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Abstract
We show a close relationship between the Ex-
pectation - Maximization (EM) algorithm and
direct optimization algorithms such as gradient-
based methods for parameter learning. We iden-
tify analytic conditions under which EM ex-
hibits Newton-like behavior, and conditions un-
der which it possesses poor, first-order conver-
gence. Based on this analysis, we propose two
novel algorithms for maximum likelihood esti-
mation of latent variable models, and report em-
pirical results showing that, as predicted by the-
ory, the proposed new algorithms can substan-
tially outperform standard EM in terms of speed
of convergence in certain cases.

1. Introduction
The problem of Maximum Likelihood (ML) parameter es-
timation for latent variable models is an important prob-
lem in the area of machine learning and pattern recogni-
tion. ML learning with unobserved quantities arises in
many probabilistic models such as density estimation, di-
mensionality reduction, or classification, and generally re-
duces to a relatively hard optimization problem in terms of
the model parameters after the hidden quantities have been
integrated out.

A common technique for ML estimation of model param-
eters in the presence of latent variables is Expectation-
Maximization (EM) algorithm [3]. The EM algorithm al-
ternates between estimating the unobserved variables given
the current model and refitting the model given the esti-
mated, complete data. As such it takes discrete steps in
parameter space similar to first order method operating on
the gradient of a locally reshaped likelihood function.

In spite of tremendous success of the EM algorithm in prac-
tice, due to its simplicity and fast initial progress, some au-
thors [11] have argued that the speed of EM convergence
can be extremely slow, and that more complicated second-

order methods should generally be favored to EM. Many
methods have been proposed to enhance the convergence
speed of the EM algorithm, mostly based on conventional
optimization theory [7, 8]. Several authors [11, 1] have
also proposed hybrid approaches for ML learning, advocat-
ing switching to an approximate Newton method after per-
forming several EM iterations. All of these approaches, al-
though sometimes successful in terms of convergence, are
much more complex than EM, and difficult to analyze; thus
they have not been popular in practice.

Our goal in this paper is to contrast the EM algorithm with a
direct gradient-based optimization approach. As a concrete
alternative, we present an Expectation-Conjugate-Gradient
(ECG) algorithm for maximum likelihood estimation in la-
tent variable models, and show that it can outperform EM
in terms of convergence in certain cases. However, in other
cases the performance of EM is superior. To understand
these behaviors, we study the convergence properties of the
EM algorithm and identify analytic conditions under which
EM algorithm exhibits Newton-like convergence behavior,
and conditions under which it possesses extremely poor,
first-order convergence. Based on this analysis, we in-
troduce a simple hybrid EM-ECG algorithm that switches
between EM and ECG based on estimated quantities sug-
gested by our analysis. We report empirical results on syn-
thetic as well as real-world data sets, showing that, as pre-
dicted by theory, this simple algorithm almost never per-
forms worse than standard EM and can substantially out-
perform EM’s convergence.

2. Linear and Newton Convergence of
Expectation Maximization

We first focus on the analysis of the convergence properties
of the Expectation-Maximization (EM) algorithm. Con-
sider a probabilistic model of observed data x which uses
latent variables z. The log-likelihood (objective function)
can be lower bounded by the difference between expected
complete log-likelihood and negative entropy terms:
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L(Θ) = ln p(x|Θ) = ln
∫

p(x, z|Θ)dz ≥
∫

p(z|x, Ψ) ln p(x,z|Θ)
p(z|x,Ψ)dz =

∫

p(z|x, Ψ) ln p(x, z|Θ)dz −
∫

p(z|x, Ψ) ln p(z|x, Ψ)dz

= Q(Θ, Ψ) − H(Ψ, Ψ) = F(Θ, Ψ)

The EM algorithm is nothing more than coordinate ascent
in the functionalF(Θ, Ψ), alternating between maximizing
F with respect to Ψ for fixed Θ (E-step) and with respect
to Θ for fixed Ψ (M-step) [10].

The algorithm implicitly defines a mapping: M : Θ → Θ′

from parameter space to itself, such that Θt+1 = M(Θt).
If iterates of Θt converge to Θ∗ (and M(Θ) is continuous),
then Θ∗ = M(Θ∗), and in the neighborhood of Θ∗, by a
Taylor series expansion:

Θt+1 − Θ∗ ≈ M ′(Θ∗)(Θt − Θ∗) (1)

where M ′(Θ∗) = ∂M
∂Θ |Θ=Θ∗ . Therefore EM is essentially

a linear iteration algorithm with a convergence rate matrix
M ′(Θ∗) (which is typically nonzero) [9].

For most objective functions, the EM step Θ(t+1) −Θ(t) in
parameter space and true gradient can be related by a trans-
formation matrix P (Θt), that changes at each iteration:

Θ(t+1) − Θ(t) = P (Θt)∇L(Θt) (2)

(We define ∇L(Θt) = ∂L(Θ)
∂Θ |Θ=Θt .) Under certain

conditions, the transformation matrix P (Θt) is guaranteed
to be positive definite with respect to the gradient.1 In
particular, if

C1: Expected complete log-likelihood Q(Θ, Θt) is well-
defined, and differentiable everywhere in Θ. and

C2: For any fixed Θt 6= Θ(t+1), along any direction that passes
through Θt+1, Q(Θ,Θt) has only a single critical point,
located at the maximum Θ = Θt+1; then

∇>

L(Θt)P (Θt)∇L(Θt) > 0 ∀Θt (3)

The second condition C2 may seem very strong. However,
for the EM algorithm C2 is satisfied whenever the M-step
has a single unique solution.2

1Note that ∇>

Q(Θt)(Θ(t+1) − Θt), where ∇>

Q(Θt) =
∂Q(Θ,Θt)

∂Θ
|Θ=Θt is the directional derivative of function Q(Θ, Θt)

in the direction of Θ(t+1) − Θt. C1 and C2 together imply that
this quantity is positive, otherwise by the Mean Value Theorem
(C1) Q(Θ, Θt) would have a critical point along some direction,
located at a point other than Θt+1 (C2). By using the identity

∇L(Θt) = ∂Q(Θ,Θt)
∂Θ

|Θ=Θt , we have ∇>

L(Θt)P (Θt)∇L(Θt) =

∇>

Q(Θt)(Θ(t+1) − Θt) > 0.
2In particular C2 holds for any exponential family model, due

to the well-known convexity property of Q(Θ, Θt) in this case.

The important consequence of the above analysis is that
(when the expected complete log-likelihood function has
a unique optimum), EM has the appealing quality of al-
ways taking a step Θ(t+1) − Θt having positive projection
onto the true gradient of the objective function L(Θt). This
makes EM similar to a first order method operating on the
gradient of a locally reshaped likelihood function.

For maximum likelihood learning of a mixture of Gaus-
sians model using the EM-algorithm, this positive definite
transformation matrix P (Θt) was first described by Xu and
Jordan[18]. We extended their results by deriving the ex-
plicit form for the transformation matrix for several other
latent variables models such as Factor Analysis (FA), Prob-
abilistic Principal Component Analysis (PPCA), mixture of
PPCAs, mixture of FAs, and Hidden Markov Models [13].3

We can further study the structure of the transformation
matrix P (Θt) and relate it to the convergence rate matrix
M ′. Taking the negative derivatives of both sides of (2)
with respect to Θt, we have:

I − M ′(Θt) = −P ′(Θt)∇L(Θt) − P (Θt)S(Θt) (4)

where S(Θt) = ∂2L(Θ)
∂Θ2 |Θ=Θt is the Hessian of the

objective function, M ′
ij(Θ

t) =
∂Θt+1

i

∂Θt
j

is the input-

output derivative matrix for the EM mapping and
P ′(Θt) = ∂P (Θ)

∂Θ |Θ=Θt is the tensor derivative of P (Θt)
with respect to Θt. In ”flat” regions of L(Θ), where
∇L(Θ) approaches zero (and P ′(Θt) does not become
infinite), the first term on the RHS of equation (4) becomes
much smaller than the second term, and P (Θt) matrix
becomes a rescaled version of the negative inverse Hessian:

P (Θt) ≈

[

I − M ′(Θt)

][

− S(Θt)

]−1

(5)

In particular, if the EM algorithm iterates converge to a
local optima at Θ∗, then near this point (i.e. for sufficiently
large t) EM may exhibit superlinear convergence behavior.
This is also true in “plateau” regions where the gradient
is very small even if they are not near a local optimum.
The nature of the convergence behavior is controlled by
the eigenvalues of the matrix M ′(Θt). If all eigenvalues
tend to zero, then EM becomes a true Newton method,4

rescaling gradient by exactly the negative inverse Hessian.

Θt+1 = Θt − S(Θt)−1∇L(Θt) (6)

As the eigenvalues tend to unity, EM takes smaller and
smaller stepsizes, giving poor, first-order, convergence.

Dempster, Laird, and Rubin [3] showed that if EM iterates
converge to Θ∗, then

∂M(Θ)
∂Θ |Θ=Θ∗ =

[

∂2H(Θ,Θ∗)
∂Θ2 |Θ=Θ∗

][

∂2Q(Θ,Θ∗)
∂Θ2 |Θ=Θ∗

]−1

3We also derived a general form of the transformation matrix
for exponential family models in term of their natural parameters.

4For details on Newton-type algorithms refer to [11]
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Figure 1. Contour plots of the likelihood function L(Θ) for MoG examples using well-separated (upper panels) and not-well-separated
(lower panels) one-dimensional data sets. Axes correspond to the two means. The dashdot line shows the direction of the true gradient
∇L(Θ), the solid line shows the direction of P (Θ)∇L(Θ) and the dashed line shows the direction of (−S)−1∇L(Θ). Right panels are
blowups of dashed regions on the left. The numbers indicate the log of the l2 norm of the gradient. Note that for the ”well-separated”
case, in the vicinity of the maximum, vectors P (Θ)∇L(Θ) and (−S)−1∇L(Θ) become identical.

which can be interpreted as the ratio of missing informa-
tion to the complete information near the local optimum.
Thus, in the neighborhood of a solution (for sufficiently
large t), we can make the following novel link between the
transformation matrix P , the convergence rate matrix M ′,
and the exact inverse Hessian S:

P (Θt) ≈

[

I −

(

∂2H
∂Θ2

)(

∂2Q
∂Θ2

)−1

|Θ=Θt

][

− S(Θt)

]−1

(7)
This analysis of EM has a very interesting interpretation
which is applicable to any latent variable model: When
the missing information is small compared to the com-
plete information, EM exhibits approximate Newton be-
havior and enjoys fast, typically superlinear convergence
in the neighborhood of Θ∗. If fraction of missing informa-
tion approaches unity, the eigenvalues of the first term (7)
approach zero and EM will exhibit extremely slow conver-
gence.

Figure 1 illustrates the above results in the simple case of
fitting a mixture of Gaussians model to well-clustered data
– for which EM exhibits Newton-like convergence – and
not-well-clustered data, for which EM is slow. As we will
see from the empirical results of the later sections, many
other models also show this same effect. For example,
when Hidden Markov Models or Aggregate Markov Mod-
els [14] are trained on very structured sequences, EM ex-
hibits superlinear convergence, in particular when the state

transition matrix is sparse and the output distributions are
almost deterministic at each state.

The above analysis motivates the use of alternative opti-
mization techniques in the regime where missing informa-
tion is high and EM is likely to perform poorly. In the fol-
lowing section, we analyze exactly such an alternative, the
Expectation-Conjugate Gradient (ECG) algorithm, a sim-
ple direct optimization method for learning the parameters
of latent variables models.

3. Expectation-Conjugate-Gradient (ECG)
Algorithm

The key idea of the ECG algorithm is to note that if we
can easily compute the derivative ∂

∂Θ ln p(x, z|Θ) of
the complete log likelihood, then knowing the posterior
p(z|x, Θ) we can compute the exact gradient ∇L(Θ):

∇L(Θ) =
∂

∂Θ
ln p(x|Θ)

=
1

p(x|Θ)

∂

∂Θ

∫

p(x, z|Θ)dz

=

∫

p(x, z|Θ)

p(x|Θ)

∂

∂Θ
ln p(x, z|Θ)dz

=

∫

p(z|x, Θ)
∂

∂Θ
ln p(x, z|Θ)dz (8)

This exact gradient can then be utilized in any standard
manner, for example to do gradient (as)descent or to



control a line search technique. (Note that if one can
derive exact EM for a latent variable model, then one can
always derive ECG by computing the above integral over
hidden variables.) As an example, we describe a conjugate
gradient algorithm:

Expectation-Conjugate-Gradient algorithm:
Apply a conjugate gradient optimizer to L(Θ), performing an
“EG” step whenever the value or gradient of L(Θ) is requested
(e.g. during a line search).

The gradient computation is given by

• E-Step: Compute posterior p( � | � , Θt) and log-
likelihood L(Θ) as usual.

• G-Step: ∇L(Θt) =
∫

p( � | � , Θt) ∂
∂Θ

log p( � , � |Θ)d �

When certain parameters must obey positivity or linear
constraints, we can either modify our optimizer to respect
the constraints, or we can reparameterize to allow uncon-
strained optimization. In our experiments, we use simple
reparameterizations of model parameters that allow our op-
timizers to work with arbitrary values. (Of course, an ex-
tra term must be included in the gradient calculation due
to the application of the chain rule through such reparam-
eterizations.) For example, in the MoG model we use
a “softmax” parameterization of the mixing coefficients
πi = exp (γi)

∑

M

j=1
exp (γj)

, for covariance matrices to be symmet-

ric positive definite, we use the Choleski decomposition (or
log variances for diagonal covariance matrices). In HMMs,
we reparameterize probabilities also via softmax functions.
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Figure 2. Left panel illustrates why ECG may converge to a better
local optimum. Right panel displays the learning curves for EM
and ECG algorithms of training fully connected 7-state HMM to
model human DNA sequences. Both algorithms started from the
same initial parameter values, but converged to the different local
optimum.

Note that ECG is different than Jamshidian and Jennrich’s
proposed acceleration of EM[6]. Their method always
moves in the same direction as EM but uses a generalized
conjugate gradient algorithm to find the best step size; ECG
computes the true gradient and moves in a search direc-
tion determined by the conjugate gradient algorithm, which
may be different than the EM step direction.

Of course, the choice of initial conditions is very important
for the EM algorithm or for ECG. Since EM is based on

optimizing a convex lower bound on the likelihood, once
EM is trapped in a poor basin of attraction, it can never
find a better local optimum. Algorithms such as split and
merge EM [16] were developed to escape from such con-
figurations. It turns out that direct optimization methods
such as ECG may also avoid this problem because of the
nonlocal nature of the line search. In many of our exper-
iments, ECG actually converges to a better local optimum
than EM; figure 2 illustrates exactly such case.

4. Hybrid EM-ECG Algorithm
As we have seen, the relative performance of EM versus
direct optimization depends on the missing information ra-
tio for the given model and data set. The key to practical
speedups is the ability to design a hybrid algorithm that can
estimate the local missing information ratio M ′(Θt) to de-
tect whether to use EM or a direct approach such as ECG.
Some authors have attacked this problem by finding the top
eigenvector of ∂M(Θ)

∂Θ |Θ=Θt as Θt approaches Θ∗ using
conventional numerical methods, such as finite-difference
approximations, or power methods [4]. These approaches
are computationally intensive and difficult to implement,
and thus they have not been popular in practice.

Here, we propose using the entropy of the posterior over
hidden variables, which can be computed after performing
an E-step, as a crude estimate of the local missing infor-
mation ratio. This entropy has a natural interpretation as
the uncertainty about missing information, and thus can
serve as a guide between switching regimes of EM and
ECG. For many models with discrete hidden variables this
quantity is quite easy to compute. In particular, we define
the Normalized Entropy term:

H̄t = −1
N ln M

∑N
n

∑M
i p(z = i|xn, Θt) ln p(z = i|xn, Θt)

with z being discrete hidden variable taking on M values,
and N observed data vectors xn. We now simply switch
between EM and ECG based on thresholding this quantity:

Hybrid EM-ECG algorithm:

• Perform EM iterations, evaluating H̄t after each E-step
• If H̄t ≥ τ Thena Switch to ECG
• Perform ECG, evaluating H̄t at the end of each line

search
• If H̄t < τ Then Switch back to EM
• Exit at either phase IF:

1. (L(Θt) − L(Θt−1))/abs(L(Θt)) < tol OR
2. t > Tmax

aWe are near the optimum or in plateau region with high
entropy

As we will see from the experimental results, this simple
hybrid EM-ECG algorithm never performs substantially
worse, and often far better than either EM or ECG.
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Figure 3. Learning curves for ECG, EM-ECG, and EM algorithms, showing superior (upper panels) and inferior (lower panels) per-
formance of ECG under different conditions for three models: MoG (left), HMM (middle), and Aggregate Markov Models (right).
All algorithms were started with the same initial parameter vector. The number of E-steps taken by either algorithm is shown on the
horizontal axis, and log likelihood is shown on the vertical axis. For ECG and EM-ECG, diamonds indicate the maximum of each line
search, and the zero-level likelihood corresponds to the converging point of the EM algorithm. The bottom panels use “well-separated”,
or “structured” data for which EM possesses Newton-like convergence behavior. All models in this case converge in 10-15 iterations
with stopping criterion: [L(Θt+1)−L(Θt)]/abs(L(Θt+1)) < 10−15 . The upper panels use “overlapping”, “aliased”, or “unstructured”
data for which proposed algorithms performs much better.

5. Experimental Results

We now present empirical results comparing the perfor-
mance of EM, ECG, and hybrid EM-ECG for learning
the parameters of three latent variable models: mixture
of Gaussians, Hidden Markov Models, and Aggregate
Markov Models. In many latent variable models, per-
forming inference (E-step) is significantly more expensive
compared to either the parameter updates (M-step) or
extra overhead beyond the E-steps in the CG step of
ECG. To compare the performance of the algorithms, we
therefore simply compare the number of E-steps each
algorithm executes until its convergence. We first show
results on synthetic data sets, whose properties we can
control to verify certain aspects of our theoretical analysis.
We also report empirical results on several real world
data sets, showing that our algorithms do work well
in practice. Though we show examples of single runs,
we have confirmed that the qualitative behavior of the
convergence results presented in all experiments is the
same for different initial parameter conditions. For all of
the reported experiments, we used tol = 10−8, τ = 0.5.
We have not investigated carefully methods for setting
the parameter τ , which controls the propensity of the
algorithm to switch to ECG in favor of EM.

5.1. Synthetic Data Sets
First, consider a mixture of Gaussians (MoG) model. We
considered two types of data sets, one in which the data is
“well-separated” into five distinct clusters, with each clus-
ter containing 400 points, and another “not-well-separated”
case in which the five mixture components with each con-
taining 400 points, overlap in one contiguous region. Fig-
ure 3 shows that ECG and Hybrid EM-ECG outper-
form standard EM in the poorly separated cases. For the
well-separated case, the hybrid EM-ECG algorithm never
switches to ECG due to the small normalized entropy term,
and EM converges very quickly. This is predicted by our
analysis: in the vicinity of the local optima Θ∗ the direc-
tions of the vectors P (Θ)∇L(Θ) and (−S)−1∇L(Θ) be-
come identical (fig. 1), suggesting that EM will have ap-
proximately Newton convergence behavior.

We then applied our algorithms to the training of Hid-
den Markov Models (HMMs). Missing information in this
model is high when the observed data do not well deter-
mine the underlying state sequence (given the parameters).
We therefore generated two data sets from a 5-state HMM,
with an alphabet size of 5 characters. The first data set
(“aliased” sequences) was generated from a HMM where
output parameters were set to uniform values plus some
small noise ε ∼ N (0, 01I). The second data set (“very
structured sequences”) was generated from a HMM with
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Figure 4. Learning curves for ECG, EM-ECG, and EM algorithms, displaying convergence performance under different conditions for
three models: MoG (upper), HMM (middle), and Aggregate Markov Models (bottom). All algorithms were started with the same initial
parameter vector. The number of E-steps taken by either algorithm is shown on the horizontal axis, and log likelihood is shown on the
vertical axis. For ECG and EM-ECG, diamonds indicate the maximum of each line search, and the zero-level likelihood corresponds to
the converging point of the EM algorithm. The number of learned clusters for MoG model were 5 (left), 50 (middle), and 65 (right). For
HMM model, the number of states were 5 (left), 8 (middle), and 10 (right). The number of learned themes for the AMM model were 3
(left), 6 (middle), and 9 (right).

sparse transition and output matrices. For the ambiguous
or aliased data, ECG and hybrid EM-ECG outperform EM
substantially. For the very structured data, EM performs
well and exhibits second order convergence in the vicinity
of the local optimum.

Finally, we experimented with Aggregate Markov Models
(AMMs) [14]. AMMs model defines a discrete conditional
probability table pij = p(y = j|x = i) using a low
rank approximation. In the context of n-gram models for
word sequences, AMMs are class-based bigram models in
which the mapping from words to classes is probabilistic.
In particular, the class-based bigram model predicts
that word w1 is followed by word w2 with probability:
P (w2|w1) =

∑C
c=1 P (w2|c)P (c|w1) with C being the

total number of classes. Here, the concept of missing
information corresponds to how well or poor a set of words
determine the class labels C based on the observation

words that follow them. The right panels of figure 3 show
training of a 2-class 50-state AMM model on ambiguous
(aliased) data, in which words do not well determine
class labels, and on more structured data, in which the
proportion of missing information is very small. ECG and
hybrid EM-ECG are superior to EM by at least a factor of
two for ambiguous data; for structured data EM shows the
expected Newton-like convergence behavior.

5.2. Real World Data Sets
In our first experiment, we cluster a set of 50,000 8 × 8
grayscale pixel image patches5 using a mixture of Gaus-
sians model. The patches were extracted from 768 × 512
natural images, described in [17] (see fig 5 for an example
of a natural image, and sample patches). To speed-up the

5The data set used was the imlog data set publicly available at
ftp://hlab.phys.rug.nl/pub/samples/imlog



experiments, the patch data was projected with PCA down
to a 10-dimensional linear subspace and the mixing pro-
portions and covariances of the model were held fixed. The
means were initialized by performing K-means. We exper-
imented with mixtures having M=2 up to M=65 clusters.

Figure 5. An example of a natural image and some samples of
8×8 gray pixel image patches, used in the clustering experiment.

Figure 4 displays the convergence of EM, ECG, and Hy-
brid EM-EC algorithms for M=5, M=50 and M=65. The
experimental results show that with fewer mixture compo-
nents EM outperforms ECG, since the components gen-
erally model the data with fairly distinct, non-contiguous
clusters. As the number of mixtures components increases,
clusters overlap in contiguous regions and the normalized
entropy term grows, suggesting a relatively high proportion
of the missing information. In this case ECG outperforms
EM by several orders of magnitude. Hybrid EM-ECG al-
gorithm is never inferior to either EM or ECG (using our
untuned setting of switching threshold τ = 0.5).

Our second experiment consisted of training a fully con-
nected HMM to model DNA sequences. For the training,
we used publicly available ”GENIE gene finding data set”,
provided by UCSC and LBNL [5], that contains 793 un-
related human genomic DNA sequences. We applied our
different algorithms on (the first) 66 DNA sequences from
multiple exon and single exon genes, with length varying
anywhere between 200 to 3000 nucleotides per sequence.
The number of states ranged from M=5 to M=10 and all
the parameter values were randomly initialized. Figure 4
shows the convergence of EM, ECG, and Hybrid EM-ECG
algorithms for M=5,8,10. This data set contains very com-
plex structure which is not easily modeled by HMMs, re-
sulting in a very high proportion of missing information.
As a result, hybrid EM-ECG and ECG substantially out-
perform EM in terms of convergence.

In our last experiment, we applied Aggregate Markov
Models to the data set consisting of 2,037 NIPS authors
and corresponding counts of the top 1,000 most frequently
used words of the NIPS conference proceedings, volumes
1 to 12.6 The goal was to model the probability that an
author A will use word W using a small number of “soft”
classes (t): P (W |A) =

∑T
t=1 P (W |t)P (t|A). Once

again, we observe that for this simple model, this data
6NIPS corpus used in the experiments is publicly available at

http://www.cs.toronto.edu/∼roweis/data.html

set has a large fraction of missing information. Figure
4 displays the convergence of EM, ECG, and EM-ECG
algorithms for T=3,6,9. with hybrid EM-ECG and ECG
having superior convergence over EM.

6. Discussion and Conclusions
Although we have focused here on discrete latent variables,
the ECG and hybrid algorithms can also be derived for la-
tent variable models with continuous hidden variables. As
an example figure 6 illustrates convergence behavior of the
Probabilistic Principal Component Analysis (PPCA) latent
variable model[12, 15], which has continuous rather than
discrete hidden variables. Here the concept of missing in-
formation is related to the ratios of the leading eigenvalues
of the sample covariance, which corresponds to the ellip-
ticity of the distribution. For “low-rank” data with a large
ratio EM performs well; for nearly circular data ECG con-
verges faster.7

In some degenerate cases, where the proportion of missing
information is very high, i.e. M ′(Θ∗) approaches identity,
EM convergence can be exponentially slow. Figure 6 (right
panel) illustrates such example for the case of HMM train-
ing using almost random sequences. It takes about 7,000
iterations for ECG and EM-ECG to converge to the ML
estimate, whereas even after 250,000 iterations EM is still
only approaching the local optimum.

In this paper we have presented comparative analysis of
EM and direct optimization algorithms for latent variable
models, and developed a theoretical connection between
these two approaches. We have also analyzed and deter-
mined conditions under which EM algorithm can demon-
strate local-gradient and approximate Newton convergence
behaviors. Our results extend those of Xu and Jordan[18]
who analyzed the convergence properties of the EM algo-
rithm in the special case of Gaussian mixtures, and apply
to any exponential family model.

Motivated by these analyses, we have proposed an alterna-
tive hybrid optimization method that can significantly out-
perform EM in many cases. We tested the proposed algo-
rithms by training several basic latent variable models on
several synthetic as well as real world data sets, reporting
convergence behavior and explaining the results with refer-
ence to our analysis.

Our convergence analysis can also be extended to a broader
class of bound optimization techniques, such as iterative
scaling (IS) algorithms for parameter estimation in max-
imum entropy models[2] and the recent CCCP algorithm

7The slow convergence of EM in PPCA is also true for factor
analysis and especially for linear dynamic systems. In these mod-
els, there is large amount of missing information because latent
variables are continuous and they can be rotated without affecting
the likelihood as long as the parameters are rotated accordingly.
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Figure 6. Learning curves for ECG (dots) and EM (solid lines) algorithms, showing superior (left) and inferior (middle) performance
of ECG. The left panel uses ”ill-conditioned” data for which ECG converges quickly; the middle panel uses “low-rank” data for which
EM performs better. Right panel displays ”non-converging” case of the EM. Very unstructured data (30 sequences, each of length 50)
was generated from a full 5-state HMM with alphabet size of 5. Parameter values were set to be uniform plus some small uniform
noise. ECG and EM-ECG converge in about 7,000 iterations, whereas after even 250,000 iterations, EM is only approaching to the ML
estimate. For continuous state models, no hybrid EM-ECG algorithm exists.

for minimizing the Bethe free energy in approximate
inference problems[19]. These analyses allow us to gain a
deeper understanding of the nature of these algorithms and
the conditions under which certain optimization techniques
can be expected to outperform others. Based on these
extended analyses we are designing accelerated fitting
algorithms for these models as well.
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