7. Figure 9 shows the
converged Cp, with a small region of supersonic flow towards the front of the
aerofoil followed by a shock and a more gradual compression over the aft upper
surface. Not all geometries experience this irregularity to the same extent and of
those that do, it occurs at slightly different stages in the simulation. This
phenomenon naturally has a large impact on the predicted force coefficients and,
in doing so, affects the development of the surrogate model. Up to this point, and
indeed later in the convergence history, the surrogate model accurately predicts
the smooth and continuous manner of the objective function, but the
introduction of discontinuities cannot be modelled effectively by a global
surrogate.

Proc. R. Soc. A (2006)
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Figure 10. r? for varying number of DoE points and number of iterations. The dashed line shows
equivalent computing effort to the initial 10-point fully converged DoE (point ‘a’); point ‘b’ gives
the best return for this computational investment.

(d) Optimum DoFE size and simulation convergence

For the aerofoil optimization example studied here, it has been shown that
there is an optimum number of initial DoE points and a minimum number of
iterations for which these should be simulated to produce an accurate
representation of the shape of the objective function for minimal cost. These
two variables are plotted against each other in figure 10 to show how they
together affect the quality of the resulting surrogate model of the four variable
aerofoil optimization problem. The same trends are present here as in figures 4

Proc. R. Soc. A (2006)
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Figure 11. Average r2 for varying number of points (taken from four random Latin hypercube
DoEs) and number of iterations.

and 6, including the large drops in correlation due to irregularities such as those
seen in figure 8. These trends could be a characteristic particular to the LPr
DoE, but this notion is dispelled by figure 11, which is constructed using the
average correlation of surrogate models built using four independent random
Latin hypercube DoEs. Figures 10 and 11 are in fact almost identical, indicating
that the trends are independent of the choice of DoE.

Both figures 10 and 11 show clearly that a small initial DoE of fully converged
simulations will lead to a poor surrogate model. A greater number of DoE points
produces a more accurate surrogate model, even if the simulations are not fully
converged. It is suggested that, for an equivalent computing effort, a more
efficient optimization can be performed than the earlier example if the initial
DoE comprises a greater number of partially converged simulations. If
computing effort is defined simply as ‘number of iterations X number of design
points’ then the dashed line in figure 10 represents a line of constant computing
effort equivalent to that used to produce the initial 10 DoE points for the
earlier example optimization, i.e. 1500 X 10. Point ‘a’ depicts the fully converged
10-point DoE, while point ‘b’ indicates the position on the line of constant
computing effort which represents the highest correlation with the 10
independent converged simulations. This indicates that a surrogate model built
with 26 simulations converged to 575 iterations is the most accurate surrogate
model which can be produced for the given computing effort.

4. Optimization using partially converged simulations

We now present a strategy for utilizing a surrogate model built from partially
converged simulations, such as the optimum DoE derived from figure 10, within
a surrogate model-based optimization. But first, the issue of meeting constraints,
such as the lift constraint applied in the aerofoil optimization, must be addressed.

Proc. R. Soc. A (2006)
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It is not possible to meet a fixed lift criterion, or indeed any other
simulation-based constraints, with partially converged results, since the force
coefficient values have not reached their true value. However, if it is assumed
that all designs undergo an equal shift in the value of C}, between intermediate
iterates and their final converged value—an assumption based on the high
correlations in L/D seen in §3—we can use a single converged result to scale
all other designs. « can then be adjusted for each design to meet the required
lift criterion. Since, when performing CFD analysis, it is usually necessary to
compute at least one test simulation to check the mesh and solution setup,
this simulation can take the form of the first point of the initial DoE and be
used to scale all further simulations. While a mean shift relation between
iterates is sufficient in this case, more complex properties for constraint
quantities could be handled using the more complex correction strategy
employed for the objective function—described in the remainder of this
section.

We propose the use of fully converged update simulations at points of
maximum expected improvement in order to enhance the accuracy of the
global partially converged model in areas of promising designs. Applying
converged updates to a partially converged surrogate model means that the
optimization takes the form of a multi-level approach (e.g. Keane &
Petruzzelli 2000), where a low-fidelity model is used to seed a search using
a high-fidelity code. Usually, in direct optimization methods, the search using
the low-fidelity model simply provides a starting point for the more expensive
high-fidelity search before being discarded. In this instance, using a surrogate
model-based method, information from the partially converged results is
retained since they provide the data from which the initial surrogate model is
built. The partially converged data, fiu(%at), is corrected using a difference
approximation, fgy, based on fully converged updates, fiou(Zcony), Where
Teony © Tpart- Lhis results in a fused surface which benefits from the global
surrogate afforded by the space filling partially converged simulations and
local accuracy in optimal areas gained from the converged update points:

ffused = fpart (xpart ) + fdiff (ﬁ:onv (xconv> ) fpart (xconv) ) : (4 1 )

The process is illustrated in figure 12 using a one variable aerofoil
optimization example. Here only the second basis function weighting, w,, is
varied, with ws,5=0. Each plot shows a partially converged surface built
from an initial five partially converged simulations and the ‘true’ function (a
regression through 100 data points). The difference surface in each plot is built
from additional converged simulations subtracted from their partially
converged values and is used to correct the partially converged data, as per
equation (4.1). The object is to match the resulting fused surface to the true
function in the region of the optimum. In the first plot, with only one fully
converged data point (depicted by a square), the difference approximation is a
flat straight line which simply scales the partially converged surface to the
magnitude of the true function without changing its shape. The second plot
shows the situation after one fully converged update. The difference
approximation is now constructed from two points (shown as diamonds) and
can correct both the magnitude and the shape errors in the partially
converged surrogate model. The third, fourth and fifth plots show that the
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Figure 12. One-dimensional evofusion example.

process quickly converges on the optimum of the true function. Minimal effort
has been expended sampling regions of poor objective function values with
fully converged simulations, although the first converged design cannot, of
course, be positioned in an optimal region without prior knowledge of the
design space—here we have simply taken the centre of the domain as the
starting point, but a known good design is likely to speed up the process and
provide improved constraint approximations in the optimal area.

This one variable example demonstrates visually the methodology in
question, but it should be remembered that functions are rarely so simple in
a multi-dimensional design space. Greater differences between partially and
fully converged results are inevitable and more complex difference approxi-
mations, requiring greater numbers of training points, are likely to be required.

This method of applying data fusion to the evolving surrogate model (which
we will for the remainder of this paper refer to by the more succinct term
‘evofusion’) differs from a standard multi-level optimization in that the low-
fidelity simulations are retained for use in the high-fidelity optimization and it
is not a standard form of data fusion, since there is no initial high-fidelity DoE
from which to produce a global difference surface, i.e. more of the expensive
simulations are now directed at regions of promising designs.
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Figure 13. Aerofoil optimization histories. ‘Total iterations’ refer to the aggregate of all the CFD
iterations performed for the respective optimization, including lift corrections.

(a) Partially converged surrogate model update example

In light of the results presented in figure 10, the first 26 points of the LP7 DoE
converged to 575 iterations are now used as the starting point to demonstrate the
application of the strategy outlined in §3 to the four variable aerofoil
optimization problem. Figure 13 shows the optimization history of the evofusion
method alongside the baseline fully converged method described in §2. Cp is
plotted on the y-axis and the total number of iterations performed, including
those needed to reach the fixed lift criterion, is shown on the x-axis.

As seen in figure 13, the evofusion strategy consistently outperforms the
traditional optimization throughout the update history. Note that there are fewer
updates with high Cp values when using the evofusion method. Here the
traditional strategy is sampling sparsely populated areas of poorly performing
designs, whereas the larger partially converged DoE has already explored these
areas—highlighting them as sub-optimal regions—and clusters updates in more
promising areas. Results for both the LP7 based, and the average performance
across the random Latin hypercube based, traditional and evofusion optimiz-
ations are presented in table 1. The quality of, and iterations required to build,
the initial DoE are shown (including the iterations required to meet the Cp,
criterion, which is why the 26-point partially converged DoEs actually require
more iterations than the 10-point converged DoEs), as is the optimized Cp along
with its percentage improvement over the baseline NASA aerofoil. The time limit
for these optimizations is based on the time taken for the traditional 10-point LP7
DoE plus 20 updates. It is seen that the improvement over the baseline design
when using the evofusion method is on average 80% better than for the traditional
optimization. Results are also included for LP7 DoE based optimizations at
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Table 1. Aerofoil optimization performance comparison.

C,=0.6 (baseline Cp=0.0177, minimum found Cp=0.0166)

initial DoE best after 1.17X 10° iterations
method r? e(z)” its.” Cp imp. (%)  after: (its.)
10-pt LP7 converged 0.5215 0.4910 31 500 0.0174 1.7 96 000
10-pt converged avg. 0.4282 0.6409 34 800 0.0172 2.8 78 600
26-pt LP7 evofusion 0.9065 0.4478 31975 0.0173 2.3 108 475
26-pt evofusion avg. 0.8980 0.4718 45 775 0.0168 5.1 101 275

CL=0.7 (baseline Cp=0.0249, minimum found Cp=0.0211)

initial DoE best after 1.17X 10° iterations
method r? €(z)” its.” Cp imp. (%)  after: (its.)
10-pt LP7 converged  0.5215 0.6758 31 500 0.0219 12.1 88 500
26-pt LP7 evofusion 0.9065 0.3900 45 775 0.0220 11.7 62 275

“Euclidean distance of predicted optimum from best optimum found in this work (found using the
evofusion method), with variables normalized between 0 and 1.
"Note that one converged simulation equals 1500 iterations.

a fixed Cf, of 0.7 (using the same initial DoEs as the Cf, = 0.6 cases). Similar drags
are achieved with both methods, although the evofusion method is 30% faster.

5. Real time surrogate model quality assessment

The optimizations performed in §4 took advantage of prior knowledge attained
(from figure 10) at the expense of a large amount of computing effort. However, it
is infeasible to compute a test set of fully converged simulations when performing
optimization in an industrial environment. A real time method of surrogate
model quality assessment is required to take advantage of possible time savings
afforded by using partially converged simulations.

Rather than correlating values taken from a partially converged surrogate
model with fully converged test data, it is possible to correlate partially
converged surfaces with one another. The correlation 7’3 of one surface with a
surface built using simulations converged for u fewer iterations is an indication of
the stability of the surrogate model. A low correlation indicates that the surface
has changed significantly over the u iterations: the simulations are converging
independently of each other causing the surrogate model to be in a state of flux.
A high correlation indicates that the shape of the surface has changed little over
the u iterations, i.e. the simulations are converging in unison.

It can also be determined whether the size of the DoE is sufficient by
correlating the surface in question with a surface built using v fewer points. For
v=1, this is similar to a leave-one-out cross-validation, but in this case it is an
add-one-in validation. A high correlation indicates that the surface is unaffected
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Figure 14. 2 for varying number of DoE points and number of iterations. The dashed lines indicate
constant computing effort.

by the addition of new points, while a low correlation tells us that more points
are needed to produce a good surrogate.
We now have a combined correlation of r(QW), to which we add a degree of

robustness by averaging over [ successive correlations to give
72 (wp) — 7 Z T(iX,u.,iXV)' (51)
i=1

In §4, updates were applied to the optimum initial DoE for 15 000 iterations of
total computing effort. Referring again to figure 10 it is seen that a high quality
initial DoE can be computed for a greatly reduced computational cost. A clearer
picture is seen by zooming in on the lower edge of figure 10 to produce figure 14.
This clearly displays regions of high correlations where the DoE size and iteration
count shown could be used to build accurate approximations of the shape of the
converged design space at minimal cost. There are also regions where the partially
converged design space is an exceedingly poor representation of the converged
data. A real time quality assessment must highlight not only the regions of
high quality models, but also areas of poor models. Figure 14 is reproduced in

figure 15, but this time using 7’2(571), i.e. an average of 1“(2571), r(21072) and 7“(215_3).
Although not an exact representation of figure 14, figure 15 correctly captures
areas of consistently good and bad surrogates. For more insight into the
formulation of this correlation criterion, the reader is directed to Forrester (2004).

(a) Real time update scheme

To perform an efficient optimization using a surrogate model, it is necessary
that a sufficient number of designs are simulated for the objective function to be
accurately predicted before updates are applied, and, by referring to figure 14, it
is seen that these simulations should be limited to a certain number of iterations
to avoid unnecessary time being devoted to poor designs. As more points are
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Figure 15. r? (5,1) for varying number of DoE points and number of iterations.

added, more accuracy is possible through increasing the number of iterations.
This relationship between DoE size, number of iterations and surrogate model
accuracy can be exploited through an update strategy which effectively drives
the optimization diagonally from the bottom left corner of figure 14 towards more
DoE points and higher numbers of iterations in an intelligent manner.

A possible update scheme is now suggested that requires limited prior
knowledge of the optimization to be performed. This scheme (i) uses the smallest
possible initial space filling DoE, (ii) converges the CFD simulations to the
minimum extent and (iii) adds converged expected improvement points as soon
as possible.

The process is described via the flowchart in figure 16. First, a small, though
larger than {Xv (we require this many points to compute the first moving average
correlation over [ surfaces), initial DoE is converged for uX literations, except for
the first design which is fully converged. The multiple ‘CFD’ boxes in figure 16
denote that these simulations may be run in parallel, both in terms of a single
simulation being run on a number of processors, and a number of different designs

being run concurrently. If the 72 éw) correlation does not meet a specified criterion,
v new designs defined by variables at the maximum error in the surrogate model
are added to the DoE. This is equivalent to increasing the size of the DoE whilst
maintaining its space filling characteristic. This could also be performed by
increasing incrementally the size of an LP7 DoE, but the use of maximum error as
an infill criterion permits the use of a better space filling initial DoE, such as an
optimal Latin hypercube. All desugns are now simulated for a further u iterations.

The process continues until the r? (u y) criterion is met. This represents the end
of stage one of the traditional two-stage surrogate-based optimization process.
At this point, the DoE is augmented by designs defined by variables at the
maximum expected improvement of the surrogate model. The simulations
of these update designs are fully converged and the right-hand side of the
flowchart in figure 16 demonstrates how these are embedded within a two-stage
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Figure 16. Update scheme flowchart.

surrogate-based optimization system. These converged updates are fused to the
optimum initial DoE, as described in §4, until a stopping criterion is met.
To construct a meaningful real time representation of the quality of a

it is necessary that u and v are chosen prudently. In
essence, these parameters determine the gradient of a space filling update path
moving diagonally through figure 14. u=5 is seen to be appropriate for the
optimizations demonstrated here, although simulations that require far greater
or fewer iterations, as determined by an initial test simulation, would benefit

surrogate model using 72 W

from a larger or smaller value of u.
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This paper has dealt purely with sequential updates to the surrogate model
and so v should naturally be equal to one. If the benefits of parallel processing
are to be utilized by updating the surface with a number of points at a time
(Sébester et al. 2004), v might be increased in line with the number of parallel
update points. Increasing v will provide a more robust stability criterion, hence
CPU time is likely to increase, although increasing the number of parallel jobs
will naturally reduce the wall clock time associated with this increased CPU
time.

6. Three-dimensional wing optimization

The Euler simulations of two-dimensional aerofoils performed throughout this
paper take approximately five minutes to fully converge when run on a single
2 GHz AMD processor. Computing three-dimensional flow demands significantly
longer run-times. Here, six hours are required across four 2 GHz AMD processors
with 100 Mb s~ ' interconnect (24 CPU hours) for the convergence of an Euler
simulation of a three-dimensional wing. As such the early identification of
promising designs and elimination of poor designs is paramount.

The wing geometry is defined by 10 parameters, the first six of which describe
the planform and are kept constant for this study at values appropriate for a
generic 200 seat aircraft (area=200 m?, aspect ratio=8, span=40m, kink
position=0.4, sweep=30°, inboard taper ratio=0.5 and outboard taper ratio=
0.3), while the remaining four comprise the w, basis function weighting of the
root, kink, and tip aerofoils (w; 5=0), and a linear twist—defined as the tip
aerofoil rotation upwards from horizontal about the leading edge. The flow is
simulated over a 1000000 cell unstructured mesh. After 1000 iterations the
continuity converges to a residual of 10~ and C, to within 0.1 drag counts. All
simulations are carried out at M, = 0.8 and at standard atmosphere conditions
for an altitude of 10 000 m.

The twist and aerofoil section parameters are optimized, subject to a fixed lift
of C;,=0.6. An initial five point optimal Latin hypercube DoE is the starting
point for the real time scheme and updates are added at points of maximum error

until an r2(571) > 0.99 criterion is met. The resulting initial DoE comprises 26
points run for 125 iterations. The initial Kriging model, built from this DoE, has
an actual correlation of % = 0.755,” when compared to 10 converged simulations
from an independent optimal Latin hypercube DoE. A further 12 converged
points are fused to the initial surrogate model using the method outlined in §4.
The optimization histories of the evofusion method and converged updates to the
10-point DoE are compared in figure 17. The optimized values for the variables
and their bounds are shown in table 2. The evofusion method reaches its
optimum in a similar time as that taken for the initial DoE of the traditional
method. The traditional optimization is continued for 20 updates (long after the
termination of the evofusion method) in an attempt to reach the evofusion
optimum, but, based on the initial 10-point sample, these updates fail to reach

TA degree of regression has been used for this model by adding a regularization constant of A=
0.00375 to the leading diagonal of the Kriging correlation matrix. Interpolation results in the
reduced correlation of r?=0.678. This regularization constant is optimized to maximize the
likelihood of the DoE data and has been negligible for the previous optimizations.
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Figure 17. Fixed planform three-dimensional wing optimization histories. The more time
consuming traditional method is continued after the termination of the evofusion method in the
hope of finding an improved optimum.

Table 2. Fixed planform traditional and evofusion wing optimization parameters.

parameter lower bound traditional evofusion upper bound
twist (deg) -5 3.967 1.640 20

root wy —0.05 —0.0499 —0.0317 0.05

kink ws —0.05 —0.0470 —0.0471 0.05

tip ws —0.05 —0.0192 —0.0500 0.05

« — 2.08 1.80 —

Cp — 0.0397 0.0394 —

time (h) — 261.67 135.25 —

a similar Cp. The optimum found by the evofusion method is a 0.75%
improvement over the traditional optimization, and is achieved in approximately
half the time. Although effects due to the initial DoE choices cannot be ruled out
here as the run times preclude averaging, this result is consistent with the results
for the aerofoil optimizations.

Table 2 shows that the wing produced using the traditional Kriging approach
has a high twist of 3.967° which progressively reduces the angle of incidence of
the wing towards the tip. This is combined with w, increasing from —0.05 at the
root to —0.0192 at the tip. Increasing w, has the effect of reducing the camber of
the aerofoil and, together with the high twist, reduces the outboard lift of the
wing. In contrast, the evofusion method has found an improved optimum, which
increases the lift on the outboard section of the wing, by lowering the twist angle
to 1.64° and reducing wy from —0.0317 at the root to —0.05 at the tip. The
different spanwise loadings can be seen through the Cp plots in figures 18-20,
where the surface Cp is shown for three different spanwise locations. At the root
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Figure 18. Root chord Cp on the traditionally optimized (circles) and evofusion optimized
(diamonds) fixed planform wings, and the evofusion optimized multi-variable wing (crosses).
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Figure 19. Mid-span Cp on the traditionally optimized (circles) and evofusion optimized
(diamonds) fixed planform wings, and the evofusion optimized multi-variable wing (crosses).

chord the traditionally optimized wing has a slightly lower pressure on the upper
surface and higher pressure on the lower surface compared with the evofusion
optimized wing. This trend is slowly reversed outwards along the wing until, at
the three quarters span location, there is an obvious difference between the two
pressure profiles. Note that Cp values are taken from an unstructured mesh at
approximately the root, mid and three quarter span locations (£0.1 m). There is
therefore some overlap in the data.
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Figure 20. 3/4 span Cp on the traditionally optimized (circles) and evofusion optimized (diamonds)
fixed planform wings, and the evofusion optimized multi-variable wing (crosses).

This example represents a successful application of the evofusion approach to
a three-dimensional Euler simulated problem, in terms of reaching an improved
design for a reduced time in comparison to the traditional optimization. It does
not, and is not intended to, produce a commercially viable design. The
aerodynamic performance is considered here in isolation from other aspects of
wing design. The increased outboard loading of the evofusion wing may reduce
drag but will require a stiffer wing structure which will naturally add weight to
the wing. The increased lift required to carry this weight and consequent
increase in drag may negate the aerodynamic benefits of the design.

7. Multi-variable wing design

The complexity of the wing design problem is now increased by introducing the
aspect ratio, span, kink position, sweep and inboard and outboard taper ratios as
additional optimization variables. This 10 variable problem is tackled using the
same evofusion setup as in the previous section. The r2(511) > (.99 criterion is met
by a DoE of 43 points converged to 180 iterations. Ten converged updates are
performed, the sixth of which produces the optimum design shown in table 3.
This long and slender wing (note the large span and high aspect ratio) is unlikely
to be an optimal design were structural and volume constraints to be included in
the optimization. Nevertheless, producing a commercially viable wing is not the
purpose of the example. The optimization does show that a partially converged
DoE can be used in high-dimensional optimization. A useful DoE is produced for
minimal computational expense, leading to the selection of low drag designs for
accurate evaluation. It cannot be ascertained with the given data whether a truly
global optimum region has been found, but an improvement has been made on
the fixed planform optimum. The reduced drag is attributed to the elimination of
the shock on the outboard region of the wing. Although a stronger shock is
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Table 3. Multi-variable wing optimization parameters.

parameter lower bound optimum upper bound
area, S (m?) — 200 —
aspect ratio, AR 6 11.9055 12
span, b (m) 34.64 48.80 48.99
kink position 0.3 0.4500 0.45
sweep (deg) 25 31.7685 45
inboard taper ratio 0.4 0.6439 0.7
outboard taper ratio 0.2 0.6000 0.6
twist (deg) -5 2.9175 20
root fo —0.05 —0.0381 0.05
kink f, —0.05 —0.0500 0.05
tip fo —0.05 —0.0170 0.05
« — 2.5443 —
Cp — 0.0367 —
time (h) — 309.19 —

present at the root, in comparison to the fixed planform wings (see figure 18),
figures 19 and 20 show a smooth compression over the upper aft surface of the
outboard wing.

8. Extension to more complex problems

In terms of increasing the number of variables beyond that shown for the wing
problem, it is expected that the evofusion approach will continue to perform
well—within the bounds imposed by the surrogate modelling technique
employed. Experience shows that Kriging becomes computationally expensive
with greater than 20 variables and 200 training points. Beyond this point, time
savings through partial convergence will be outweighed by the time taken to
build the surrogate models (the point at which the surrogate modelling expense
overtakes the simulation expense will, of course, depend on the complexity of the
CFD solution). Simplified surrogate modelling methods may be employed in
higher dimensions. For example, the number of parameters of the Kriging model
may be reduced to lessen training time—with an associated loss of accuracy.

This paper has dealt solely with inviscid flow simulations. Initial studies using
viscous (Reynolds averaged Navier—Stokes) simulations indicate that the
convergence of the surrogate model is more complex. For example, for the
aerofoil optimization, 7"2(1071) > 0.99 produces a model with a correlation with
converged test data of *>=0.6844—lower than the correlations obtained when using
Euler simulations, despite the more conservative choice of u=10. This could, of
course, be a symptom of a more complex objective function landscape. Further
studies are required to assess the application of partially converged viscous
simulations. Nevertheless, the partially converged DoE is cheaper than a
converged DoE, and the evofusion process leads to similar optimums in a reduced
time when compared to a traditional Kriging-based method. This work is reported
in Forrester (2004).
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9. Conclusions

It has been shown that partially converged results can produce globally more
accurate surrogate models than converged simulations for a given computational
cost. There is no requirement for multiple codes and meshes of varying fidelity if
a low-fidelity analysis can take the form of partially converged simulations from
the high-fidelity code.

The proposed method of employing partially converged CFD results in
optimization has been applied successfully to both two- and three-dimensional
Euler flows. Fully converged updates to a set of partially converged initial
designs using the suggested data fusion method lead to an optimum design more
quickly than traditional surrogate-based methods. A 48% time saving was
achieved for the fixed planform three-dimensional wing problem considered
here.

The suggested moving average correlation between surfaces built with varying
numbers of designs simulated to varying levels of convergence enables
optimization to be performed with limited prior knowledge of the problem.
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