
Journal of Machine Learning Research 20 (2019) 1-59 Submitted 9/18; Revised 10/19; Published 11/19

Optimization with Non-Differentiable Constraints with Applications

to Fairness, Recall, Churn, and Other Goals

Andrew Cotter ACOTTER@GOOGLE.COM

Heinrich Jiang HEINRICHJ@GOOGLE.COM

Maya Gupta MAYAGUPTA@GOOGLE.COM

Serena Wang SERENAWANG@GOOGLE.COM

Taman Narayan TAMANN@GOOGLE.COM

Google Research

1600 Amphitheatre Pkwy

Mountain View, CA, USA

Seungil You SEUNGIL.YOU@GMAIL.COM

Kakao Mobility

Seongnam-si, Gyeonggi-do, South Korea

Karthik Sridharan SRIDHARAN@CS.CORNELL.EDU

Cornell University

Ithaca, NY, USA

Editor: Shivani Agarwal

Abstract

We show that many machine learning goals can be expressed as “rate constraints” on a model’s

predictions. We study the problem of training non-convex models subject to these rate constraints

(or other non-convex or non-differentiable constraints). In the non-convex setting, the standard

approach of Lagrange multipliers may fail. Furthermore, if the constraints are non-differentiable,

then one cannot optimize the Lagrangian with gradient-based methods. To solve these issues, we

introduce a new “proxy-Lagrangian” formulation. This leads to an algorithm that, assuming access

to an optimization oracle, produces a stochastic classifier by playing a two-player non-zero-sum

game solving for what we call a semi-coarse correlated equilibrium, which in turn corresponds to an

approximately optimal and feasible solution to the constrained optimization problem. We then give

a procedure that shrinks the randomized solution down to a mixture of at most m+ 1 deterministic

solutions, given m constraints. This culminates in a procedure that can solve non-convex constrained

optimization problems with possibly non-differentiable and non-convex constraints, and enjoys

theoretical guarantees. We provide extensive experimental results covering a broad range of policy

goals, including various fairness metrics, accuracy, coverage, recall, and churn.

Keywords: constrained optimization, non-convex, fairness, churn, swap regret, non-zero-sum

game

1. Introduction

We seek to provide better ways to control machine learning to meet societal, legal, and practical

goals, and to take advantage of different kinds of side information and intuition that practitioners may

have about their machine learning problem. In this paper, we show that many real-world goals and

c©2019 Andrew Cotter, Heinrich Jiang, Maya Gupta, Serena Wang, Taman Narayan, Seungil You, and Karthik Sridharan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at

http://jmlr.org/papers/v20/18-616.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v20/18-616.html

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

side information can be expressed as constraints on the model’s prediction rates on different datasets,

which we refer to as rate constraints, turning training into a constrained optimization problem. A

simple example of a rate constraint is requiring a binary classifier to make positive predictions on

at least 80% of examples. One can incorporate that rate constraint into training. That is, if h is a

classifier parameterized by θ ∈ Θ, {(xj , yj)} is a classifier training set with j = 1, . . . , N , ℓ is the

loss, and I is the usual indicator, the constrained optimization to minimize the empirical risk subject

to this 80% positive rate constraint is:

min
θ

1

N

N∑

j=1

ℓ(h(xj ; θ), yj) (1)

s.t.
1

N

N∑

j=1

Ih(xj ;θ)≥0 ≥ 0.8.

1.1. The Broad Applicability Of Rate Constraints

One can express a surprisingly large set of real-world goals using rate constraints. Here we preview

some categories of goals, with more details in Section 3.

Fairness: Many fairness goals can be expressed as rate constraints, including the popular fairness

goal of statistical parity. For example, one can constrain a classifier so that its positive prediction rate

for men and women differs by no more than ten percent. Other fairness goals that can be expressed as

rate constraints are equal opportunity and equal odds (Hardt et al., 2016). In Section 3 we introduce

some other fairness goals that we have encountered in real-world problems but have not previously

seen in the machine learning literature, such as no worse off.

Performance Measures: Some standard performance metrics can be expressed as rate con-

straints, for example, one can lower-bound the recall, or constrain the model to have some minimal

accuracy on specific slices of the data. Precision and win-loss ratio (WLR) compared to a baseline

classifier can be expressed with rate constraints; however, there are some caveats about how satisfying

constraints on these metrics will generalize to test samples (details below). AUC can be approximated

as a set of rate constraints, using the approximation proposed in Eban et al. (2017).

Churn: Given a current classifier, the churn of a new classifier on a specific distribution of

examples is the probability that the new classifier decision differs from the current classifier’s decision

(Cormier et al., 2016). Reducing classifier churn is important in many practical machine learning

systems to improve overall system stability and to make changes easier to measure and test (Cormier

et al., 2016). Churn can be expressed with rate constraints (Goh et al., 2016), thus one can constrain

the churn of a new classifier to some desired level.

Multiple Training Datasets: Sometimes one has multiple labeled sets of varying quality and

size. For example, one might have only a small set of data labeled by experts, but a large set of noisy

training data. One can train the classifier to minimize errors on large noisy data, with a rate constraint

that it must achieve at least a certain accuracy on the small expert-labeled dataset.

Unlabeled Datasets: Many of the rate constraints we discuss do not require labels, such as

constraints on the positive rate of the classifier, or churn constraints. Training with these rate

constraints enables one to take advantage of large unlabeled datasets, which are cheaper to obtain

than labeled data.

2

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

1.2. Why Constrain? Why Not Penalize?

Rather than expressing each goal as a constraint during training, one could instead add an additive

penalty to the loss. If there are multiple goals, one could use a linear combination of such additive

penalties. However, the penalty approach requires the practitioner to determine the right weight for

each penalty. In practice we find this gets difficult fast: there may be multiple constraints, possibly

defined over multiple datasets, and the weights on the multiple penalties may interact with each other.

In conclusion, it may be difficult to determine how much to weight each penalty.

We have found that specifying goals using constraints is in practice a cleaner and easier interface

for practitioners. The key reason is that a constraint has an absolute meaning, making it possible for

a practitioner to specify their goal as a constraint without regard for the presence of other constraints.

For example, the meaning of a constraint that the classifier have 80% recall in India does not change

if someone else adds other locale-specific constraints on the classifier. We also found that using hard

constraints leads to a more understandable machine learning model because it is clearer what the

model was trained to do, and it is clearer to measure and verify whether the training sufficiently

achieved the practitioner’s intent for each individual goal.

1.3. Training With Constraints:

Training with rate constraints poses some difficult challenges:

1. Non-convex: For nonlinear function classes, such as neural networks, the objective and

constraint functions will be non-convex, even with convex loss functions.

2. Non-differentiable: Rate constraints are linear combinations of positive and negative classifi-

cation rates. That is, they are made up of indicator functions (0-1 losses), and therefore have

zero gradients almost everywhere.

3. Data-dependent: The constraints are data-dependent, so for large datasets it may be impracti-

cal to fully evaluate the constraints at every iteration—we’d prefer to work with minibatches.

While our motivating optimization problem is training with rate constraints, the analysis and

algorithms we present will apply generally to constrained optimization problems of the form:

min
θ∈Θ

g0(θ) (2)

s.t. gi(θ) ≤ 0 for i = 1, . . . ,m,

where the real-valued functions g0 and the gis may be non-convex. Furthermore, each of the m
constraint functions gi may be data-dependent, non-convex and even non-differentiable.

1.4. The Lagrangian May Have No Pure Equilibrium For Non-Convex Problems

A popular approach to constrained optimization problems of the form in Equation 2 is the method of

Lagrange multipliers. Define the Lagrangian:

L(θ, λ) △
= g0(θ) +

m∑

i=1

λigi(θ), (3)

where λ is an m-dimensional non-negative vector of Lagrange multipliers. The method of Lagrange

multipliers can be viewed as a two-player zero-sum game where one player minimizes Equation 3

with respect to the model parameters θ ∈ Θ, and the other player maximizes it with respect to the

3

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Lagrange multipliers λ ∈ Λ. If the objective and constraints are all convex in θ, and the action spaces

Λ and Θ are compact and convex, then this is a convex game, and it has a pure Nash equilibrium (von

Neumann, 1928), i.e. there exists a θ for the first player and a λ for the second player such that

neither player has the incentive to change their choice given the other player’s choice. Furthermore,

a pure Nash equilibrium (equivalently, a saddle point of the Lagrangian) gives us an optimal and

feasible solution to the original constrained optimization problem specified in Equation 2.

Figure 1: Example of when no pure Nash equi-

librium exists for the Lagrangian:

The plotted rectangular region is the

domain Θ, the contours are those of

the strictly concave minimization objec-

tive function g0, and the shaded trian-

gle is the feasible region determined by

the three linear inequality constraints

g1, g2, g3. The red dot is the optimal

feasible point. The Lagrangian L (θ, λ)
is strictly concave in θ for any choice

of λ, so the optimal choice(s) for the

θ-player will always lie on the four cor-

ners of the plotted rectangle. However,

these points are infeasible, and therefore

suboptimal for the λ-player, assuming

that λ ∈ Λ = R
3
+.

On a constrained non-convex problem the

Lagrangian might not even have a pure Nash

equilibrium (see Figure 1 for an example).

Hence, instead of converging, an iterative first-

order algorithm may oscillate between different

solutions, or it may converge to a locally op-

timal point—but not a Nash equilibrium—for

which it is difficult to establish optimality and

feasibility properties. However, if we allow each

player to choose a distribution over their respec-

tive spaces Θ and Λ, and take the value of the

Lagrangian to be the expectation over these dis-

tributions, then, under general conditions, the

resulting mixed Nash equilibrium will exist.

In this paper, we provide algorithms that ap-

proximately find such mixed equilibria, and we

show that these correspond to nearly-feasible

and nearly-optimal stochastic solutions to the

original constrained optimization problem given

in Equation 2. Such a stochastic solution is a ran-

dom model: every time we classify an example

x, we will independently sample a θ from the

equilibrium distribution over Θ. Our guarantees

will be expressed in terms of expectations with

respect to this random θ.

1.5. The Lagrangian Is Impractical

For Non-differentiable Constraints

Next, consider the issue of non-differentiable constraints (such as rate constraints). A major shortcom-

ing of the Lagrangian is that one cannot use gradient-based methods to optimize non-differentiable

constraints. One approach is to use the Lagrangian but replace non-differentiable constraints with

differentiable surrogates (e.g. Davenport et al., 2010; Gasso et al., 2011; Eban et al., 2017). However

changing the constraint functions may lead to solutions which either over-constrain or fail to satisfy

the original constraints, as shown in Figure 2.

To address this, we introduce what we call the proxy-Lagrangian formulation, where the key idea

is to relax the non-differentiable constraints only when necessary. Solving the proxy-Lagrangian

poses technical challenges but leads to a number of interesting insights, and we provide algorithms

4

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Figure 2: Mixture of Gaussians simulation: we generate 400 datapoints from a mixture of four

Gaussians in two dimensions centered at (0, 1), (−1, 0), (0,−1), (1, 0) in equal proportion

each with covariance matrix 0.05I where I denotes the identity matrix. The two top-left

Gaussians are class red while the two bottom-right Gaussians are class blue. Left: The

black line is the decision boundary for a linear model trained without any constraints.

Middle: We trained this linear model subject to the rate constraint that the classifier

must predict at least 55% of examples as blue. Here, we use the classical Lagrangian

formulation and a hinge relaxation of the indicators in the constraints. Since the hinge

relaxation is overly conservative, this classifier ends up overconstraining and actually

predicts blue for 80.5% of the 400 examples in order to satisfy the relaxed constraint, at

the cost of unnecessary loss of accuracy. Right: We trained this linear model subject to

the same rate constraint that it must predict 55% of examples as blue, but this time we

trained the model using the proposed proxy-Lagrangian formulation, and took the last

iterate as the model. This model exactly enforces the requested 55% prediction rate for

blue examples.

which attain solutions with optimality and feasibility guarantees on the original non-differentiable

constraints.

Overall, we give an end-to-end recipe to provably (given access to an optimization oracle) and

efficiently solve non-convex optimization problems with non-differentiable constraints, for which the

solution will be a mixture of at most m+ 1 deterministic solutions. In practice, we use SGD in place

of the oracle. To our knowledge, this is the first time such a procedure has been found to provably

solve such non-convex problems with such irregular constraints and return a sparse solution.

In addition, for those practical situations where a stochastic model is unappealing, we also

experimentally consider algorithms that do produce deterministic models, though they do not come

with guarantees.

1.6. Main Contributions And Organization

The main contributions of this paper are:

• We show that training with rate constraints can be used to address many real-world goals and

capture realistic prior knowledge in the training.

• We give a new proxy-Lagrangian formulation for optimizing non-convex objectives with

non-differentiable constraints.

5

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

• We provide an algorithm that outputs a m + 1 sparse stochastic classifier with theoretical

guarantees, where m is the number of constraints.

• We show that our proxy-Lagrangian formulation can also be used to produce a deterministic

classifier that may be more practical for some applications, but without guarantees.

• We provide an open-source Tensor Flow library that implements the presented algorithms.

• We experimentally demonstrate that the proposed optimization can be used to train classifiers

with rate constraints, on both benchmark datasets and for real-world case studies.

Although our motivation and experimental focus is on the problem of training classifiers with

rate constraints, our proposed proxy-Lagrangian formulation and theoretical results have broader

application to other constrained optimization problems.

We next review related work. Then in Section 3 we detail many different goals that can be

expressed with rate constraints. We then turn to the question of how to actually optimize with

constraints, proposing new algorithms and theoretical results in Section 4. Section 5 presents a

diverse set of experiments on benchmark and real datasets to illustrate the applicability of rate

constraints and the proposed optimization. We close with a discussion of conclusions in Section 6

and open questions in Section 7.

2. Related Work

We begin by reviewing our own prior work which this paper builds upon, then other work that

considers specific rate constraints, and then related work in constrained optimization.

2.1. Related Work On Specifying And Optimizing With Rate Constraints

Goh et al. (2016) showed that many different types of policy goals and side information can be

expressed as constraints on the classifier’s decisions on targeted datasets, and that one can then

train the classifier to respect these constraints as part of the empirical risk minimization. Goh et al.

(2016) referred to this class of constraints as dataset constraints, but we use the more precise term

rate constraints to reflect that these constraints are functions of the classifier’s positive and negative

decision rates. In this paper, we will present many more goals and types of prior information that

can be expressed as rate constraints that are useful in practice but have not previously appeared in

the literature, such as no lost benefit, not worse off, and loss-only churn. Further, we provide more

insight and analysis on how to use rate constraints in practice.

To optimize models with rate constraints, Goh et al. (2016) proposed a constrained optimization

algorithm that was limited to linear classifiers, and used a new cutting-plane algorithm to iteratively

upper-bound the ramp loss with a convex loss, then solved the resulting inner-loop minimizations

using an SVM solver. While amenable to theoretical analysis, this strategy is a bit slow and difficult

to scale to more than a handful of constraints. In contrast, in this paper we show we can effectively

and efficiently train nonlinear classifiers with rate constraints using the more popular and scalable

approach of stochastic gradients.

An important classic special case of rate constraints is Neyman-Pearson classification, which

constrains the false positive rate (Scott and Nowak, 2005). Davenport et al. (2010) optimized Neyman-

Pearson support vector machines with hinge loss relaxations using coordinate descent. Gasso et al.

(2011) relaxed the indicators to the ramp loss (both in the objective and constraints). Eban et al.

(2017) optimized the model parameters and Lagrangian multiplier using stochastic gradients with a

hinge approximation for the indicators in the empirical loss and constraints, and took the last training

6

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

iterate as their solution. We compare to that optimization strategy in our experiments (listed as Hinge

Last in the result tables).

Mann and McCallum (2007) and follow-on work (Bellare et al., 2009; Mann and McCallum,

2010) optimized probabilistic models with constraints in order to incorporate side information about

the prior priors on class labels, which in the context of a binary classifier is a special case of rate

constraints that we call a coverage constraint. They note their strategy could also be applied to

any constraints that can be written as an expectation over a score on the random (X,Y) samples.

They incorporated this side information as an additive regularizer and penalized the relative entropy

between the given priors and estimated multi-class logistic regression models. They noted their

approximation for the indicator could lead to degenerate solutions, which they indirectly addressed

by additional regularization.

Agarwal et al. (2018) recently addressed training classifiers with fairness constraints that can be

expressed as rate constraints. Like this work, their proposed algorithm is based on the two-player

game perspective. Unlike this paper, they assume a zero-sum game, which works because they also

assume oracle solvers for the two players, side-stepping the practical issues of dealing with the

non-differentible non-convex indicators in the constraints, which is the focus of our algorithmic

and theoretical contributions. Similar to this work, they output a stochastic classifier, but do not

provide the sparse m+ 1 solution that we present in this work. They also consider a deterministic

solution, which they produce by searching over a grid of values for λ for the best λ. They noted in

their experimental section that the resulting deterministic solution was generally as good as their

stochastic solutions on test data for those experiments they tried it on. As they note, a grid-search

over λ is less ideal as the number of constraints grows.

Some other work in training with fairness constraints has used weaker constraints or relaxed them

immediately to weaker constraints such as correlation, e.g. Zafar et al. (2015, 2017). Another set of

work in fair classification only corrects a model post-training by optimizing additive group-specific

bias parameters, e.g. Hardt et al. (2016) and Woodworth et al. (2017). Donini et al. (2018) studies

optimization of fairness constraints for kernel methods by formulating the fairness constraints as

orthogonality constraints. The goal of equal accuracy has also been explored recently in Buolamwini

and Gebru (2018) in the context of matching the accuracies of male/female classifiers across race.

2.2. Other Types Of Constraints On Machine Learned Models

We focus on rate constraints in this paper, which have tend to have the following properties. First,

because rate constraints depend on f(x), they generally depend on all the model parameters θ.

Second, rate constraints are usually relatively expensive to compute. Third, we do not generally

expect to have a very large number of rate constraints.

These qualities are different from the popular constrained machine learning problem of shape

constraints, which requires that the model is restricted to functions with a certain shape such as

monotonic functions (e.g. Barlow et al. (1972); Groeneboom and Jongbloed (2014); Gupta et al.

(2016); Canini et al. (2016); Luss and Rosset (2017); You et al. (2017); Bonakdarpour et al. (2018)),

or other shapes (e.g. Chetverikov et al. (2018); Pya and Wood (2015); Chen and Samworth (2016);

Gupta et al. (2018); Cotter et al. (2019b)).

In contrast to rate constraints, shape constraints generally require adding many sparse, cheap-to-

evaluate constraints. For example, for isotonic regression on N training examples, there are O(N)
constraints, and each is a function of only two model parameters (Barlow et al., 1972). Similarly,

7

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

in some of the experiments of Canini et al. (2016), the models are trained with around 100,000

constraints, but each constraint only touches two model parameters. Problems like that with many

cheap sparse constraints can be well-handled by stochastic sampling of the constraints, as in Cotter

et al. (2016), but that strategy is less well-suited to rate constraints because there tend to be fewer

constraints, and each constraint is expensive to evaluate.

Another type of constrained machine learning aims to constrain the model parameters to obey

known physical limits on the learned system (e.g. Long et al. (2018); Stewart and Ermon (2017)).

These constraints generally do not take the form of rate constraints, but such constrained machine

learning models may also benefit from the presented algorithms and theory.

Some fairness constraints are more complicated than can be handled as rate constraints. For

example, Heidari et al. (2018) give a new individual fairness notion which ensures the expected

utility an individual receives as a result of the model.

2.3. Related Work In Constrained Optimization As A Two Player Game

Our strategy for treating non-differentiable problems as a non-zero sum two-player game using a

proxy Lagrangian formulation was first presented in our conference paper, Cotter et al. (2019c). This

journal paper extends that work with more discussion of how a broad set of goals can be expressed

as rate constraints, much more comprehensive experiments, some additional theoretical perspectives,

and more advice for practitioners.

Our constrained optimization algorithms and analyses build on the long history of treating

constrained optimization as a two-player game: Arora et al. (2012) surveys some such work, and

there are several more recent examples (e.g. Agarwal et al. (2018); Kearns et al. (2018); Narasimhan

(2018)). We extend that prior work in three key ways. First, to handle non-differentiable constraints,

we propose a new proxy-Lagrangian non-zero-sum formulation, whereas prior work formulates the

optimization as a zero-sum game. Second, we introduce a shrinking procedure that significantly

simplifies a “T -stochastic” solution (i.e. a stochastic classifier supported on all T iterates) to a sparse

“m-stochastic” solution (a stochastic classifier supported on only m + 1 iterates, where m is the

number of constraints). Third, we consider a broader set of problems than prior work.

Our contributions also apply to robust optimization problems of the form:

min
θ∈Θ

max
i∈[m]

gi (θ) ,

where each gi : Θ → R. The most related work addressing non-convex robust optimization is Chen

et al. (2017). Like both Agarwal et al. (2018) and this paper, Chen et al. (2017) (i) model the problem

as a two-player game where one player chooses a mixture of objective functions, and the other player

minimizes the loss of the mixture, and (ii) they find a distribution over solutions rather than a pure

equilibrium. These similarities are unsurprising in light of the fact that robust optimization can be

reformulated as constrained optimization via the introduction of a slack variable:

min
θ∈Θ,ξ∈R

ξ (4)

s.t. ξ ≥ gi (θ) for all i ∈ 1, . . . ,m.

Correspondingly, one can transform a robust problem to a constrained one at the cost of an extra

bisection search (e.g. Christiano et al., 2011; Rakhlin and Sridharan, 2013). As this relationship

8

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

suggests, our main contributions can be adapted to the robust optimization setting. In particular: (i)

our proposed shrinking procedure can be applied to Equation 4 to yield a distribution over only m+1
solutions, and (ii) one could perform robust optimization over non-differentiable (even discontinuous)

losses using “proxy objectives,” just as we use proxy constraints.

2.4. Other Strategies For Constrained Optimization

There are other strategies for constrained optimization, each of which we argue is not well-suited to

the problem of training classifiers with rate constraints.

The computational complexity of rate constraints makes them generally unattractive to try

to optimize with approaches that require projections, such as projected SGD, or optimization of

constrained subproblems, such as Frank-Wolfe (Hazan and Kale, 2012; Jaggi, 2013; Garber and

Hazan, 2013)).

Another strategy for constrained optimization is to penalize violations of the constraints (e.g.

Arora et al., 2012; Rakhlin and Sridharan, 2013; Mahdavi et al., 2012; Cotter et al., 2016; Yang

et al., 2017), for example by adding γmaxi∈[m]max {0, gi (θ)} to the objective, where γ ∈ R+ is a

hyperparameter, and optimizing the resulting problem using a first-order method. This strategy is not

ideal for rate constraints for two reasons. First, rate constraints are non-(semi)differentiable. Second,

each rate constraint is data-dependent, so evaluating gi, or even determining whether it is positive (as

is necessary for such methods, due to the max with 0), requires enumerating over the entire constraint

dataset, making this incompatible with the use with a computationally-cheap stochastic gradient

optimizer.

3. What Are Rate Constraints Good For?

In this section, we first present the mathematical formulation of rate constraints and the resulting

constrained empirical risk minimization training. Table 1 provides a handy reference for key notation.

Then, we provide a list of metrics that can be expressed as rate constraints in Table 2, and detail

in the following subsections how these rate constraints can be used to impose a broad set of policy

goals and take advantage of side information.

Given a classifier h : X ×Θ → R (where X is the feature space and Θ is the parameter space) a

dataset D, and using I to denote the usual indicator, define the classifier’s positive classification rate

on D as p+ (D; θ), and the classifier’s negative classification rate on D as p− (D; θ), where

p+(D; θ)
△
=

1

|D|
∑

x∈D

Ih(x;θ)≥0 and p−(D; θ)
△
=

1

|D|
∑

x∈D

Ih(x;θ)<0. (5)

We call a constraint a rate constraint if it can be expressed in terms of a non-negative linear

combination of positive classification rates p+ (Dk; θ) and negative classification rates p− (Dk; θ)
over different datasets {Dk}. That is, a rate constraint is a constraint expressible as:

K∑

k=1

αkp
+ (Dk; θ) + βkp

− (Dk; θ) ≤ κ, (6)

for some α ∈ R
+, β ∈ R

+, and κ ∈ R
+.

Table 2 shows how different choices of scalars αk, βk, κ ∈ R and datasets {Dk} correspond to

different standard performance metrics like accuracy and recall. One can add m rate constraints to

9

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Table 1: Basic Notation

D Set of examples

D[∗] Subset of D that satisfies expression *, e.g. D[x ∈ male] is

the subset of D of male examples, D[y = 1] is the subset

of D whose label is 1, etc.

h̃ : X ×Θ → R A given classifier to which a candidate classifier h can be compared

p+(D; θ) ∈ [0, 1] Proportion of D classified positive

p−(D; θ) ∈ [0, 1] Proportion of D classified negative

c+(D; θ) ∈ N Count of D classified positive: c+(D; θ) = |D| p+(D; θ)
c−(D; θ) ∈ N Count of D classified negative: c−(D; θ) = |D| p−(D; θ)

the standard structural risk minimization to train a classifier with parameters θ ∈ Θ on train dataset

D0, producing the constrained empirical risk minimization:

min
θ∈Θ

1

|D0|
∑

(x,y)∈D0

ℓ(h(x; θ), y) +R (θ) (7)

s.t.

Ki∑

k=1

αikp
+ (Dik; θ) + βikp

− (Dik; θ) ≤ κi for i = 1, . . . ,m,

where αik, βik ∈ R, Dik is the kth dataset for the ith constraint, Ki is the number of datasets used to

specify the ith constraint, and κi ∈ R.

For some applications it is notationally more convenient to drop the normalization on the rate

constraints and express the constraint in terms of counts, let c+ (D; θ) and c− (D; θ) denote the count

of the positive and negative classifications:

c+(D; θ)
△
=
∑

x∈D

Ih(x;θ)≥0 and c−(D; θ)
△
=
∑

x∈D

Ih(x;θ)<0. (8)

Throughout this work, we focus on inequality constraints, for lower-bounding or upper-bounding

some rate. Equality constraints can be imposed by using both a lower-bound and upper-bound

inequality constraint, though we suggest doing so with some margin between the lower and upper

bound to make the optimization problem easier.

In the rest of this section we show how different rate constraints can be used to impose various

policy goals or capture side information. A key insight is that one can add constraints just on specific

groups or subsets of the dataset by the choice of the datasets used for a constraint, which makes this

approach particularly useful for fairness goals or other slice-specific metrics that are measured in

terms of statistics on different datasets (see Table 3 and further details below).

3.1. Coverage Constraints

Coverage is the proportion of classifications that are positive: p+(D; θ) (a variant is negative coverage

p−(D; θ)). For example, if a company wants to train a classifier to identify the best 10% of all

customers to receive a printed catalog, then one could train the classifier with a 10% coverage

constraint.

10

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 2: Examples of Metrics Expressed With Rates And Notation From Table 1

Recall p+(D[y = 1]; θ)
Precision c+(D[y = 1]; θ)/c+(D; θ)
Accuracy (c+(D[y = 1]; θ) + c−(D[y = −1]; θ)/|D|
AUCROC limL,J→∞

1
L

∑L
ℓ=1 maxj∈[J]:p+αj

(D[y=−1];θ)≤ ℓ
L

p+αj
(D[y = 1]; θ)

Wins Compared to h̃ c+(D[h̃ = −1, y = 1]; θ) + c−(D[h̃ = 1, y = −1]; θ)

Losses Compared to h̃ c+(D[h̃ = −1, y = −1]; θ) + c−(D[h̃ = 1, y = 1]; θ)

Win Loss Ratio (WLR) Wins Compared to h̃ / Losses Compared to h̃

Churn (c+(D[h̃ = −1]; θ) + c−(D[h̃ = 1]; θ))/|D|
Loss-only Churn (c+(D[h̃ = −1, y = −1]; θ) + c−(D[h̃ = 1, y = 1]; θ)/|D[h̃ = y]|

Coverage constraints can also be used to capture prior knowledge in the training. For example,

if training a model to classify Americans as male or female, one can regularize the classifier by

incorporating the prior knowledge that 51% of examples should be predicted to be female, by using

a 51% coverage constraint.

Using slice-specific coverage constraints can capture more side information. For example, for the

American male/female classifier, in addition to the overall coverage constraint of 51%, one could also

add constraints capturing prior information about state sex distributions, such as constraining 51.5%
of examples from New York to be classified as women, but constraining only 47.6% of examples

from Alaska to be classified as women.

A key advantage of coverage constraints is that they do not require labeled examples. This enables

one to train on labeled training examples from a convenient distribution (such as actively-sampled

examples), but then add a coverage constraint to ensure the classifier is optimized to positively

classify the desired proportion of positive classifications on a larger unlabeled dataset drawn i.i.d.

from the true underlying distribution. This usage of a coverage constraint forms a semi-supervised

regularization of the classifier.

Another good use case for coverage constraints is to help make a controlled comparison of two

model structures. For example, suppose one has a model type A (say, a kernel SVM), and wonders if

an alternative B (say, a DNN) is better, where A makes positive predictions on 40% of test examples,

while B appears to be more accurate, but only predicts the positive class for 35% of test examples. If

precision errors are worse than recall errors, we cannot be sure that B is better than A. We can try to

quantify the misclassification costs of a false negative vs. a false positive, but that may be difficult

to agree upon. It would be simpler to compare B to A at the same coverage as A, or at some other

relevant coverage. Coverage-matching B to A can be done by tuning the decision threshold of B

post-training, but including the coverage constraint in the training can help B learn to be a better

classifier when tested at the desired coverage.

3.2. Constraints On Accuracy, Recall, Precision, AUC

As shown in Table 2, classifier accuracy can be expressed in terms of rates, and thus accuracy on

auxiliary datasets or slices of the training data can be constrained with rate constraints.

Recall, defined as TP / (TP + FN), can be written as p+(D[y = 1]; θ), and thus one can put

a lower-bound constraint on recall p+(D[y = 1]; θ) > κ for the user’s choice of κ ∈ [0, 1]. For

11

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

example, one may wish to train a classifier that awards free meals to poor students, but constrain it to

obtain at least 95% recall.

Precision can be expressed in rates as c+(D[y = 1]; θ)/c+(D; θ), and thus to get precision of at

least κ, one can add a rate constraint:

c+(D[y = 1]; θ)− κc+(D; θ) ≥ 0. (9)

If (9) holds, then mathematically the precision is lower-bounded by κ on the dataset D. However,

since the expectation of a ratio does not equal the ratio of the expected numerator and denominator,

analyzing how well the empirical constraint holding generalizes to new i.i.d. samples is not straight-

forward, and violating the constraint (9) by some ǫ > 0 does not translate directly into a precision

error of ǫ.
The ROC AUC (Area under the ROC curve) can be approximated using a rate constraint, as in

Eban et al. (2017). The ROC curve is obtained by plotting the true positive rate (TPR) vs. the false

positive rate (FPR). First, slice up the FPR-axis into L slices (to approximate the required Riemann

integral). Then for the ℓth slice, consider J different decision thresholds and choose the threshold

that maximizes TPR and satisfies the ℓth slice FPR bound ℓ/L, and then the averaged maximum

precision across the L FPR slices is bounded:

1

L

L∑

ℓ=1

max
j∈[J]:p+αj

(D[y=−1];θ)≤ ℓ
L

p+αj
(D[y = 1]; θ) ≥ κ. (10)

where p+α (D; θ)
△
= 1

|D|

∑
x∈D Ih(x;θ)≥α, c+α (D; θ)

△
=
∑

x∈D Ih(x;θ)≥α, and αj :=
2j−1
2J for j ∈ [J].

In particular, p+0 ≡ p+. Taking L → ∞, J → ∞ will have the expression on the LHS of (10)

converge to the exact ROC AUC.

3.3. Churn And Win Loss Ratio Constraints

In practice, a new classifier is often being trained to replace an existing classifier h̃, in which case the

new classifier may be evaluated using metrics that compare the new classifier to the old classifier h̃.

One common metric to compare two classifiers is the win-loss ratio (WLR), which is the number

of times the new classifier is right and the old classifier is wrong, divided by the number of times the

new classifier is wrong and the old classifier is right.

A WLR constraint can be expressed in terms of rates as in Table 2, where we use D[h̃ = −1] to

denote the subset of D that is labeled negatively by the classifier h̃, and D[h̃ = −1, y = 1] to denote

the subset of D of whose training label y is 1, so that c+(D[h̃ = −1, y = 1]; θ) is the number of

wins of the new classifier over h, and so on. Re-arranging terms, one can constrain for WLR using a

rate constraint:

c+(D[h̃ = −1, y = 1]; θ) + c−(D[h̃ = 1, y = −1]; θ)

− κ(c+(D[h̃ = −1, y = −1]; θ) + c−(D[h̃ = 1, y = 1]; θ)) ≥ 0, (11)

where κ ∈ R
+ is the lower-bound on the WLR. However, enforcing this constraint on a training

dataset D does not necessarily guarantee that the desired WLR threshold will be achieved on fresh

i.i.d. samples, not only due to the potential for overfitting, but also because the expectation of a ratio

does not equal the ratio of expectations.

12

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

WLR constraints on different slices of the data can ensure that a new classifier’s gains are not

coming at the expense of an important subset of examples. (See also our discussion of no worse off

and no lost benefits for related fairness constraints).

In practice, labeling data can be expensive, so it is common to test a new classifier by drawing a

fresh test set including only examples on which the new classifier and previous classifier h̃ disagree.

We refer to this as a fresh test. Fresh tests reduce the chance of overfitting to a fixed test set that is

used over many model iterations. Fresh tests only incur labeling costs for those examples whose

decisions have changed. Thus with a fresh test, higher WLR means fewer fresh test examples have to

be rated to statistically significantly confirm that the new classifier is better than the old classifier h̃
(Cormier et al., 2016).

Note that two new classifiers can have the same accuracy but different WLRs compared to the

previous classifier h. The proportion of a dataset D on which the classifications change when one

changes classifiers is called churn (Cormier et al., 2016; Goh et al., 2016). When using a fresh test,

the labeling costs scale linearly with the churn (and the size of the test set D). High churn also causes

more instability for follow-on systems, and can confuse users. Goh et al. (2016) proposed explicitly

constraining the churn, which can be directly expressed as the rate constraint:

c+(D[h̃ = −1]; θ) + c−(D[h̃ = 1]; θ) ≤ κ|D|, (12)

where κ ∈ [0, 1] is the proportion of D on which the classification decision is allowed to change.

Constraining churn on different slices of the data, with tighter and looser constraints, can be useful.

For example, if the classifier is to be used worldwide, but labeling is more expensive in Norway than

in Vietnam, or if there is known to be less headroom to improve on examples from Norway, then it

could be beneficial to constrain the churn more tightly on examples from Norway, but more loosely

on examples from Vietnam.

Of course, constraining churn too tightly limits the potential accuracy gains. Thus we also

propose considering loss-only churn constraints, which only penalizes new losses:

c+(D[h̃ = −1, y = −1]; θ) + c−(D[h̃ = 1, y = 1]; θ) ≤ κ|D|, (13)

where κ ∈ [0, 1] is the proportion of D whose classification decision is allowed to flip.

One disadvantage of constraining loss-only churn is it requires labeled examples, whereas churn

constraints can be more conveniently used on a dataset of unlabeled examples.

3.4. Fairness Goals And Other Group-Specific Goals

An important use case for rate constraints is enforcing metrics for different groups or categories

of examples. For example, ensuring that a classifier for identifying family-friendly videos works

roughly equally well at filtering different types of objectionable adult content. Rate constraints can

be used to enforce a broad set of such group-specific goals, as detailed in Table 3, where k indexes

the K different groups of interest.

A special case of group-specific goals are those that are designed to improve some fairness

metric. In these cases the groups are usually defined as different groups of people, e.g. different

genders or age brackets. Table 3 shows that many of the fairness goals already studied in the machine

learning literature can be expressed with rate constraints. With that said, fairness is a complex moral

and policy problem, and depending on the context and application, different formulations may be

appropriate, with some such formulations not being group-based at all.

13

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Many fairness goals are designed for applications where positive classification endows a benefit,

such as being awarded a loan, a job, or a free meal. For example, the goal of statistical parity reflects

that a bank might be legally required to give loans at equal rates to different groups to alleviate

disparity (Bocian et al., 2008), that is, the classifier is required to provide equal positive rates of

classification across groups (see e.g. Zafar et al. (2015); Fish et al. (2016); Hardt et al. (2016); Goh

et al. (2016)). Statistical parity is also known as demographic parity (Hardt et al., 2016), and equal

coverage (Goh et al., 2016). Notice that a statistical parity constraint ignores the labels of the training

data. We introduce the related goal of minimum coverage, which enforces some minimal benefit rate

for each group.

Next we detail some fairness goals we find useful in practice, but have not seen previously

formalized in the literature. The goal of accurate coverage requires the classifier to give free meals to

each group to match that group’s positive training label rate. This goal ignores whether the individual

predictions are accurate, but tries to ensure that each group overall receives a rate of benefits that it is

labeled as deserving.

No lost benefits: which requires a model to classify examples positively from each group at least

as often as the classifier h̃ that it is replacing. No lost benefits is a type of churn goal (see Sec. 3.3)

that is measured for the whole group (rather than for individual decisions).

The other fairness goals in Table 3 depend on the training labels. Our not worse off fairness

goal requires that accuracy with the new classifier for each group is not worse than it was under the

classifier h̃ that it would replace. For example, suppose someone invents a new driving test, and

shows that it is more accurate than the current written driving test at diagnosing whether illiterate

people are safe drivers, then not worse off requires that the new driving test not reduce accuracy

compared to the old test for other groups, e.g. senior citizens and teenagers. Not worse off is a

label-dependent group-specific churn goal.

Minimum accuracy, which requires that every group experience some pre-set level of accuracy.

Minimum accuracy ensures that no group is left behind, but respects that for some problems some

groups may be much easier to classify than other groups. For such problems, constraining accuracy

to be similar across groups can lead to degenerate solutions, as the only way to make all groups have

equal metrics may be to produce a degenerate classifier.

Equal opportunity and equal odds (Hardt et al., 2016) also rely on the training labels. For

example, equal opportunity requires that if a classifier awards free meals (positive classification) to

half of the east-side children who are labeled as deserving free meals, then it should also award free

meals to half of the west-side children who are labeled as deserving free meals. Notice that equal

opportunity imposes no conditions whatsoever on the negatively-labeled examples (in this case, those

students who are not labeled as deserving of free meals). In contrast, the fairness goal of equal odds

requires both the true positive rate and the false positive rate to be the same for all groups. Variations

are equal accuracy, equal recall, equal precision, and so on, all of which aim to make the classifier

equally good at some metric for different groups.

Fairness goals that depend on the training labels are most compelling when the training examples

and labels are believed to have been fairly sampled and labeled. These goals are less compelling

when the training dataset is not entirely trusted, or thought to be misaligned with the policy goals,

a situation referred to as negative legacy (Kamishima et al., 2012). There are many reasons why

training data and labels may not be fully trustworthy. Selection biases on the training examples

and raters labeling them can affect the training distribution in ways that negatively impact certain

groups. Further, training labels can have unbiased noise due to all sorts of cognitive biases. One key

14

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 3: Group-Specific and Fairness Goals Expressed As Rate Constraints for Groups k = 1, . . . ,K

Statistical Parity p+(Dk; θ) = p+(D; θ) ∀k
Minimum Coverage p+(Dk; θ) ≥ κ ∀k and user-specified κ ∈ [0, 1]

No Lost Benefits p+(Dk; θ) ≥ |(Dk[h̃ = 1])|/|Dk| ∀k
Accurate Coverage p+(Dk; θ) = |Dk[y = 1]|/|Dk| ∀k
Equal Opportunity p+(Dk[y = 1]; θ) = p+(D[y = 1]; θ) ∀k
Equal Odds p+(Dk[y = 1]; θ) = p+(D[y = 1]; θ) ∀k

and p+(Dk[y = −1]; θ) = p+(D[y = −1]; θ) ∀k
Equal Accuracy (c+(Dk[y = 1]) + c−(Dk[y = −1]))/|Dk|

= (c+(D[y = 1]) + c−(D[y = −1]))/|D| ∀k
Minimum Accuracy (c+(Dk[y = 1]) + c−(Dk[y = −1]))/|Dk| ≥ κ ∀k
Not Worse Off (c+(Dk[y = 1]) + c−(Dk[y = −1]))/|Dk| ≥ |(Dk[y = h̃])|/|Dk| ∀k

problem is raters are generally more accurate at labeling examples they are more familiar to them,

for example, consider a situation where adult raters are asked to label whether children will find a

video interesting.

3.5. Egregious Examples And Steering Examples

Another use of rate constraints is to constrain the performance on auxiliary labeled datasets to control

the classifier. For example, Goh et al. (2016) proposed constraining the classifier for high accuracy

on a small set of particularly egregious examples that should definitely not be mislabeled. Egregious

examples act as an integrated unit test: as the classifier trains, it actively tests itself to make sure it

satisfies the constraint on the egregious examples and is able to correct the training accordingly.

Another practical example of using an auxiliary labeled dataset is what we term steering examples,

which we define as a set of labeled examples that are more accurately labeled than the training set. For

example, one may have access to a large but noisy training set of clicks on news articles. However,

an article might be clicked either because it was relevant news, or because it had a catchy headline.

We can try to steer the classifier to focus on the relevant news articles by providing a smaller but

expertly-labeled curated set of examples that mark catchy headlines as negative, and then constrain

the classifier to achieve some reasonable minimal accuracy on these steering examples. Such a rate

constraint will steer the classifier to be consistent with the steering examples, and helping it disregard

any badly labeled training examples. A second example is a classifier that attempts to determine

whether an online store should advertise to a given customer. Suppose that there is a large dataset

of training examples with the positive label, “customer clicked advertisement and visited website”,

but a relatively small set of examples where the positive label is, “customer clicked advertisement

and made a purchase.” It may be better to train on the large set of “visited” examples due to its

much larger size and coverage, but also to constrain at least some specified accuracy on the smaller

“purchase” examples in order to steer the classifier towards prioritizing clicks that lead to purchases.

15

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

3.6. Decision Rule Priors

Machine learning practitioners often have prior knowledge about a classification problem that they

can communicate as a decision rule on a tiny set of features. For example, “Don’t recommend a

book to a user if it is in a language they haven’t purchased before.” We propose a simple way of

incorporating such decision rule priors into the structural risk minimization problem by creating an

auxiliary dataset consisting of many unlabeled samples, labeling it with the desired decision rule,

and adding an accuracy rate constraint on that auxiliary data set.

Such decision rule priors can act as regularizers against noisy and poorly-sampled training

examples, and can produce a classifier that is more interpretable because it is known to (probably)

obey the given decision rules (like all rate constraints, this depends on whether one constrains with

slack or not, and also on exactly how well the satisfied constraint generalizes, which depends on

whether the examples observed at evaluation time will truly be drawn i.i.d. from the same distribution

as the training data, as well as the function class, and how hard the constraint is to satisfy).

This proposal is similar to Bayesian Rule Lists (BRL) (Letham et al., 2015) in that a decision

rule (or set of decision rules) is given a priori to training the model. However, BRL training takes as

input a large set of decision rules and outputs a posterior over the rules, rather than incorporating a

decision rule into a structural risk minimization problem.

3.7. How To Best Specify Rate Constraints

For any rate constraint, we recommend allowing some slack in order to find a feasible solution. For

example, statistical parity could be written as a constraint with an additive slack of κ like this:

p+(D; θ)− p+(Dk; θ) ≤ κ,

or instead with multiplicative slack of κ like this:

p+(D; θ)− κp+(Dk; θ) ≥ 0,

where k is the index of the kth subset of interest.

Our experience is that additive slack tends to be more likely to produce reasonable solutions than

multiplicative slack for many constraints. The danger to watch out for is whether the constraint is

specified in a way that encourages the training to satisfy the constraint in a suboptimal way. For

example, if one constrains the false positive rate of each group to be no worse than 125% of the

overall false positive rate (multiplicative slack), then the training is incentivized to increase the

overall false positive rate because that loosens the constraint further (the same effect occurs for

additive slack, but the effect tends to be larger for multiplicative slack).

Constraints can also be expressed pairwise between groups, instead of against the global rate:

p+(Dj ; θ)− p+(Dk; θ) ≤ κ,

for all j, k pairs. Our experience is that constraints that involve a larger dataset are generally

preferable, and that the smaller the dataset generally the greater the risk of overfitting the constraint

or ending up with a degenerate solution to achieve feasibility.

Equality constraints can be expressed by using both a lower-bound and an upper-bound inequality

constraint. In practice, we suggest allowing some slack between the lower and upper bounds in order

to increase the number of feasible solutions, thereby making stochastic gradient optimization more

stable.

16

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

4. Optimizing With Constraints

For nonlinear function classes, training a classifier with rate constraints as per Equation 7 is a

non-convex optimization over a non-convex constraint set. In this section we provide new theoretical

insights and algorithms to optimize general non-convex problems with non-convex constraints, then

demonstrate our algorithmic proposals work well in practice with multiple real-world constraints in

Section 5. We first outline our two main contributions for this section below.

A Minimal Stochastic Solution: Algorithms that solve non-convex constrained optimization

problems based on regret minimization, which includes our approach as well as previous work (e.g.

Chen et al., 2017; Agarwal et al., 2018) will output a distribution over θs which has discrete support

over T different θ (resulting from the T different epochs of the training algorithm), requiring us to

store and sample from T different models. In practice, large T may be problematic to store and serve.

Surprisingly, we prove that there always exists an equilibrium that has sparse support on at most

m + 1 choices of model parameters, where m is the number of constraints. We use this result to

provide a new practical algorithm to shrink the approximated equilibrium down to a nearly-optimal

and nearly-feasible solution supported on at most m+ 1 models, which is guaranteed to be at least

as good as the original stochastic classifier supported on T models.

Handling Non-Differentiable Constraints: A key issue for Equation 7 is the non-

differentiability of the constraints due to the indicators in the rate constraints. To handle this, in

Section 4.3, we introduce a new formulation we call the proxy-Lagrangian that changes the standard

two-player zero-sum game to a two-player non-zero-sum game, which presents new challenges

to analysis. In fact, solving a Nash equilibrium is PPAD-complete in the non-zero-sum setting

(Chen and Deng, 2006). We prove that a particular game theory solution concept, which we call

semi-coarse correlated equilibrium, results in a stochastic classifier that is feasible and optimal. This

is surprising because the semi-coarse correlated equilibrium is a weaker notion of equilibrium than

Nash equilibrium. We go on to provide a novel algorithm that converges to such an equilibrium. To

our knowledge, we give the first reduction to this particular solution concept and the first practical

use for it, which may be of independent interest. Interestingly, the θ-player needs to only minimize

the usual external regret, but the λ-player must minimize the swap regret (Blum and Mansour, 2007),

a stronger notion of regret. While the resulting distribution is supported on (a possibly large number

of) (θ, λ) pairs, applying the same “shrinking” procedure as before yields a distribution over only

m+ 1 of the θs that is at least as good as the original.

In Section 4.1, we handle the optimization of the zero-sum Lagrangian game with an oracle-

based algorithm and introduce our proposed “shrinking” procedure. Then, in Section 4.2 we

introduce the concept of proxy constraints, describe how it is useful to handle non-differentiable

constraints, and formulate the non-zero-sum modification of the Lagrangian, which we call the proxy-

Lagrangian. Section 4.3 describes the equilibrium required out of this non-zero-sum game so that it

will correspond to an approximately feasible and optimal solution to the constrained optimization

problem. Section 4.4 gives an oracle-based procedure for solving for such an equilibrium. Section 4.5

gives a more practical stochastic gradient-based optimizer along with improved guarantees in the

convex setting. Finally, Section 4.6 shows that the “shrinking” procedure holds for the non-zero-sum

solution as well.

17

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Algorithm 1 Optimizes the Lagrangian formulation (Equation 3) in the non-convex setting via the

use of an approximate Bayesian optimization oracle Oρ (Definition 1) for the θ-player. The parameter

R is the radius of the Lagrange multiplier space Λ :=
{
λ ∈ R

m
+ : ‖λ‖1 ≤ R

}
, and the function ΠΛ

projects its argument onto Λ w.r.t. the Euclidean norm.

OracleLagrangian (R ∈ R+,L : Θ× Λ → R,Oρ : (Θ → R) → Θ, T ∈ N, ηλ ∈ R+):

1 Initialize λ(1) = 0
2 For t ∈ [T]:

3 Let θ(t) = Oρ

(
L
(
·, λ(t)

))
// Oracle optimization

4 Let ∆
(t)
λ be a gradient of L

(
θ(t), λ(t)

)
w.r.t. λ

5 Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∆

(t)
λ

)
// Projected gradient update

6 Return θ(1), . . . , θ(T) and λ(1), . . . , λ(T)

4.1. Lagrangian Optimization In The Non-convex Setting

We start by assuming an approximate Bayesian optimization oracle (defined in Section 4.1.1),

which enables us to use the Lagrangian formulation and not relax the non-convex and/or non-

differentiable constraints. This setting is a slight generalization of that presented in Agarwal et al.

(2018). Algorithm 1 solves for a stochastic solution to the non-convex constrained optimization

problem. It proceeds by playing the following for T rounds: the model parameter player plays

best-response (that is, the θ which minimizes the Lagrangian given the last choice of Lagrange

multipliers), and the Lagrange multiplier player plays a regret minimizing strategy (here we use

projected SGD).

Our first contribution of this section (in Section 4.1.2) is showing that the resulting stochastic

classifier is provably approximately feasible and optimal in expectation. This extends the fair

classification work of Agarwal et al. (2018) to our slightly more general setting. Our second

contribution comes in Section 4.1.4: we will show how the support of the stochastic solution can be

efficiently “shrunk” to one that is at least as good, but is supported on only m+ 1 solutions and is

shown to also have a considerable gain empirically.

4.1.1. ORACLE FOR UNCONSTRAINED NON-CONVEX MINIMIZATION (ADDITIVE

APPROXIMATION)

Algorithm 1, like the robust optimization algorithm of Chen et al. (2017), requires an oracle for

performing approximate non-convex minimization. The oracle is a simply a function that takes in a

function f and returns an approximate minimizer of f .

Definition 1 A ρ-approximate Bayesian optimization oracle is a function Oρ : (Θ → R) → Θ such

that:

f (Oρ (f)) ≤ inf
θ∗∈Θ

f (θ∗) + ρ

for any f : Θ → R that can be written as a nonnegative linear combination of the objective and

constraint functions g0, g1, . . . , gm.

18

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

The oracle will be used by the θ-player, and the λ-player will use projected gradient ascent. We

note that this is a standard assumption in order to obtain theoretical guarantees. (e.g. see Chen et al.

(2017), which uses a multiplicative instead of additive approximation).

4.1.2. APPROXIMATE MIXED NASH EQUILIBRIUM

We characterize the relationship between an approximate Nash equilibrium of the Lagrangian game,

and a nearly-optimal nearly-feasible solution to the non-convex constrained problem (Equation 2) in

our theorem below. This theorem has a few differences from the more typical equivalence between

Nash equilibria and optimal feasible solutions in the convex setting. First, it characterizes mixed

equilibria, in that uniformly sampling from the sequences θ(t) and λ(t) can be interpreted as defining

distributions over Θ and Λ. Second, we require compact domains in order to prove convergence

rates (below) so Λ is taken to consist only of sets of Lagrange multipliers with bounded 1-norm. In

Appendix A, this is generalized to p-norms..

As a reminder, a mixed Nash equilibrium to a two-player game is a pair of distributions over the

strategy spaces, one distribution assigned to each player such that neither player can improve their

expected payoff (over these distributions) by changing their distribution given that the other player

uses their assigned distribution. An ǫ-approximate mixed Nash equilibrium is where neither player

can improve by more than ǫ by changing their assigned distribution given that the other player uses

their assigned distribution.

Finally, as a consequence of the compact domains, the feasibility guarantee of Theorem 2

only holds if the Lagrange multipliers are, on average, smaller than the maximum 1-norm radius

R. Thankfully, as is shown by the final result of Theorem 2, if there exists a point satisfying the

constraints with some margin γ > 0, then there will exist an R that is large enough to guarantee

feasibility to within O(ǫ).

Theorem 2 Define:

Λ
△
= {λ ∈ R

m
+ : ‖λ‖1 ≤ R} (14)

and let θ(1), . . . , θ(T) ∈ Θ and λ(1), . . . , λ(T) ∈ Λ be sequences of parameter vectors and Lagrange

multipliers that comprise an approximate mixed Nash equilibrium, i.e.:

max
λ∗∈Λ

1

T

T∑

t=1

L
(
θ(t), λ∗

)
− inf

θ∗∈Θ

1

T

T∑

t=1

L
(
θ∗, λ(t)

)
≤ ǫ.

Define θ̄ as a random variable for which θ̄ = θ(t) with probability 1/T , and let λ̄
△
=
(∑T

t=1 λ
(t)
)
/T .

Then θ̄ is nearly-optimal and nearly-feasible in expectation:

Eθ̄

[
g0
(
θ̄
)]

≤ inf
θ∗∈Θ:∀i.gi(θ∗)≤0

g0 (θ
∗) + ǫ and max

i∈[m]
Eθ̄

[
gi
(
θ̄
)]

≤ ǫ

R− ‖λ̄‖1
.

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the constraints with margin γ (i.e. gi (θ
′) ≤

−γ for all i ∈ [m]), then:

‖λ̄‖1 ≤
ǫ+Bg0

γ
,

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.

19

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Proof This is a special case of Theorem 9 and Lemma 10 in Appendix A.

4.1.3. CONVERGENCE OF ALGORITHM 1

Algorithm 1’s convergence rate is given by the following lemma:

Lemma 3 (Algorithm 1) Suppose that Λ and R are as in Theorem 2, and define B∆ ≥
maxt∈[T]

∥∥∥∆(t)
λ

∥∥∥
2
. If we run Algorithm 1 with the step size ηλ := R/B∆

√
2T , then the result

satisfies Theorem 2 for:

ǫ = ρ+RB∆

√
2

T
,

where ρ is the error associated with the oracle Oρ.

Combined with Theorem 2, we therefore have that if R is sufficiently large, then Algorithm 1 will

converge to a distribution over Θ that is, in expectation, O(ρ)-far from being optimal and feasible at

a O(1/
√
T) rate, where ρ is defined in Section 4.1.1.

4.1.4. SHRINKING THE STOCHASTIC SOLUTION

A disadvantage of Algorithm 1 is that it results in a mixture of T solutions, which may be large and

thus undesirable in practice. However, we can show that much smaller mixed Nash equilibria exist:

Lemma 4 If Θ is a compact Hausdorff space, Λ is compact, and the objective and constraint

functions g0, g1, . . . , gm are continuous, then the Lagrangian game (Equation 3) has a mixed Nash

equilibrium pair (θ, λ) where θ is a random variable supported on at most m+1 elements of Θ, and

λ is non-random.

Proof Follows from Theorem 13 in Appendix B.

We do not content ourselves with merely having shown the existence of such an equilibrium.

Fortunately, we can re-formulate the problem of finding the optimal ǫ-feasible mixture of the θ(t)s
as a linear program (LP) that can be solved to shrink the support set to m+ 1 solutions. We must

first evaluate the objective and constraint functions for every θ(t), yielding a T -dimensional vector of

objective function values, and m such vectors of constraint function evaluations, which are then used

to specify the LP.

Lemma 5 Let θ(1), θ(2), . . . , θ(T) ∈ Θ be a sequence of T “candidate solutions” of Equation 2.

Define ~g0, ~gi ∈ R
T such that (~g0)t = g0

(
θ(t)
)

and (~gi)t = gi
(
θ(t)
)

for i ∈ [m], and consider the

linear program:

min
p∈∆T

〈p, ~g0〉

s.t. 〈p, ~gi〉 ≤ ǫfor all i ∈ 1, . . . ,m,

where ∆T is the T -dimensional simplex. Then every vertex p∗ of the feasible region—in particular

an optimal one—has at most m∗ + 1 ≤ m+ 1 nonzero elements, where m∗ is the number of active

〈p∗, ~gi〉 ≤ ǫ constraints.

20

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

This lemma suggests a two-phase approach to actually finding the m+ 1 stochastic solution. In the

first phase, apply Algorithm 1, yielding a sequence of iterates for which the uniform distribution over

the θ(t)s is approximately feasible and optimal. Then apply the procedure of Lemma 5 to find the

best distribution over these iterates, which in particular can be no worse than the uniform distribution,

and is supported on at most m+ 1 iterates.

4.2. Proxy Constraints And A Non-Zero Sum Game

Most real-world machine learning implementations use first-order methods (even on non-convex

problems, e.g. DNNs); however, to use these methods, one must have gradients which are unavailable

for rate constraints due to the indicators. Since the constraint functions are piecewise-constant, their

gradients are zero almost everywhere, and a gradient-based method cannot be expected to succeed.

In general, for constrained optimization problems in the form of Equation 2, non-differentiable

constraints arise naturally when one wishes to constrain counts or proportions.

The obvious solution is to use a surrogate for each indicator. For example, we might consider

replacing the indicators defining a rate with sigmoids, and then optimizing the Lagrangian. This

solves the differentiability problem, but introduces a new one: a (mixed) Nash equilibrium would

correspond to a solution satisfying the sigmoid-relaxed constraints, instead of the actual constraints.

Interestingly, it turns out that we can seek to satisfy the original un-relaxed constraints, even

while using a surrogate. Our proposal is motivated by the observation that, while differentiating the

Lagrangian (Equation 3) w.r.t. θ requires differentiating the constraint functions gi (θ), to differentiate

it w.r.t. λ we only need to evaluate them. Hence, a surrogate is only necessary for the θ-player; the

λ-player can continue to use the original constraint functions.

We refer to a surrogate that is used by only one of the two players as a “proxy”, and introduce

the notion of “proxy constraints” by taking g̃i (θ) to be a sufficiently-smooth upper bound on gi (θ)
for i ∈ [m], and formulating two functions that we call “proxy-Lagrangians”:

Lθ(θ, λ)
△
= λ1g0(θ) +

m∑

i=1

λi+1g̃i(θ) (15)

Lλ(θ, λ)
△
=

m∑

i=1

λi+1gi(θ),

where we restrict Λ to be the (m+ 1)-dimensional simplex ∆m+1. The θ-player seeks to minimize

Lθ (θ, λ), while the λ-player seeks to maximize Lλ (θ, λ). Notice that the g̃is are only used by

the θ-player. Intuitively, the λ-player chooses how much to weigh the proxy constraint functions,

but—and this is the key to our proposal—does so in such a way as to satisfy the original constraints.

Viewed as a two-player game, what we have changed is that now the θ and λ players each

have their own payoff functions Lθ(θ, λ) and Lλ(θ, λ) respectively, making the game non-zero sum.

Finding a Nash equilibrium of a non-zero-sum game is much more difficult than for a zero-sum

game—in fact, it’s PPAD-complete even in the finite setting (Chen and Deng, 2006). We will

present a procedure which approximates a weaker type of equilibrium: instead of converging to a

Nash equilibrium, it converges to a new solution concept, which we call a semi-coarse correlated

equilibrium. Despite being weaker than a Nash equilibrium, we show that it still corresponds to a

nearly-optimal and nearly-feasible solution to constrained optimization in expectation.

The proxy-Lagrangian formulation leads to a tighter approximation than the popular approach

of using a surrogate for both players, as has been previously proposed, e.g. for Neyman-Pearson

21

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

classification (Davenport et al., 2010; Gasso et al., 2011), and AUC optimization (Eban et al., 2017).

Those proposals optimize a simpler zero-sum game, but one that is a worse reflection of the true

goal. In the experimental section, we will provide evidence that the proposed proxy-Lagrangian

formulation can provide higher accuracy while still satisfying the constraints. This is especially

important when the rate constraints express real-world restrictions on how the learned model is

permitted to behave.

4.3. Proxy-Lagrangian Equilibrium

For the proxy-Lagrangian game (Equation 15), we cannot expect to find a Nash equilibrium, at least

not efficiently, since it is non-zero-sum. However, the analogous result to Theorem 2 requires a

weaker type of equilibrium: a joint distribution over Θ and Λ w.r.t. which the θ-player can only

make a negligible improvement compared to the best constant strategy, and the λ-player compared to

the best action-swapping strategy; this is a type of Φ-correlated equilibrium (Rakhlin et al., 2011).

We call this semi-coarse-correlated equilibrium because it exhibits properties of a coarse-correlated

equilibrium for one player (θ-player) and that of correlated equilibrium for the other player (λ-player).

In a coarse-correlated equilibrium, each player is assigned a distribution over their respective strategy

spaces where these distributions can be mutually dependent and no player can improve their payoff

by switching to any fixed strategy given that the other players use their assigned distributions. In

a correlated equilibrium, again each player is assigned a distribution over their respective strategy

spaces where these distributions can be mutually dependent, but no player can improve their payoff

by changing their assigned distribution given that the other players use their assigned distributions.

We present our theorem showing the achievability of this type of equilibrium, then we present

Algorithm 2 to satisfy the theorem.

Theorem 6 Define M as the set of all left-stochastic (m+ 1)× (m+ 1) matrices, Λ
△
= ∆m+1 as

the (m+ 1)-dimensional simplex, and assume that each g̃i upper bounds the corresponding gi. Let

θ(1), . . . , θ(T) ∈ Θ and λ(1), . . . , λ(T) ∈ Λ be sequences satisfying:

1

T

T∑

t=1

Lθ

(
θ(t), λ(t)

)
− inf

θ∗∈Θ

1

T

T∑

t=1

Lθ

(
θ∗, λ(t)

)
≤ǫθ

max
M∗∈M

1

T

T∑

t=1

Lλ

(
θ(t),M∗λ(t)

)
− 1

T

T∑

t=1

Lλ

(
θ(t), λ(t)

)
≤ǫλ.

Define θ̄ as a random variable for which θ̄ = θ(t) with probability λ
(t)
1 /

∑T
s=1 λ

(s)
1 , and let λ̄

△
=(∑T

t=1 λ
(t)
)
/T . Then θ̄ is nearly-optimal and nearly-feasible in expectation:

Eθ̄

[
g0
(
θ̄
)]

≤ inf
θ∗∈Θ:∀i.g̃i(θ∗)≤0

g0 (θ
∗) +

ǫθ + ǫλ
λ̄1

(16)

and,

max
i∈[m]

Eθ̄

[
gi
(
θ̄
)]

≤ ǫλ
λ̄1

. (17)

Additionally, if there exists a θ′ ∈ Θ that satisfies all of the proxy constraints with margin γ (i.e.

g̃i (θ
′) ≤ −γ for all i ∈ [m]), then:

λ̄1 ≥
γ − ǫθ − ǫλ
γ +Bg0

,

22

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Algorithm 2 Optimizes the proxy-Lagrangian formulation (Equation 15) in the non-convex setting

via the use of an approximate Bayesian optimization oracle Oρ (Definition 1, but with g̃is instead

of gis in the linear combination defining f) for the θ-player, with the λ-player minimizing swap

regret. The π(M) operation on line 3 results in a stationary distribution of M (i.e. a λ ∈ Λ such that

Mλ = λ, which can be derived from the top eigenvector).

OracleProxyLagrangian
(
Lθ,Lλ : Θ×∆m+1 → R,Oρ : (Θ → R) → Θ, T ∈ N, ηλ ∈ R+

)
:

1 Initialize M (1) ∈ R
(m+1)×(m+1) with Mi,j = 1/ (m+ 1)

2 For t ∈ [T]:

3 Let λ(t) = π
(
M (t)

)
// Stationary distribution of M (t)

4 Let θ(t) = Oρ

(
Lθ

(
·, λ(t)

))
// Oracle optimization

5 Let ∆
(t)
λ be a gradient of Lλ

(
θ(t), λ(t)

)
w.r.t. λ

6 Update M̃ (t+1) = M (t) ⊙ . exp
(
ηλ∆

(t)
λ

(
λ(t)
)T)

// ⊙ and . exp are element-wise

7 Project M
(t+1)
:,i = M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

for i ∈ [m+ 1] // Column-wise projection

8 Return θ(1), . . . , θ(T) and λ(1), . . . , λ(T)

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.

Proof This is a special case of Theorem 11 and Lemma 12 in Appendix A.

Notice that Equation 17 guarantees feasibility w.r.t. the original constraints, while Equation 16 shows

that the solution minimizes the objective approximately as well as the best solution that’s feasible

w.r.t. the proxy constraints. Hence, the guarantee for minimizing the objective is no better than what

we would have obtained if we took gi
△
= g̃i for all i ∈ [m], and optimized the Lagrangian as in

Section 4.1. However, because the feasible region w.r.t. the original constraints is larger (perhaps

significantly so) than that w.r.t. the proxy constraints, the proxy-Lagrangian approach has more

“room” to find a better solution in practice (this is demonstrated in the experiments).

One key difference between this result and Theorem 2 is that the R bound on λ is now gone.

Instead, its role, and that of
∥∥λ̄
∥∥
1
, is played by the first coordinate of λ̄. Inspection of Equation 15

reveals that, if one or more of the constraints are violated, then the λ-player would prefer the

corresponding entries in λ to be higher, which in turn causes λ1 to become closer to 0 from our

procedures. Likewise, if they are satisfied (with some margin), then it would prefer the entries after

the first in λ to be 0 which causes λ1 to be one in our procedures. In other words, the first coordinate

of λ(t) encodes the λ-player’s belief about the feasibility of θ(t), for which reason θ(t) is weighted by

λ
(t)
1 in the density defining θ̄.

4.4. Proxy-Lagrangian Optimization Algorithm

To optimize the proxy-Lagrangian formulation, we present Algorithm 2, which is motivated by the

observation that, while Theorem 6 only requires that the θ(t) sequence suffer low external regret

w.r.t. Lθ

(
·, λ(t)

)
, the condition on the λ(t) sequence is stronger, requiring it to suffer low swap

regret (Blum and Mansour, 2007) w.r.t. Lλ

(
θ(t), ·

)
.

23

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Algorithm 3 Optimizes the proxy-Lagrangian formulation (Equation 15) in the convex setting,

with the θ-player minimizing external regret, and the λ-player minimizing swap regret. The π(M)
operation on line 4 outputs the stationary distribution of M (that is, a λ ∈ Λ such that Mλ = λ)

which can be derived from the top eigenvector. The function ΠΘ projects its argument onto Θ w.r.t.

the Euclidean norm.

StochasticProxyLagrangian
(
Lθ,Lλ : Θ×∆m+1 → R, T ∈ N, ηθ, ηλ ∈ R+

)
:

1 Initialize θ(1) = 0 // Assumes 0 ∈ Θ

2 Initialize M (1) ∈ R
(m+1)×(m+1) with Mi,j = 1/ (m+ 1)

3 For t ∈ [T]:

4 Let λ(t) = π
(
M (t)

)
// Stationary distribution of M (t)

5 Let ∆̌
(t)
θ be a stochastic subgradient of Lθ

(
θ(t), λ(t)

)
w.r.t. θ

6 Let ∆
(t)
λ be a stochastic gradient of Lλ

(
θ(t), λ(t)

)
w.r.t. λ

7 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌

(t)
θ

)
// Projected SGD update

8 Update M̃ (t+1) = M (t) ⊙ . exp
(
ηλ∆

(t)
λ

(
λ(t)
)T)

// ⊙ and . exp are element-wise

9 Project M
(t+1)
:,i = M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1

for i ∈ [m+ 1] // Column-wise projection

10 Return θ(1), . . . , θ(T) and λ(1), . . . , λ(T)

Hence, the θ-player uses the oracle to minimize external regret, while the λ-player uses a swap-

regret minimization algorithm of the type proposed by Gordon et al. (2008), yielding the convergence

guarantee:

Lemma 7 (Algorithm 2) Suppose that M and Λ are as in Theorem 6, and define the upper bound

B∆ ≥ maxt∈[T]

∥∥∥∆(t)
λ

∥∥∥
∞

.

If we run Algorithm 2 with the step size ηλ :=
√

(m+ 1) ln (m+ 1) /TB2
∆, then the result

satisfies satisfies the conditions of Theorem 6 for:

ǫθ =ρ

ǫλ =2B∆

√
(m+ 1) ln (m+ 1)

T
,

where ρ is the error associated with the oracle Oρ.

4.5. Practical Stochastic Proxy-Lagrangian Algorithm

Algorithm 3 is designed for the setting of a convex objective, thus we can safely use SGD for

the θ-updates instead of the oracle and enjoy a more practical procedure. We stress that this is a

considerable improvement over previous Lagrangian methods in the convex setting, as they require

both the loss and constraints to be convex in order to attain optimality and feasibility guarantees.

Here, while we assume convexity of the objective and proxy-constraints, the original constraints do

not need to be convex, but we are still able to prove similar guarantees.

24

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Lemma 8 (Algorithm 3) Suppose that Θ is a compact convex set, M and Λ are as in Theo-

rem 6, and that the objective and proxy constraint functions g0, g̃1, . . . , g̃m are convex (but not

g1, . . . , gm). Define the three upper bounds BΘ ≥ maxθ∈Θ ‖θ‖2, B∆̌ ≥ maxt∈[T]

∥∥∥∆̌(t)
θ

∥∥∥
2
, and

B∆ ≥ maxt∈[T]

∥∥∥∆(t)
λ

∥∥∥
∞

.

If we run Algorithm 3 with the step sizes ηθ := BΘ/B∆̌

√
2T and ηλ :=

√
(m+ 1) ln (m+ 1) /TB2

∆,

then the result satisfies the conditions of Theorem 6 for:

ǫθ =2BΘB∆̌

√
1 + 16 ln 2

δ

T

ǫλ =2B∆

√
2 (m+ 1) ln (m+ 1)

(
1 + 16 ln 2

δ

)

T
,

with probability 1− δ over the draws of the stochastic (sub)gradients.

4.6. Shrinking The Stochastic Proxy Lagrangian Solution

Like Algorithm 1, Algorithms 2 and 3 return a stochastic model with support on T solutions. Again,

we show that we can find just as good a stochastic model with minimal support on m+ 1 solutions.

It turns out that the same existence result that we provided for the Lagrangian game (Lemma 4)—

of a Nash equilibrium—holds for the proxy-Lagrangian (this is Lemma 14 in Appendix B). Further-

more, the exact same linear programming procedure of Lemma 5 can be applied (with the ~gis being

defined in terms of the original—not proxy—constraints) to yield a solution with support size m+1,

and works equally well. This is easy to verify: since θ̄, as defined in Theorem 6, is a distribution over

the θ(t)s, and is therefore feasible for the LP, the best distribution over the iterates will be at least as

good.

5. Experiments

We illustrate the broad applicability of rate constraints and investigate how well different optimization

strategies perform. We use the experiments to investigate the following questions:

Do rate constraints help in practice?

• Can we effectively solve the rate-constrained optimization problem?

• Can we get good results at test time by training with rate constraints?

• Do rate constraints interact well with other types of constraints (e.g. data-independent mono-

tonicity shape constraints)?

Does the proxy-Lagrangian better solve the constrained optimization problem?

• Does simply using a hinge surrogate for both players as done in prior work over-constrain in

practice?

• Does the proposed proxy-Lagrangian formulation result in better solutions?

• With the proxy-Lagrangian, is it necessary in practice for the λ-player to minimize the swap

regret or does simply minimizing the external regret work just as well?

Do we really need stochastic classifiers?

• Do the iterates oscillate due to non-existence of an equilibrium in the non-convex setting,

causing the last iterate to sometimes be very bad?

25

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

• Does the proposed sparsely supported m-stochastic classifier work at least as well in practice

as the T -stochastic classifier?

• Does the best iterate perform as well as the stochastic classifiers?

To investigate these questions, we compared twelve optimization algorithms for each of seven

datasets. Table 4 lists the three benchmark and four real-world datasets we used, each randomly

split into train, validation and test sets. We experimented with seven different rate constraints

and monotonicity constraints (Groeneboom and Jongbloed, 2014) as described in Table 5 and

the following subsections. The last column of Table 5 states whether the classifier has access

to information about the different datasets used in the constraints, for example, if there are ten

constraints defined on ten different countries, is country also in the feature vector x?

As listed in Table 4, we performed the experiments on linear models and two types of nonlinear

models: standard two-layer ReLU neural nets (NN), and a two-layer calibrated ensemble of lattices

(Lattices) (Canini et al., 2016).

The rest of this section delves deeper into experimental details and result tables. Then, Section 6

discusses the results and how they provide positive and negative evidence for the above research

questions – the reader may prefer to skip to Section 6 and only consult the following experimental

details as needed.

All of our experiments are on binary classification datasets and the objective used was hinge loss

and the constraint type used (e.g. unconstrained, hinge relaxation or original 0-1) depends on the

algorithm and is made clear in the results.

5.1. TensorFlow Implementation

Our experiments were all run using TensorFlow. We have open-sourced our implementation of

Lagrangian and proxy-Lagrangian optimization in a library called TensorFlow Constrained Op-

timization: https://github.com/google-research/tensorflow_constrained_

optimization.

Experiments with linear models and DNN models used standard TensorFlow functions. Experi-

ments on lattice models used the open-source TensorFlow Lattice package, and consist of learned

one-dimensional piecewise linear feature transformations followed by an ensemble of lattices; all

model parameters were jointly trained. For more details on lattice models see Gupta et al. (2016);

Canini et al. (2016); You et al. (2017). Lattice models can be efficiently constrained for partial

monotonicity shape constraints, where the term partial refers to the practitioner specifying which

features can only have a positive (or negative) impact on f(x). To produce the desired partial

monotonicity, a large number of data-independent linear inequality constraints are needed, each

constraining a pair of model parameters. In the TensorFlow Lattice package, these monotonicity

shape constraints are handled by a projection after each minibatch of stochastic gradients.

5.2. Hyperparameter Optimization

For each of the different datasets, we fix the number of loops and model architecture ahead of time

to perform well for the unconstrained problem. For the unconstrained problem, we validated the

ADAM learning rate. Then for each of the twelve constrained optimization algorithms, we validated

two ADAM learning rates, one for optimizing the model parameters θ, and the other for optimizing

the constraints parameters λ. All ADAM learning rates were varied by powers of 10 around the usual

default of ADAM learning rate of 0.001.

26

https://github.com/google-research/tensorflow_constrained_optimization
https://github.com/google-research/tensorflow_constrained_optimization

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 4: Datasets and Model Types Used in Experiments

Dataset Features Train Valid Test Model Type Model Size or

Parameters

Bank Marketing 60 31,647 4,521 9,042 Linear 61

Adult 122 34,189 4,884 9,768 Linear 123

COMPAS 31 4,320 612 1,225 2 Layer NN 10 hidden units

Business Entity 37 11,560 3,856 3,856 2 Layer NN 16 hidden units

Thresholding 7 70,874 10,125 20,250 2 Layer NN 32 hidden units

Map Intent 32 420,000 60,000 120,000 Lattice Ens. 93,600

Filtering 16 1,282,532 183,219 366,440 Lattice Ens. 3,305

The usual strategy of choosing hyperparameters that score best on the validation set is not satis-

fying in the constrained optimization setting, because now there are two metrics of interest: accuracy

and constraint violation, and the appropriate trade-off between them may be problem dependent.

One solution researchers turn to is to side-step the issue of choosing one set of hyperparameters,

and instead present the Pareto frontier of results over many hyperparameters on the test set. While

certainly valuable in a research setting, we must be mindful that in practice one cannot see the Pareto

frontier on the test set, and must make a choice for hyperparameters based only on the training and

validation sets (as is standard).

For our experiments, we investigate the practical setting in which one must choose one set

of hyperparameters on which to evaluate the test set. For that, we need a heuristic to choose the

best hyperparameters based only on the training and validation data. We analyzed a number of

such heuristics that differently balance the validation accuracy and constraint violation, and were

unable to find any heuristic that was perfect, but settled on the following strategy that has some nice

properties. Rank each hyperparameter vector β by its validation loss LossRank(β), and create a

second ranking of each hyperparamter choice by its maximum constraint violation on the validation

set WorstConstraintRank(β). Then choose the hyperparameter vector β that satisfies:

argmin
β

max {LossRank(β),WorstConstraintRank(β)} , (18)

with ties broken by the minimizing the validation loss.

This strategy chooses the hyperparameter set that has both low loss and small constraint violations,

and guarantees that no other hyperparameter set choice would have both better validation accuracy

and smaller constraint violations.

5.3. Algorithms Tested

We experimented with four groups of algorithms:

1. Unconstrained: the model is trained without any constraints.

2. Hinge: We use a hinge relaxation of the constraints in place of the actual constraints in the

Lagrangian as per Algorithm 5.

3. 0-1 swap: This refers to Algorithm 3, which directly uses the 0-1 constraint in the proxy-

Lagrangian, the λ-player minimizes swap-regret and the θ-player minimizes external regret.

27

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Table 5: Constraints Used in Experiments

Dataset Constraints (# of constraints) Constraint Group in x?

Bank Marketing Demographic Parity (5) Y

Adult Equal Opportunity (4) Y

COMPAS Equal Opportunity (4) Y

Business Entity Res. Minimum Recall (18) and Equal Accuracy (1) Y

Thresholding Steering Examples Minimum Acc. (1) N

Map Intent Not Worse Off (10), Monotonicity (148,800) Y

Filtering Loss-only Churn (11), Monotonicity (9,740) Y

Algorithm 4 Optimizes the Lagrangian formulation with proxy constraints. Like the proxy-

Lagrangian, this is a non-zero-sum game, but unlike the proxy-Lagrangian, we have no theoretical

justification for it. That said, it makes intuitive sense, and works well in practice. The λ-player

optimizes based on the proxy-constraints and the θ-player optimizes based on the original constraints.

The parameter R is the radius of the Lagrange multiplier space Λ :=
{
λ ∈ R

m
+ : ‖λ‖1 ≤ R

}
, and

the functions ΠΘ and ΠΛ project their arguments onto Θ and Λ (respectively) w.r.t. the Euclidean

norm. {gi}mi=1, {g̃i}mi=1 are respectively the original constraints and proxy-constraints.

ProxyAdditiveExternalLagrangian (R ∈ R+, g0 : Θ → R, {gi}mi=1, {g̃i}mi=1, T ∈ N, ηθ, ηλ ∈ R+):

1 Initialize θ(1) = 0, λ(1) = 0 // Assumes 0 ∈ Θ
2 For t ∈ [T]:

3 Let ∆̌
(t)
θ be a stochastic subgradient of g0(θ

(t)) +
∑m

i=1 λ
(t)
i g̃i(θ) w.r.t. θ

4 Let ∆
(t)
λ be a stochastic gradient of g0(θ

(t)) +
∑m

i=1 λ
(t)
i gi(θ) w.r.t. λ

5 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌

(t)
θ

)
// Projected SGD updates . . .

6 Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∆

(t)
λ

)
// . . .

7 Return θ(1), . . . , θ(T) and λ(1), . . . , λ(T)

4. 0-1 ext: This refers to Algorithm 4 training the non-zero-sum game where θ player minimizes

the original Lagrangian but the λ-player minimizes external-regret on the Lagrangian with the

original constraints replaced by the proxy constraints. This is the “obvious” non-zero-sum

analogue of the Lagrangian, but does not enjoy the theoretical guarantees of the proxy-

Lagrangian. This is used as a comparison to 0-1 swap to see whether minimizing external

regret (instead of the more complex swap regret) suffices in practice.

Then, for each constrained optimization technique, we show the results for the following four

solution types:

1. T-stoch: the stochastic solution that is the uniform distribution over the T iterates θ(1), ..., θ(T).

2. m-stoch: the stochastic solution obtained by applying the “shrinking” technique to the T -stoch

solution on the training set, which will have support on at most m+ 1 deterministic solutions.

3. Last: the deterministic solution defined by the last iterate θ(T).

4. Best: the deterministic solution defined by the “best” iterate out of all T iterates θ(1), ..., θ(T),

where “best” is chosen by the heuristic given in Equation 18 applied on the training set.

28

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 6: Bank Marketing Experiment Results

Algorithm Train Err. Valid Err. Test Err. Train Vio. Valid Vio. Test Vio.

Unconstrained 0.0948 0.0935 0.0937 0.0202 0.0220 0.0152

Hinge m-stoch. 0.0955 0.0954 0.0949 0 -0.0008 -0.0030

Hinge T -stoch. 0.1109 0.1114 0.1121 -0.0177 -0.0181 -0.0179

Hinge Best 0.0964 0.0969 0.0955 -0.0032 -0.0045 -0.0047

Hinge Last 0.1122 0.1129 0.1140 -0.02 -0.02 -0.02

0-1 swap. m-stoch. 0.0939 0.0943 0.0951 0 -0.0005 0.0019

0-1 swap. T -stoch. 0.0963 0.0955 0.0947 0.0004 -0.0003 -0.0031

0-1 swap. Best 0.0936 0.0935 0.0932 -0.0004 -0.0009 -0.0041

0-1 swap. Last 0.0963 0.0957 0.0954 -0.0007 -0.001 -0.0035

0-1 ext. m-stoch. 0.0946 0.0952 0.0946 0 -0.001 -0.0024

0-1 ext. T -stoch. 0.1083 0.1087 0.1085 -0.0135 -0.0146 -0.0139

0-1 ext. Best 0.0963 0.0964 0.0953 -0.0021 -0.0016 -0.0056

0-1 ext. Last 0.1029 0.1032 0.1010 -0.0046 -0.0072 -0.0056

We note that in the non-convex proxy-Lagrangian setting, the 0-1 swap algorithm’s T -stoch or

m-stoch solutions come with theoretical guarantees if we replace the SGD with the approximate

optimization oracle. In contrast, the 0-1 ext algorithm has no such guarantees, but is simpler.

Similarly, in the non-convex setting, the deterministic solutions will not have any guarantees, but are

even simpler.

5.4. Bank Marketing

The Bank Marketing UCI benchmark dataset (Lichman, 2013) classifier predicts whether someone

will sign up for the bank product being marketed. This dataset was used to test improving statistical

parity for a linear model in Zafar et al. (2015) but with only one protected group based on age. We

similarly use a linear model and age as a protected feature, but create 5 protected groups based on

the five training set quantiles of age. We add a statistical parity rate constraint for each of the five age

quantiles with an additive slack of 2%:

p+(Dk; θ) ≤ p+(D; θ))− .02,

where Dk are the training examples from the kth protected group for k = 1, 2, . . . , 5, and D are all

the training examples.

The results can be found in Table 6. We note that the Hinge Last solution is a degenerate solution

in that it always predicts the a priori more probable class.

5.5. Adult

We used the benchmark Adult income UCI dataset (Lichman, 2013). The goal is to predict whether

someone makes more than 50k per year, and also do well at the equal opportunity fairness metric. We

used four protected groups: two race-based (Black or White) and two sex-based (Male or Female).

We preprocessed the dataset consistent with Zafar et al. (2015) and Goh et al. (2016). Goh et al. (2016)

29

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Table 7: Adult Experiment Results

Algorithm Train Err. Valid Err. Test Err. Train Vio. Valid Vio. Test Vio.

Unconstrained 0.1421 0.1348 0.1428 0.0803 0.0604 0.0555

Hinge m-stoch. 0.1431 0.1348 0.1442 0 -0.0088 0.0025

Hinge T -stoch. 0.1462 0.1394 0.1481 -0.0409 -0.0372 -0.0436

Hinge Best 0.1424 0.1333 0.1447 -0.0280 -0.0154 -0.0317

Hinge Last 0.1532 0.1490 0.1551 -0.0174 -0.0217 -0.0254

0-1 swap. m-stoch. 0.1431 0.1349 0.1432 0.0176 0.0023 0.0559

0-1 swap. T -stoch. 0.1428 0.1365 0.1436 0.0054 0.0354 0.0285

0-1 swap. Best 0.1426 0.1354 0.1440 -0.0016 0.0140 0.0154

0-1 swap. Last 0.1436 0.1358 0.1443 0.0069 0.0248 0.0221

0-1 ext. m-stoch. 0.1418 0.1348 0.1432 0 -0.0019 0.0059

0-1 ext. T -stoch. 0.1441 0.1369 0.1447 0.0034 0.0220 0.0174

0-1 ext. Best 0.1420 0.1348 0.1432 -0.0374 -0.0333 -0.0015

0-1 ext. Last 0.1436 0.1358 0.1448 -0.0116 0.0078 0.0028

showed that by explicitly constraining the difference in coverage and using a linear model, they

could achieve higher p fairness and better accuracy than earlier work using correlation constraints of

Zafar et al. (2015) by up to 0.5% on this dataset.

For these experiments, we added four rate constraints to the training to impose equal opportunity

at 95%, that is for each of the protected groups (Black, White, Female and Male) the constraints force

the classifier’s coverage (the proportion classified positive) on the positively labeled examples for

each protected group to be at least 95% of the overall coverage on the positively labeled examples:

p+(Dk[y = 1]; θ) ≥ 0.95p+(D[y = 1]; θ), (19)

where Dk are the training examples from the kth protected group for k = 1, 2, . . . , 4, and D are all

the training examples.

We use a linear model. The results can be found in Table 7.

5.6. COMPAS

The positive label in the ProPublicas COMPAS recidivism data is a prediction the person will re-

offend. The goal is to predict recidivism with fairness constraints and we preprocess this dataset in

a similar manner as in the Adult dataset and the protected groups are also similar: two race-based

(Black and White) and two sex-based (Male and Female). The classifier we use is a 2 layer neural

network with 10 hidden units.

In this experiment, the goals are quite similar to that of the Adult experiment. Our protected

groups are again two races (Black and White) and two sexes (Male and Female) and the goal is

to constrain equal opportunity such that no group is unfairly getting targeted. However, instead of

expressing the constraint with multiplicative slack as in the Adult experiments, we expressed it as an

additive slack of 5%:

p+(Dk[y = 1]; θ) ≤ p+(D[y = 1]; θ) + .05,

30

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 8: COMPAS Experiment Results

Algorithm Train Err. Valid Err. Test Err. Train Vio. Valid Vio. Test Vio.

Unconstrained 0.3056 0.3160 0.3109 0.1151 0.2143 0.1082

Hinge m-stoch. 0.3711 0.3744 0.3676 0 0.0395 0.0284

Hinge T -stoch. 0.2880 0.3387 0.3198 0.1093 0.1779 0.0917

Hinge Best 0.2840 0.3322 0.3223 0.0803 0.1262 0.0800

Hinge Last 0.2882 0.3322 0.3231 0.1275 0.1968 0.0996

0-1 swap. m-stoch. 0.3132 0.3015 0.3174 0.0004 0.0851 0.0111

0-1 swap. T -stoch. 0.2968 0.3208 0.3219 0.0257 0.1286 0.0547

0-1 swap. Best 0.3009 0.3096 0.3125 0.0281 0.1084 0.0356

0-1 swap. Last 0.3023 0.3096 0.3158 0.0412 0.1153 0.0480

0-1 ext. m-stoch. 0.3145 0.3080 0.3146 0 0.0813 0.0147

0-1 ext. T -stoch. 0.2990 0.3128 0.3086 0.0323 0.1154 0.0321

0-1 ext. Best 0.3106 0.3160 0.3101 -0.0069 0.0797 -0.0085

0-1 ext. Last 0.2935 0.3160 0.3125 0.0330 0.1231 0.0325

where Dk are the training examples from the kth protected group for k = 1, 2, . . . , 4, and D are all

the training examples. That is, the positive prediction rate of the positively labeled examples for each

protected class can exceed that of the overall dataset by at most 5%.

The results are shown in Table 8.

5.7. Business Entity Resolution

In this entity resolution problem from Google, the task is to classify whether a pair of business

descriptions describe the same real-world business. For example, is Siam Thai Restaurant at Main

and 5th the same business as Old Siam Thai at 5070 Main St? Features include measures of similarity

of the two business titles, phone numbers, and so on. We add two types of constraints to the training.

First, the dataset is world-wide, and for each of the 16 most frequent countries, we imposed a

minimum recall rate constraint of 95 percent:

p+(Dk[y = 1]; θ) ≥ .95,

where Dk are the training examples from the kth country for k = 1, 2, . . . , 16. It is also known

whether each example is a chain business or not. We impose the same minimum recall rate constraint

on chain business examples and non-chain business examples. Additionally, we add an equal accuracy

constraint that the accuracy on not-chain businesses should not be worse than the accuracy on chain

businesses by more than ten percent, as a proxy fairness constraint (Gupta et al., 2019) to making

sure large and small businesses receive similar performance from the model:

c+(DnotCh[y = 1]; θ) + c−(DnotCh[y = −1]; θ)

|DnotCh|
≥ c+(Dch[y = 1]; θ) + c−(Dch[y = −1]; θ)

|Dch|
− 0.1,

where ch is an abbreviation for chain.

31

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Table 9: Business Entity Resolution Experiment Results: 2 Layer NN

Algorithm Train Err. Valid Err. Test Err. Train Vio. Valid Vio. Test Vio.

Unconstrained 0.1223 0.1505 0.1520 0.1727 0.2172 0.2357

Hinge m-stoch. 0.2405 0.2509 0.2535 0 0.0341 0.0282

Hinge T -stoch. 0.3308 0.3351 0.3446 -0.0258 0.0196 -0.0082

Hinge Best 0.2657 0.2720 0.2786 -0.0083 0.0437 0.0026

Hinge Last 0.2483 0.2624 0.2617 -0.0175 0.0125 0.0421

0-1 swap. m-stoch. 0.1751 0.1953 0.1983 0 0.0745 0.0898

0-1 swap. T -stoch. 0.1506 0.1749 0.1760 0.0950 0.1427 0.1933

0-1 swap. Best 0.1407 0.1687 0.1696 0.0681 0.1224 0.1706

0-1 swap. Last 0.1699 0.1910 0.1927 0.0252 0.0864 0.0846

0-1 ext. m-stoch. 0.1891 0.2060 0.2063 0 0.0741 0.0752

0-1 ext. T -stoch. 0.1934 0.2082 0.2092 0.0011 0.0652 0.0770

0-1 ext. Best 0.1889 0.2053 0.2049 0.0026 0.0750 0.0750

0-1 ext. Last 0.1968 0.2118 0.2130 0.0008 0.0594 0.0750

We ran this experiment with a two-layer neural network, the results are shown in Table 9. In

the top row, one sees that the unconstrained model has a very high maximum constraint violation,

because it is very difficult to achieve 95% recall for all regions.

5.8. Thresholding

For this Google problem, a ranked list of hundreds of business results is given for a query, and the

task is to threshold the list to return only the results worth showing a user. We use a 2 layer neural

network with 32 hidden units as the classifier.

A medium-size labeled set is available with labels that are known to be noisy, and the label noise

is not zero-mean and not homogeneous across the feature space. That set is broken uniformly and

randomly into train/validation/test sets.

We also have an auxiliary independent set of 1, 814 steering examples (see Section 3.5) which

were more carefully labeled by expert labelers, and were actively sampled to pinpoint key types

of problems. If one only uses the steering examples (ignoring the noisy labeled data), previous

experiments have shown that one can stably achieve a 33% cross-validation error rate on the steering

examples. The goal is to have a model that gets that 33% error on the steering examples, but also

works as well as possible on the larger noisy data.

The top row of Table 10 shows that only training on the noisy train data produces a error rate of

35% on the noisy test data, which violates our goal of 33% error on the steering examples by 3%
(that is, it has an error rate 36% on the steering examples).

In the other extreme, only training on the steering examples is also unsatisfying: as reported in

the second row of Table 10 that performs poorly on the large noisy test set with an error rate of 39%,

because the steering example set does not cover the entire feature space.

32

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 10: Thresholding Experiment Results

Algorithm Train Err. Valid Err. Test Err. Steering Violation

Unconstrained 0.3595 0.3491 0.3538 0.0316

Unconstrained Trained on Steering 0.3909 0.3924 0.3930 -0.0456

Hinge m-stoch. 0.3601 0.3512 0.3582 0

Hinge T -stoch. 0.3635 0.3558 0.3594 -0.0037

Hinge Best 0.3606 0.3509 0.3560 -0.0031

Hinge Last 0.3621 0.3542 0.3594 -0.0003

0-1 swap. m-stoch. 0.3574 0.3500 0.3557 -0.0025

0-1 swap. T -stoch. 0.3593 0.3513 0.3551 0.0010

0-1 swap. Best 0.3561 0.3484 0.3532 -0.0020

0-1 swap. Last 0.3584 0.3497 0.3543 -0.0020

0-1 ext. m-stoch. 0.3605 0.3504 0.3568 -0.0009

0-1 ext. T -stoch. 0.3602 0.352 0.3553 0.0010

0-1 ext. Best 0.3569 0.3486 0.3515 -0.0014

0-1 ext. Last 0.3579 0.3500 0.3539 -0.0009

For the rest of the rows in Table 10, we train on the noisy data with a minimum accuracy rate

constraint for 67% accuracy on the steering examples:

c+(Dsteering[y = 1]; θ) + c−(Dsteering[y = −1]; θ)

|Dsteering|
≥ 0.67.

All of the different optimization methods find essentially feasible solutions, with many able to

achieve the same or better test set performance as the unconstrained training (top row).

5.9. Map Intent

For this Google problem, the task is to classify whether a query is seeking a result on a map. We add

ten not worse off rate constraints for ten regions that constrain the new model training to be at least

as accurate as the production classifier is for each of those ten regions.

c+(Dregion[y = 1]; θ) + c−(Dregion[y = −1]; θ)

|Dregion|
≥ κregion,

where κregion is the accuracy of the production classifier for that region. The feature vector x includes

ten Bool features that indicate if x belongs to each of these ten regions (each example belongs to at

most one region).

Thirty-two dense and categorical features are available. We train a model that is an ensemble of

300 calibrated lattices, where each lattice acts on 8 of the 32 features, with shared calibrators, and the

lattices are interpolated using multi-linear interpolation, all implemented using the TensorFlow Lattice

package. We enforce monotonicity constraints on 28 of the 32 features, resulting in an additional

148,800 constraints (each one is a linear inequality constraint on a pair of model parameters) applied

during training; see Canini et al. (2016) for more technical details.

33

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Table 11: Map Intent Experiment Results

Algorithm Train Err. Valid Err. Test Err. Train Vio. Valid Vio. Test Vio.

Unconstrained 0.3093 0.3122 0.3104 0.0187 0.0162 0.0319

Hinge m-stoch. 0.3130 0.3129 0.3124 0.0182 0.0176 0.0313

Hinge T -stoch. 0.3096 0.3136 0.3106 0.0194 0.0197 0.0210

Hinge Best 0.3056 0.3131 0.3104 0.0172 0.0194 0.0247

Hinge Last 0.3058 0.3130 0.3099 0.0177 0.0189 0.0220

0-1 swap. m-stoch. 0.2949 0.3002 0.2997 -0.0003 0.0025 0.0176

0-1 swap. T -stoch. 0.3004 0.3022 0.3024 0.0022 0.0061 0.0204

0-1 swap. Best 0.2949 0.3002 0.2997 -0.0003 0.0025 0.0176

0-1 swap. Last 0.2953 0.3004 0.3002 0.0013 0.0034 0.0192

0-1 ext. m-stoch. 0.3069 0.3115 0.3101 0.0094 0.0144 0.0231

0-1 ext. T -stoch. 0.3101 0.3121 0.3107 0.0132 0.0157 0.0243

0-1 ext. Best 0.3069 0.3115 0.3101 0.0094 0.0144 0.0231

0-1 ext. Last 0.3071 0.3111 0.3103 0.0096 0.0140 0.0242

5.10. Filtering

For this Google problem, the task is to classify whether a candidate result for a query should be

immediately discarded as too irrelevant to be worthy of further processing. For this problem we

take as given a base classifier h̃ and the goal is to maximize accuracy with minimal loss-only churn

(see Section 3.3 for details). The base classifier h was trained as a regression model to minimize

mean squared error with respect to a real-valued label on [−1, 1], but then used as a classifier with

decision threshold 0.0 to filter the results. The new classifier is trained on the same training data, but

we pre-threshold the real-valued training labels to form binary classification labels, then train the

new classifier to minimize the classification error rate. We add ten loss-only churn rate constraints

to individually restrict the loss-only churn with respect to the production model for each of ten

mutually-exclusive geographic regions to less than 5%:

c+(Dregion[y = −1, h = −1]; θ) + c−(Dregion[y = 1, h = 1]; θ)

|Dregion[h = y]| ≤ 0.05.

That is, we ask that no more than five percent of the base classifier’s wins are lost for each of the ten

regions. The feature vector x includes ten binary features that indicate if x belongs to one of these

ten regions (some examples do not belong to any of the ten regions).

Both the given regression model h(x) and the new classifier f(x) use the same model architecture:

both are lattice models that are an ensemble of 50 lattices, where each lattice acts on 6 of 16

continuous-valued features, each feature is calibrated by a monotonic piecewise linear transform

that is shared across the lattices, the lattices are interpolated using multilinear interpolation, all

model parameters trained jointly using the TensorFlow Lattice package. We enforce monotonicity

constraints on 14 of the 16 features, resulting in an additional 9,740 constraints applied during

training (each of these is simply a linear inequality constraint on a pair of model parameters); see

Canini et al. (2016) for more technical details.

34

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Table 12: Filtering Experiment Results

Algorithm Train Err. Valid Err. Test Err. Train Vio. Valid Vio. Test Vio.

Unconstrained 0.2747 0.2723 0.2761 0.3164 0.3107 0.3227

Hinge m-stoch. 0.3363 0.3362 0.3369 0 -0.0023 -0.0012

Hinge T -stoch. 0.3658 0.3656 0.3665 -0.0297 -0.0262 -0.0243

Hinge Best 0.3404 0.3403 0.3409 -0.0075 -0.0080 -0.0068

Hinge Last 0.3622 0.3618 0.3630 -0.0239 -0.0239 -0.0242

0-1 swap. m-stoch. 0.3230 0.3231 0.3239 0 0.0071 0.0130

0-1 swap. T -stoch. 0.3205 0.3208 0.3217 0.0096 0.0192 0.0227

0-1 swap. Best 0.3175 0.3178 0.3186 0.0081 0.0116 0.0156

0-1 swap. Last 0.3185 0.3189 0.3195 0.0112 0.0146 0.0118

0-1 ext. m-stoch. 0.3231 0.3234 0.3243 0 0.0048 0.0065

0-1 ext. T -stoch. 0.3300 0.3302 0.3309 0.0004 0.0008 0.0014

0-1 ext. Best 0.3180 0.3179 0.3190 0.0079 0.0116 0.0138

0-1 ext. Last 0.3268 0.3272 0.3278 0.0021 0.0055 0.0087

The production classifier h̃ had a test error rate of 39.72%. As hoped, by training specifically for

this classification task, the new classifier f(x) achieves lower test error rates: as low as 27.61% for

the unconstrained training. However, the high test constraint violation of 32.27% (measured as the

maximum violation over the ten regions) shows that the new unconstrained classifier loses a large

number of the wins the base classifier had for at least one of the ten countries considered.

6. Discussion Of Experimental Results

Now that we have presented the experimental results, we return to discuss the experimental and

theoretical evidence for and against the hypotheses and questions posed at the beginning of Section 5.

6.1. Do Rate Constraints Help In Practice?

Yes, overall the experiments show rate constraints are are a useful machine learning tool. Let us

consider some more specific questions.

6.1.1. CAN WE EFFECTIVELY SOLVE THE RATE-CONSTRAINED OPTIMIZATION PROBLEM?

Yes, but the optimization algorithm does matter. Note here we are asking whether the optimization

problem is well-solved, and thus we focus on the training error and the training violation.

The good news is that compared to unconstrained (top row in result tables) the 0-1 swap regret

m-stochastic optimization (row 6 in result tables) consistently across all experiments did produce

lower training constraint violations while still achieving reasonable training error compared with the

unconstrained. Recall that each m-stochastic solves a linear program that sparsifies the corresponding

T -stochastic such that the constraints are exactly satisfied if the T -stochastic solution is feasible,

so it is by design that the m-stochastic solution train constraint violation is exactly 0.0 for many of

the experiments. For Adult (see Table 7), the 0-1 swap m-stochastic train error is only .001 worse,

35

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

but the train violation drops from .0803 to .0176. For Bank Marketing (see Table 6), the train error

is slightly better for , and the train violation drops from .0202 to 0.0. Similarly for COMPAS (see

Table 8), the 0-1 swap m-stochastic has slightly higher training error but drops the train constraint

violation from 0.1151 to almost zero. For Business Entity Resolution (Table 9), the training error

does increase with 0-1 swap m-stochastic, but it is a reasonable price to pay in training accuracy for

the huge reduction of the worst case equal-accuracy or min-recall constraint violation from 0.1727

to 0.0. For the Thresholding problem (Table 10), the 0-1 swap m-stochastic is again slightly better

on training error and effectively reduces the constraint violation to 0.0, and similarly for the Map

Intent experiment (Table 11), the training error is lower and the training constraint violation is lower.

For Filtering (Table 12), the training error for 0-1 swap regret m-stochastic did go up significantly

from 0.2747 to 0.3230, but the unconstrained training violation was horrendous at 0.3164 whereas

the m-stochastic found a feasible solution. In conclusion for all experiments run, we found the 0-1

swap regret m-stochastic did a good or reasonable job at the optimization problem of minimizing

training error and satisfying the constraints on the training set.

In contrast, one can see that using the baseline strategy of approximating all indicators with the

hinge throughout the optimization can provide poor or even worse results than the unconstrained. For

example, on the Map Intent experiment (see Table 11), the hinge T -stochastic solution manages to

have slightly both worse training error and worse training constraint violation than the unconstrained.

The other hinge optimizations are also un-compelling in this experiment. In contrast, the swap

regret optimizations consistently find good solutions with lower training error and roughly zero

training constraint violations. This is a challenging optimization problem because there are ten rate

constraints on ten regions of differing sizes.

The baseline strategy of simply taking the last iterate often does a good job at solving the

constrained problem, but sometimes is worse at optimizing the constrained problem than even the

unconstrained solver. For example, on COMPAS (see Table 8) the Hinge Last training violation is

actually bigger than the unconstrained training violation. While Hinge Last does achieve slightly

better training error, it hasn’t achieve better validation error (or test error), so we don’t believe this

was simply an unlucky validation of hyperparameter choice. For more details on why last iterate can

perform badly, see Section 6.3.1.

While theory dictates a stochastic solution is necessary for guarantees, in practice the T -stochastic

solutions can be quite poor, for example on Map Intent (Table 11) the Hinge T -stochastic solution is

worse than unconstrained on both training error and training constraint violation. This may be due

to bad early iterates, which would be diluted with a longer run time. Compared to the T -stochastic

solutions, the m-stochastic solutions are always better on training error and never more violating, as

designed.

The best iterate is by definition always at least as good as the last iterate on the training error and/or

training violation. For all three optimization strategies (hinge, 0-1 swap regret, 0-1 external regret),

the best iterate manages to consistently produce solutions that are better than the unconstrained in

terms of training violations and have reasonable or good training errors.

6.1.2. CAN WE GET GOOD TEST RESULTS BY TRAINING WITH RATE CONSTRAINTS?

Yes, mostly. The m-stochastic and best iterate solutions do result in lower test violations and

reasonable test errors for six of the seven experiments. However, for Adult (Table 7), the 0-1 swap

m-stochastic failed to produce lower test violation nor lower test error than the unconstrained,

36

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

despite having much lower training and validation violations. Sadly, the good training and validation

performance simply did not generalize to the test set. This case is hard in part because the Black

constraint in the Adult dataset is based on a relatively small sample: only 345 positive training

examples, 42 positive validation examples, and 179 positive test examples.

Overall, small constraint datasets can lead to poor generalization that can significantly hurt the

overall metrics. The worst generalization happened with the Business Entity Resolution, where

training violations for the proxy-Lagrangian methods ranged from [0− .095], but the test violations

ranged from [0.075− 0.19]. For that experiment, the hinge solutions generalized better, but at the

cost of much higher test errors. Business Entity is a particularly hard problem because there are

16 constraints on different regions, some of which have very small datasets, and just like training a

model, there is a greater risk of poor generalization if the datasets used in the constraints are small.

For the larger datasets (Map Intent in Table 11 and Filtering in Table 12), the classifier perfor-

mance was much more similar on training and test sets.

For a further discussion of generalization for rate-constraints, with some theoretical results and

practical strategies, see Cotter et al. (2019a).

6.1.3. DO RATE CONSTRAINTS INTERACT WELL WITH OTHER TYPES OF CONSTRAINTS?

We did not see any problems from combining rate constraints with monotonicity constraints. For

Map Intent (Table 11), both 0-1 optimization strategies worked reasonably, with the 0-1 swap regret

producing attractive solutions that both notably lowered training error and satisfied the constraints on

the training set. This shows that the addition of the 148,800 sparse linear inequality constraints for

monotonicity did not cause a problem in optimizing the rate constrained problem. Similarly, for the

Filtering (Table 12), the addition of the 9,740 sparse linear inequality constraints for monotonicity

did not keep the optimizers from satisfying the rate constraints.

6.2. Does the Proxy-Lagrangian Better Solve the Constrained Optimization Problem?

We break this question into a few specific questions.

6.2.1. DOES SIMPLY USING HINGE SURROGATE FOR BOTH PLAYERS OVERCONSTRAIN?

We hypothesized that using the hinge loss as a convex relaxation to the 0-1 indicators in the rate

constraints would cause the constrained optimization to find overly-constrained solutions at the cost

of more training accuracy than needed to satisfy the constraints. This was not as large an effect as

we expected. However, it can be seen in the Business Entity Resolution (Table 9) experiment where

the hinge training violations are negative and the training errors are relatively high, whereas the 0-1

m-stochastic solutions crisply achieve the constraint with much lower training errors.

6.2.2. DOES THE PROXY-LAGRANGIAN FORMULATION RESULT IN BETTER SOLUTIONS?

In most experiments, there were trade-offs between test constraint violation and test accuracy which

make it difficult to compare the hinge solutions to the proxy-Lagrangian solutions (denoted 0-1 in

the tables) on the test metrics.

On the training metrics, there is stronger evidence the 0 − 1 m-stochastic optimization is in

fact doing a better job solving the optimization problem than the hinge m-stochastic. For seven

of the seven experiments, the 0 − 1 ext. m-stochastic produced both lower train error and lower

37

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

train violation than the Hinge m-stochastic solution. This was also true for five out of the seven

experiments for the 0 − 1 swap m-stochastic, and the solutions were close for the remaining two

experiments.

In the case of Map Intent (Table 11), we clearly see that the Hinge solutions perform worse in

both accuracy and fairness constraints than the 0-1 proxy-Lagrangian procedures on both training

and testing. In the case of Thresholding, we see that the Hinge procedures seem to do slightly

worse in final accuracy at the cost of over-constraining. We see that in Business Entity Resolution

(Table 9), the Hinge procedures attain significantly higher errors than the other methods but do attain

better constraint satisfaction on testing. Thus, even though proxy-Lagrangian formulation may seem

better on a few of the datasets, this effect was not seen consistently across the remaining datasets

and thus, the question of whether the proxy-Lagrangian attains better solutions in practice remains

inconclusive.

6.2.3. IS MINIMIZING SWAP REGRET NECESSARY, OR DOES EXTERNAL REGRET SUFFICE?

Our theoretical results show that in the proxy-Lagrangian setting, the appropriate type of equilibrium

(i.e. semi-coarse correlated equilibrium) has optimality and feasibility guarantees for the original

constrained optimization problem. In order to attain such an equilibrium, we needed the λ-player

to minimize swap-regret (while the θ-player minimizes the classic external regret). However,

minimizing swap-regret involves a more complicated procedure. We used the strategy of Gordon

et al. (2008), who showed that any external regret minimizing procedure can be turned into one that

minimizes swap regret by a meta-algorithm which runs m copies of the procedure. We questioned

whether it would be just as good in practice to use the simpler external-regret minimizing procedure,

which still leads to a coarse-correlated equilibrium (which is a weaker notion than semi-coarse

correlated equilibrium).

Comparing the swap regret to the external regret for the same solution type (m-stochastic/T -

stochastic/best/last), the external regret usually ends up with a solution with slightly lower test

violations but slightly higher test error. The only exception was the Map Intent experiment in

which the swap-regret solutions were both considerably more accurate and better at satisfying the

constraints. In conclusion, we have not seen experimental evidence that the extra complexity of swap

regret is warranted in practice.

6.3. Do We Really Need Stochastic Classifiers?

Next, we investigate some specific questions regarding the necessity of stochastic solutions over a

deterministic classifier.

6.3.1. DO THE ITERATES OSCILLATE IN THE NON-CONVEX SETTING?

As noted in Section 6.1.1, simply taking the last iterate can produce worse constraint violations

to the optimization problem then solving the unconstrained problem. Figure 3 plots the error and

constraints for each of the iterates on the COMPAS dataset which shows such oscillation. This

suggests that, as we showed in Section 1.4, the phenomenon of the non-convex Lagrangian having

no pure Nash equilibrium to which it can converge, may occur in practice.

38

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Figure 3: The plots for the errors and constraint violations for each iteration during training on the

COMPAS dataset with equal opportunity constraints with an additive slack of 5%. The

oscillation due to the conflicting goals of accuracy and constraints suggest that there may

be no pure equilibrium to converge to in the non-convex setting.

6.3.2. DOES m-STOCHASTIC BEAT T -STOCHASTIC?

Our theoretical results guarantee that the m-stochastic solution (which is obtained through solving a

simple LP on the T -stochastic iterates) will be no worse than the T -stochastic solution by forcing the

m-stochastic solution to be at least as feasible as the T stochastic solution, while having no worse

error (at least on the training set). Our hope is therefore that our “shrinking” procedure will find

better solutions on test data.

We see consistently across datasets as well as optimization techniques that the m-stochastic is

indeed better than the T -stochastic in terms of both error and constraint violation on training. Part of

this effect may be due to the fact that many of the iterates of the T -stochastic perform poorly, for

example the early iterates before our procedures are able to get to reasonable solutions. Or during

phase-transitions if there is oscillation between satisfying constraints and satisfying error. Fortunately,

the shrinking procedure seems to be able to choose a good re-weighting of the T -stochastic solution

in order to attain well-performing final results.

We also see that in the vast majority of situations, the test performance for the m-stochastic either

surpasses that of the T -stochastic, or there is an accuracy-fairness trade-off between the two (and

hence, not straightforward to compare the two).

6.3.3. DOES THE BEST ITERATE PERFORM AS WELL AS THE STOCHASTIC CLASSIFIERS?

We have already established that a stochastic solution may be difficult to avoid, in theory (Section 1.4).

However, stochastic solutions are unappealing in practice: they take more memory, are harder to test

and debug due to their inherent randomness, and a randomized decision may feel less fair in certain

contexts (even if the outcomes statistically improve the desired fairness metric). Here, we ask if a

stochastic solution is needed in practice, based on test metrics.

First, we compare the 0-1 swap regret m-stochastic solution, which is our theoretically preferred

stochastic solution, to the 0-1 swap regret best iterate. The 0-1 swap best iterate is never a strictly

worse choice than the 0-1 swap m-stochastic. In some cases the m-stochastic solution puts all or

most of its weight on the best iterate—for example, for the Map Intent problem (Table 11) the two

39

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

solutions are identical. In other experiments the solutions differ but both achieve reasonable different

trade-offs of test error and test violation, for example on the Thresholding problem (Table 10) and

COMPAS (see Table 8), the best iterate has a lower test error, but a higher test constraint violation.

Comparing the m-stochastic solution and best iterate solution for the 0-1 external regret opti-

mization similarly suggests that much of the time the best iterate works just as well in practice.

6.3.4. DOES BEST ITERATE PERFORM BETTER IN PRACTICE THAN LAST ITERATE?

We have established that using the best iterate works well in practice. Now we discuss how much

better best is than simply taking the last iterate. In fact, the last iterate is strictly worse at test metrics

than the best iterate for 4 of the 7 experiments: Bank, Thresholding, Adult, and Compass; and the

two solutions are similar for the other three experiments.

If there are oscillations on the loss and constraint violation (as shown in Figure 6.3 for COMPAS),

then the last iterate could be highly unstable and could produce undesirable solutions. In practice,

the strongest evidence for last being a risky choice is Hinge Last on COMPAS, where test error went

up from 0.3109 to 0.3231, and training violation only went down from 0.1082 to 0.0996.

Overall, the experimental results suggest that the best iterate is preferable to the last iterate.

7. Conclusions, Advice To Practitioners, And Open Questions

In this paper, we provide the most comprehensive study to-date of training classifiers with a broad

array of rate constraints, with new theoretical, algorithmic, and experimental results as well as

practical insights and guidance for using rate constraints to solve real-world problems. Next, we

provide some conclusions, specifically draw out our best advice to practitioners, and note some open

questions.

7.1. Advice To Practitioners: How To Train Classifiers With Rate Constraints

Based on our experiments, our advice to practitioners is to optimize the rate-constrained training

using either our proposed non-zero-sum variant of the normal Lagrangian formulation (0-1 external

regret) and taking the last iterate.

The 0-1 external regret optimization procedure is simple: when optimizing the model parameters

θ use stochastic gradient descent as usual with a hinge relaxation of the indicators in the constraints,

and when optimizing the Lagrange multipliers λ use stochastic gradient descent, but do not relax the

indicators in the rate constraints. If one needs a deterministic solution, ideally one would take the

best iterate, but this requires storing all the candidate iterates on the Pareto frontier during training,

in order to rank them by the training objective and training error at the end, and in the worst case

that could be all candidate iterates. However one can control the number of candidate iterates, for

example by sub-sampling them, or waiting until late in training to sample them. Simply taking

the last iterate usually yielded reasonable results, but we do see in practice that the last iterate may

perform strictly worse under all metrics than the best iterate.

We caution against relaxing the indicators for both the θ-player and λ-player (hinge last). It

is hardly simpler than the 0-1 external regret optimization, and experimentally generally (but not

always) produced worse test results, sometimes notably worse.

40

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

7.2. Advice To Practitioners: Plan To Overfit The Constraints

A key issue with using rate constraints is generalization: satisfying the constraints on the training

examples does not necessarily mean that they will be satisfied on new test sets, and the generalization

may be worse if the test examples are drawn from a different distribution. In expressing the rate

constraints, one should add in some slack to account for generalization issues, especially if the

constraints are optimized on small datasets.

In Cotter et al. (2019a), we extend the ideas of this paper with a focus on generalization. We

show that providing different datasets to the two players, instead of (or in addition to) different

constraint functions, can theoretically and practically improve generalization.

7.3. Advice To Practitioners: How The Constraints Are Specified Matters

We have learned that in practice that how one specifies the datasets and slack in a rate constraint is

very important - see Section 3.7 for more discussion.

7.4. More Experimental Conclusions

The clearest experimental finding is that treating the optimization as a non-zero-sum two-player

game where the λ-player does not relax the indicators in the rate constraints (notated as 0-1 in the

experimental tables) does generally help, both in finding a better solution to the optimization problem

(i.e. train metrics), and in practice (i.e. test metrics). Another fairly clear experimental finding is that

the T -stochastic solution can effectively be sparsified to an m-stochastic solution, generally with

improved metrics.

While the T -stochastic solution has better theoretical guarantees than any of our deterministic

solutions, especially for large T , in practice we found the deterministic best iterate generally worked

better than the T -stochastic solution. Other comparisons were more cloudy, see Section 6 for details.

7.5. On Making Stochastic Classifiers Deterministic

While it is clear that theoretically one needs a stochastic classifier, practitioners may prefer a

deterministic classifier. Given that, what is the best way to convert a stochastic classifier into a

deterministic one? Recently, Narasimhan et al. (2019b) investigate this question theoretically and

experimentally.

7.6. Nonlinear Rate Constraints

We limited our focus to rate constraints that can be written as in Equation 6 as a linear non-negative

combination of the positive and negative classification rates on datasets. We touched on the issues

posed by nonlinear rate constraints in Section 3 in our discussion of win-loss ratio and precision.

As we go to press, newer work shows promise extending these ideas to nonlinear rate constraints

(Narasimhan et al., 2019a). However, many open questions remain in handling generalizations of

rate constraints, both theoretically and experimentally.

41

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

7.7. Rate Constraints For Ranking or Regression Models

Recent work has shown that the presented rate constraint methodology can be intuitively extended

to regression and ranking models by defining rate constraints on pairs of examples, forming, for

example, analogous pairwise fairness definitions (Narasimhan et al., 2020).

7.8. Some Open Theoretical Questions

One open question is how tight our optimality and feasibility guarantees are for our procedures in the

following aspects:

• The dependence on the number of iterations T for our guarantees is O
(√

1
T

)
. This rate is an

artifact of our usage of regret-minimization procedures, but it could be improved through a

number of possible techniques, such as variance reduction (e.g. Johnson and Zhang, 2013), or

by making stronger assumptions (e.g. strong convexity and/or smoothness).

• The dependence on m, the number of constraints, is O(
√
m logm), which also comes from the

regret-minimization procedures. This is because the λ-player essentially chooses a distribution

over m + 1 actions and this dependence on the number of arms is tight in the context of

regret-minimization, but the question remains of whether there are situations where this could

be improved upon for constrained optimization for either feasibility or optimality.

• Our results also have a dependence on the model complexity in both feasibility and optimality

guarantees. This may be undesirable in models with a large number of parameters, such as

modern neural networks. We explored the question of whether we can improve upon this

dependence further in follow-up work of Cotter et al. (2019a), which improves the feasibility

guarantee. However, further investigation is required to either establish matching lower bounds

and/or obtaining tighter results.

Appendix A. Proofs Of Sub{optimality, feasibility} Guarantees

Theorem 9 (Lagrangian Sub{optimality,feasibility}) Define Λ =
{
λ ∈ R

m
+ : ‖λ‖p ≤ R

}
, and

consider the Lagrangian of Equation 2 given in Equation 3. Suppose that θ ∈ Θ and λ ∈ Λ are

random variables such that:

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ

Eλ [L (θ∗, λ)] ≤ ǫ, (20)

i.e. θ, λ is an ǫ-approximate Nash equilibrium. Then θ is ǫ-suboptimal:

Eθ [g0 (θ)] ≤ inf
θ∗∈Θ:∀i∈[m].gi(θ∗)≤0

g0 (θ
∗) + ǫ.

Furthermore, if λ is in the interior of Λ, in the sense that
∥∥λ̄
∥∥
p
< R where λ̄ := Eλ [λ], then θ is

ǫ/
(
R−

∥∥λ̄
∥∥
p

)
-feasible:

∥∥(Eθ [g: (θ)])+
∥∥
q
≤ ǫ

R−
∥∥λ̄
∥∥
p

,

where g: (θ) is the m-dimensional vector of constraint evaluations, and (·)+ takes the positive part of

its argument, so that
∥∥(Eθ [g: (θ)])+

∥∥
q

is the q-norm of the vector of expected constraint violations.

42

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Proof First notice that L is linear in λ, so:

max
λ∗∈Λ

Eθ [L (θ, λ∗)]− inf
θ∗∈Θ

L
(
θ∗, λ̄

)
≤ ǫ. (21)

Optimality: Choose θ∗ to be the optimal feasible solution in Equation 21, so that gi (θ
∗) ≤ 0

for all i ∈ [m], and also choose λ∗ = 0, which combined with the definition of L (Equation 3) gives

that:

Eθ [g0 (θ)]− g0 (θ
∗) ≤ ǫ,

which is the optimality claim.

Feasibility: Choose θ∗ = θ in Equation 21. By the definition of L (Equation 3):

max
λ∗∈Λ

m∑

i=1

λ∗
iEθ [gi (θ)]−

m∑

i=1

λ̄iEθ [gi (θ)] ≤ ǫ.

Then by the definition of a dual norm, Hölder’s inequality, and the assumption that
∥∥λ̄
∥∥
p
< R:

R
∥∥(Eθ [g: (θ)])+

∥∥
q
−
∥∥λ̄
∥∥
p

∥∥(Eθ [g: (θ)])+
∥∥
q
≤ ǫ.

Rearranging terms gives the feasibility claim.

Lemma 10 In the context of Theorem 9, suppose that there exists a θ′ ∈ Θ that satisfies all of the

constraints, and does so with q-norm margin γ, i.e. gi (θ
′) ≤ 0 for all i ∈ [m] and ‖g: (θ′)‖q ≥ γ.

Then: ∥∥λ̄
∥∥
p
≤ ǫ+Bg0

γ
,

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.

Proof Starting from Equation 20 (in Theorem 9), and choosing θ∗ = θ′ and λ∗ = 0:

ǫ ≥Eθ [g0 (θ)]− Eλ

[
g0
(
θ′
)
+

m∑

i=1

λigi
(
θ′
)
]

ǫ ≥Eθ

[
g0 (θ)− inf

θ′∈Θ
g0
(
θ′
)]

−
(
g0
(
θ′
)
− inf

θ′∈Θ
g0
(
θ′
))

+ γ
∥∥λ̄
∥∥
p

ǫ ≥−Bg0 + γ
∥∥λ̄
∥∥
p
.

Solving for
∥∥λ̄
∥∥
p

yields the claim.

We next give the optimality and feasibility guarantees for the proxy-Lagrangian formulation. The

result shows that the approximate semi-coarse correlated equilibrium to the two-player non-zero sum

game based on the proxy-Lagrangian will correspond to an approximately feasible solution to the

constrained optimization problem w.r.t. the original constraints which is also approximately optimal

compared to the solution which is optimal and feasible w.r.t. the proxy constraints. The conditions

for semi-coarse correlated equilibrium are shown in Equation 22. The first line requires that the

43

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

solution is approximately as good for the θ-player compared to any fixed choice of θ (i.e. which

comes from the θ-player using best-response or minimizing external-regret). The second line requires

that the solution is approximately as good for the λ-player when compared to any left-stochastic

linear transformation of that solution for the λ-player (which is a result from the λ-player optimizing

for swap-regret).

The swap-regret guarantee is required to show feasibility. The key idea is to use the swap regret

guarantee to show that the difference in the proxy-Lagrangian when shifting the weight λ1 on the

objective g0 to any of the constraints g1, ..., gm will result in only a small change, and thus the

constraint violations themselves are small.

Theorem 11 (Proxy-Lagrangian Sub{optimality,feasibility}) Let

M :=
{
M ∈ R

(m+1)×(m+1) : ∀i ∈ [m+ 1] .M:,i ∈ ∆m+1
}

be the set of all left-stochastic (m+ 1)× (m+ 1) matrices, and consider the “proxy-Lagrangians”

of Equation 2 given in Equation 15. Suppose that θ ∈ Θ and λ ∈ Λ are jointly distributed random

variables such that:

Eθ,λ [Lθ (θ, λ)]− inf
θ∗∈Θ

Eλ [Lθ (θ
∗, λ)] ≤ǫθ (22)

max
M∗∈M

Eθ,λ [Lλ (θ,M
∗λ)]− Eθ,λ [Lλ (θ, λ)] ≤ǫλ.

Define λ̄ := Eλ [λ], let (Ω,F , P) be the probability space, and define a random variable θ̄ such

that:

Pr
{
θ̄ ∈ S

}
=

∫
θ−1(S) λ1 (x) dP (x)
∫
Ω λ1 (x) dP (x)

.

In words, θ̄ is a version of θ that has been resampled with λ1 being treated as an importance weight.

In particular Eθ̄

[
f
(
θ̄
)]

= Eθ,λ [λ1f (θ)] /λ̄1 for any f : Θ → R. Then θ̄ is nearly-optimal:

Eθ̄

[
g0
(
θ̄
)]

≤ inf
θ∗∈Θ:∀i∈[m].g̃i(θ∗)≤0

g0 (θ
∗) +

ǫθ + ǫλ
λ̄1

,

and nearly-feasible: ∥∥∥
(
Eθ̄

[
g:
(
θ̄
)])

+

∥∥∥
∞

≤ ǫλ
λ̄1

.

Notice the optimality inequality is weaker than it may appear, since the comparator in this equation

is not the optimal solution w.r.t. the constraints gi, but rather w.r.t. the proxy constraints g̃i.

Proof Optimality: If we choose M∗ to be the matrix with its first row being all-one, and all other

rows being all-zero, then Lλ (θ,M
∗λ) = 0, which shows that the first term in the LHS of the

second line of Equation 22 is nonnegative. Hence, −Eθ,λ [Lλ (θ, λ)] ≤ ǫλ, so by the definition of Lλ

(Equation 15), and the fact that g̃i ≥ gi:

Eθ,λ

[
m∑

i=1

λi+1g̃i (θ)

]
≥ −ǫλ.

44

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Notice that Lθ is linear in λ, so the first line of Equation 22, combined with the above result and the

definition of Lθ (Equation 15) becomes:

Eθ,λ [λ1g0 (θ)]− inf
θ∗∈Θ

(
λ̄1g0 (θ

∗) +
m∑

i=1

λ̄i+1g̃i (θ
∗)

)
≤ ǫθ + ǫλ. (23)

Choose θ∗ to be the optimal solution that satisfies the proxy constraints g̃, so that g̃i (θ
∗) ≤ 0 for all

i ∈ [m]. Hence:

Eθ,λ [λ1g0 (θ)]− λ̄1g0 (θ
∗) ≤ ǫθ + ǫλ,

which is the optimality claim.

Feasibility: We’ll simplify our notation by defining ℓ1 (θ) := 0 and ℓi+1 (θ) := gi (θ) for

i ∈ [m], so that Lλ (θ, λ) = 〈λ, ℓ: (θ)〉. Consider the first term in the LHS of the second line of

Equation 22:

max
M∗∈M

Eθ,λ [Lλ (θ,M
∗λ)] = max

M∗∈M
Eθ,λ [〈M∗λ, ℓ: (θ)〉]

= max
M∗∈M

Eθ,λ

m+1∑

i=1

m+1∑

j=1

M∗
j,iλiℓj (θ)

=

m+1∑

i=1

max
M∗

:,i∈∆
m+1

m+1∑

j=1

Eθ,λ

[
M∗

j,iλiℓj (θ)
]

=

m+1∑

i=1

max
j∈[m+1]

Eθ,λ [λiℓj (θ)] ,

where we used the fact that, since M∗ is left-stochastic, each of its columns is a (m+ 1)-dimensional

multinoulli distribution. For the second term in the LHS of the second line of Equation 22, we can

use the fact that ℓ1 (θ) = 0:

Eθ,λ

[
m+1∑

i=2

λiℓi (θ)

]
≤

m+1∑

i=2

max
j∈[m+1]

Eθ,λ [λiℓj (θ)] .

Plugging these two results into the second line of Equation 22, the two sums collapse, leaving:

max
i∈[m+1]

Eθ,λ [λ1ℓi (θ)] ≤ ǫλ.

By the definition of ℓi, and the fact that ℓ1 = 0:

∥∥∥(Eθ,λ [λ1g: (θ)])+

∥∥∥
∞

≤ ǫλ,

which is the feasibility claim.

45

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Lemma 12 In the context of Theorem 11, suppose that there exists a θ′ ∈ Θ that satisfies all of the

proxy constraints with margin γ, i.e. g̃i (θ
′) ≤ −γ for all i ∈ [m]. Then:

λ̄1 ≥
γ − ǫθ − ǫλ
γ +Bg0

,

where Bg0 ≥ supθ∈Θ g0 (θ)− infθ∈Θ g0 (θ) is a bound on the range of the objective function g0.

Proof Starting from Equation 23 (in the proof of Theorem 11), and choosing θ∗ = θ′:

Eθ,λ [λ1g0 (θ)]−
(
λ̄1g0

(
θ′
)
+

m∑

i=1

λ̄i+1g̃i
(
θ′
)
)

≤ ǫθ + ǫλ.

Since g̃i (θ
′) ≤ −γ for all i ∈ [m]:

ǫθ + ǫλ ≥Eθ,λ [λ1g0 (θ)]− λ̄1g0
(
θ′
)
+
(
1− λ̄1

)
γ

≥Eθ,λ

[
λ1

(
g0 (θ)− inf

θ′∈Θ
g0
(
θ′
))]

− λ̄1

(
g0
(
θ′
)
− inf

θ′∈Θ
g0
(
θ′
))

+
(
1− λ̄1

)
γ

≥− λ̄1Bg0 +
(
1− λ̄1

)
γ.

Solving for λ̄1 yields the claim.

Appendix B. Proofs Of Existence Of Sparse Equilibria

Theorem 13 Consider a two player game, played on the compact Hausdorff spaces Θ and Λ ⊆ R
m.

Imagine that the θ-player wishes to minimize Lθ : Θ× Λ → R, and the λ-player wishes to maximize

Lλ : Θ × Λ → R, with both of these functions being continuous in θ and linear in λ. Then there

exists a Nash equilibrium θ, λ:

Eθ [Lθ (θ, λ)] = min
θ∗∈Θ

Lθ (θ
∗, λ)

Eθ [Lλ (θ, λ)] =max
λ∗∈Λ

Eθ [Lλ (θ, λ
∗)] .

where θ is a random variable placing nonzero probability mass on at most m+ 1 elements of Θ, and

λ ∈ Λ is non-random.

Proof There are some extremely similar (and in some ways more general) results than this in the

game theory literature (e.g. Bohnenblust et al., 1950; Parthasarathy, 1975), but for our particular

(Lagrangian and proxy-Lagrangian) setting it’s possible to provide a fairly straightforward proof.

To begin with, Glicksberg (1952) gives that there exists a mixed strategy in the form of two

random variables θ̃ and λ̃:

Eθ̃,λ̃

[
Lθ

(
θ̃, λ̃
)]

= min
θ∗∈Θ

Eλ̃

[
Lθ

(
θ∗, λ̃

)]

Eθ̃,λ̃

[
Lλ

(
θ̃, λ̃
)]

=max
λ∗∈Λ

Eθ̃

[
Lλ

(
θ̃, λ∗

)]
.

46

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Since both functions are linear in λ̃, we can define λ := Eλ̃

[
λ̃
]
, and these conditions become:

Eθ̃

[
Lθ

(
θ̃, λ
)]

= min
θ∗∈Θ

Lθ (θ
∗, λ) := ℓmin

Eθ̃

[
Lλ

(
θ̃, λ
)]

=max
λ∗∈Λ

Eθ̃

[
Lλ

(
θ̃, λ∗

)]
.

Let’s focus on the first condition. Let pǫ := Pr
{
Lθ

(
θ̃, λ
)
≥ ℓmin + ǫ

}
, and notice that p1/n must

equal zero for any n ∈ {1, 2, . . . } (otherwise we would contradict the above), implying by the

countable additivity of measures that Pr
{
Lθ

(
θ̃, λ
)
= ℓmin

}
= 1. We therefore assume henceforth,

without loss of generality, that the support of θ̃ consists entirely of minimizers of Lθ (·, λ). Let

S ⊆ Θ be this support set.

Define G :=
{
∇λ̃Lλ (θ

′, λ) : θ′ ∈ S
}

, and take Ḡ to be the closure of the convex hull of G.

Since Eθ̃

[
∇λ̃Lλ

(
θ̃, λ
)]

∈ Ḡ ⊆ R
m, we can write it as a convex combination of at most m + 1

extreme points of Ḡ, or equivalently of m+ 1 elements of G. Hence, we can take θ to be a discrete

random variable that places nonzero mass on at most m+ 1 elements of S, and:

Eθ

[
∇λ̃Lλ (θ, λ)

]
= Eθ̃

[
∇λ̃Lλ

(
θ̃, λ
)]

.

Linearity in λ then implies that Eθ [Lλ (θ, ·)] and Eθ̃

[
Lλ

(
θ̃, ·
)]

are the same function up to a

constant, and therefore have the same maximizer(s). Correspondingly, θ is supported on S, which

contains only minimizers of Lθ (·, λ) by construction.

Lemma 14 If Θ is a compact Hausdorff space and the objective, constraint and proxy constraint

functions g0, g1, . . . , gm, g̃1, . . . , g̃m are continuous, then the proxy-Lagrangian game (Equation 15)

has a mixed Nash equilibrium pair (θ, λ) where θ is a random variable supported on at most m+ 1
elements of Θ, and λ is non-random.

Proof Applying Theorem 13 directly would result in a support size of m+ 2, rather than the desired

m + 1, since Λ is (m+ 1)-dimensional. Instead, we define Λ̃ =
{
λ̃ ∈ R

m
+ :
∥∥∥λ̃
∥∥∥
1
≤ 1
}

as the

space containing the last m coordinates of Λ. Then we can rewrite the proxy-Lagrangian functions

L̃θ, L̃λ : Θ× Λ̃ → R as:

L̃θ

(
θ, λ̃
)
=
(
1−

∥∥∥λ̃
∥∥∥
1

)
g0 (θ) +

m∑

i=1

λ̃ig̃i (θ)

L̃λ

(
θ, λ̃
)
=

m∑

i=1

λ̃igi (θ) .

These functions are linear in λ̃, which is a m-dimensional space, so the conditions of Theorem 13

apply, yielding the claimed result.

47

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

Proof [Proof of Lemma 5] The linear program contains not only the m explicit linearized functional

constraints, but also, since p ∈ ∆T , the T nonnegativity constraints pt ≥ 0, and the sum-to-one

constraint
∑T

t=1 pt = 1.

Since p is T -dimensional, every vertex p∗ of the feasible region must include T active constraints.

Letting m∗ ≤ m be the number of active linearized functional constraints, and accounting for the

sum-to-one constraint, it follows that at least T − m∗ − 1 nonnegativity constraints are active,

implying that p∗ contains at most m∗ + 1 nonzero elements.

Appendix C. Proofs Of Convergence Rates

C.1. Non-Stochastic One-Player Convergence Rates

Theorem 15 (Mirror Descent) Let f1, f2, . . . : Θ → R be a sequence of convex functions that

we wish to minimize on a compact convex set Θ. Suppose that the “distance generating function”

Ψ : Θ → R+ is nonnegative and 1-strongly convex w.r.t. a norm ‖·‖ with dual norm ‖·‖∗.

Define the step size η =
√

BΨ/TB2
∇̌

, where BΨ ≥ maxθ∈ΘΨ(θ) is a uniform upper bound on

Ψ, and B∇̌ ≥
∥∥∇̌ft

(
θ(t)
)∥∥

∗
is a uniform upper bound on the norms of the subgradients. Suppose

that we perform T iterations of the following update, starting from θ(1) = argminθ∈ΘΨ(θ):

θ̃(t+1) =∇Ψ∗
(
∇Ψ

(
θ(t)
)
− η∇̌ft

(
θ(t)
))

θ(t+1) =argmin
θ∈Θ

DΨ

(
θ | θ̃(t+1)

)
,

where ∇̌ft (θ) ∈ ∂ft(θ
(t)) is a subgradient of ft at θ, and DΨ (θ | θ′) := Ψ (θ) − Ψ(θ′) −

〈∇Ψ(θ′), θ − θ′〉 is the Bregman divergence associated with Ψ. Then:

1

T

T∑

t=1

ft

(
θ(t)
)
− 1

T

T∑

t=1

ft (θ
∗) ≤ 2B∇̌

√
BΨ

T
,

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof Mirror descent (Nemirovski and Yudin, 1983; Beck and Teboulle, 2003) dates back to 1983,

but this particular statement is taken from Lemma 2 of Srebro et al. (2011).

Corollary 16 (Gradient Descent) Let f1, f2, . . . : Θ → R be a sequence of convex functions that

we wish to minimize on a compact convex set Θ.

Define the step size η = BΘ/B∇̌

√
2T , where BΘ ≥ maxθ∈Θ ‖θ‖2, and B∇̌ ≥

∥∥∇̌ft
(
θ(t)
)∥∥

2
is

a uniform upper bound on the norms of the subgradients. Suppose that we perform T iterations of

the following update, starting from θ(1) = argminθ∈Θ ‖θ‖2:

θ(t+1) = ΠΘ

(
θ(t) − η∇̌ft

(
θ(t)
))

,

48

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

where ∇̌ft (θ) ∈ ∂ft(θ
(t)) is a subgradient of ft at θ, and ΠΘ projects its argument onto Θ w.r.t. the

Euclidean norm. Then:

1

T

T∑

t=1

ft

(
θ(t)
)
− 1

T

T∑

t=1

ft (θ
∗) ≤ BΘB∇̌

√
2

T
,

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof Follows from taking Ψ(θ) = ‖θ‖22 /2 in Theorem 15.

Corollary 17 Let M :=
{
M ∈ R

m̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃
}

be the set of all left-stochastic

m̃× m̃ matrices, and let f1, f2, . . . : M → R be a sequence of concave functions that we wish to

maximize.

Define the step size η =
√

m̃ ln m̃/TB2
∇̂

, where B∇̂ ≥
∥∥∥∇̂ft

(
M (t)

)∥∥∥
∞,2

is a uniform upper

bound on the norms of the supergradients, and ‖·‖∞,2 :=
√∑m̃

i=1 ‖M:,i‖2∞ is the L∞,2 matrix norm.

Suppose that we perform T iterations of the following update starting from the matrix M (1) with all

elements equal to 1/m̃:

M̃ (t+1) =M (t) ⊙ . exp
(
η∇̂ft

(
M (t)

))

M
(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1
,

where −∇̂ft
(
M (t)

)
∈ ∂

(
−ft(M

(t))
)
, i.e. ∇̂ft

(
M (t)

)
is a supergradient of ft at M (t), and the

multiplication and exponentiation in the first step are performed element-wise. Then:

1

T

T∑

t=1

ft (M
∗)− 1

T

T∑

t=1

ft

(
M (t)

)
≤ 2B∇̂

√
m̃ ln m̃

T
,

where M∗ ∈ M is an arbitrary reference matrix.

Proof Define Ψ : M → R := m̃ ln m̃+
∑

i,j∈[m̃]Mi,j lnMi,j as m̃ ln m̃ plus the negative Shannon

entropy, applied to its (matrix) argument element-wise (m̃ ln m̃ is added to make Ψ nonnegative on

M). As in the vector setting, the resulting mirror descent update will be (element-wise) multiplicative.

The Bregman divergence satisfies:

DΨ

(
M |M ′

)
=Ψ(M)−Ψ

(
M ′
)
−
〈
∇Ψ

(
M ′
)
,M −M ′

〉

=
∥∥M ′

∥∥
1,1

− ‖M‖1,1 +
m̃∑

i=1

DKL

(
M:,i‖M ′

:,i

)
, (24)

where ‖M‖1,1 =
∑m̃

i=1 ‖M:,i‖1 is the L1,1 matrix norm. This incidentally shows that one projects

onto M w.r.t. DΨ by projecting each column w.r.t. the KL divergence, i.e. by normalizing the

columns.

49

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

By Pinsker’s inequality (applied to each column of an M ∈ M):

∥∥M −M ′
∥∥2
1,2

≤ 2

m̃∑

i=1

DKL

(
M:,i‖M ′

:,i

)
,

where ‖M‖1,2 =
√∑m̃

i=1 ‖M:,i‖21 is the L1,2 matrix norm. Substituting this into Equation 24, and

using the fact that ‖M‖1,1 = m̃ for all M ∈ M, we have that for all M,M ′ ∈ M:

DΨ

(
M |M ′

)
≥ 1

2

∥∥M −M ′
∥∥2
1,2

,

which shows that Ψ is 1-strongly convex w.r.t. the L1,2 matrix norm. The dual norm of the L1,2

matrix norm is the L∞,2 norm, which is the last piece needed to apply Theorem 15, yielding the

claimed result.

Lemma 18 Let Λ := ∆m̃ be the m̃-dimensional simplex, define

M :=
{
M ∈ R

m̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃
}

as the set of all left-stochastic m̃ × m̃ matrices, and take f1, f2, . . . : Λ → R to be a sequence of

concave functions that we wish to maximize.

Define the step size η =
√
m̃ ln m̃/TB2

∇̂
, where B∇̂ ≥

∥∥∥∇̂ft
(
λ(t)
)∥∥∥

∞
is an uniform upper

bound on the ∞-norms of the supergradients. Suppose that we perform T iterations of the following

update, starting from the matrix M (1) with all elements equal to 1/m̃:

λ(t) is any stationary distribution of M (t)

A(t) =
(
∇̂ft

(
λ(t)
))(

λ(t)
)T

M̃ (t+1) =M (t) ⊙ . exp
(
ηA(t)

)

M
(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1
,

where a stationary distribution of M (i.e. a λ ∈ Λ such that Mλ = λ) always exists because M is

left-stochastic, −∇̂ft
(
λ(t)
)
∈ ∂

(
−ft(λ

(t))
)
, i.e. ∇̂ft

(
λ(t)
)

is a supergradient of ft at λ(t), and the

multiplication and exponentiation of the third step are performed element-wise. Then:

1

T

T∑

t=1

ft

(
M∗λ(t)

)
− 1

T

T∑

t=1

ft

(
λ(t)
)
≤ 2B∇̂

√
m̃ ln m̃

T
,

where M∗ ∈ M is an arbitrary left-stochastic reference matrix.

Proof This algorithm is an instance of that contained in Figure 1 of Gordon et al. (2008).

Define f̃t (M) := ft
(
M (t)λ(t)

)
. Observe that since ∇̂ft

(
λ(t)
)

is a supergradient of ft at λ(t),

and M (t)λ(t) = λ(t):

ft

(
M̃λ(t)

)
≤ft

(
M (t)λ(t)

)
+
〈
∇̂ft

(
λ(t)
)
, M̃λ(t) −M (t)λ(t)

〉

≤ft

(
M (t)λ(t)

)
+A(t) ·

(
M̃ −M (t)

)
,

50

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

where the matrix product on the last line is performed element-wise. This shows that A(t) is a

supergradient of f̃t at M (t), from which we conclude that the final two steps of the update are

performing the algorithm of Corollary 17, so:

1

T

T∑

t=1

f̃t (M
∗)− 1

T

T∑

t=1

f̃t

(
M (t)

)
≤ 2B∇̂

√
m̃ ln m̃

T
,

where the B∇̂ of Corollary 17 is a uniform upper bound on the L∞,2 matrix norms of the A(t)s.

However, by the definition of A(t) and the fact that λ(t) ∈ ∆m̃, we can instead take B∇̂ to be a

uniform upper bound on

∥∥∥∇̂(t)
∥∥∥
∞

. Substituting the definition of f̃t and again using the fact that

M (t)λ(t) = λ(t) then yields the claimed result.

C.2. Stochastic One-Player Convergence Rates

Theorem 19 (Stochastic Mirror Descent) Let Ψ, ‖·‖, DΨ and BΨ be as in Theorem 15, and let

f1, f2, . . . : Θ → R be a sequence of convex functions that we wish to minimize on a compact convex

set Θ.

Define the step size η =
√
BΨ/TB2

∆̌
, where B∆̌ ≥

∥∥∆̌(t)
∥∥
∗

is a uniform upper bound on

the norms of the stochastic subgradients. Suppose that we perform T iterations of the following

stochastic update, starting from θ(1) = argminθ∈ΘΨ(θ):

θ̃(t+1) = ∇Ψ∗
(
∇Ψ

(
θ(t)
)
− η∆̌(t)

)

θ(t+1) = argmin
θ∈Θ

DΨ

(
θ|θ̃(t+1)

)
,

where E
[
∆̌(t) | θ(t)

]
∈ ∂ft(θ

(t)), i.e. ∆̌(t) is a stochastic subgradient of ft at θ(t). Then, with

probability 1− δ over the draws of the stochastic subgradients:

1

T

T∑

t=1

ft

(
θ(t)
)
− 1

T

T∑

t=1

ft (θ
∗) ≤ 2B∇̌

√
2BΨ

(
1 + 16 ln 1

δ

)

T
,

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof This is nothing more than the usual transformation of a uniform regret guarantee into a

stochastic one via the Hoeffding-Azuma inequality—we include a proof for completeness.

Define the sequence:

f̃t (θ) = ft

(
θ(t)
)
+
〈
∆̌(t), θ − θ(t)

〉
.

Then applying non-stochastic mirror descent to the sequence f̃t will result in exactly the same

sequence of iterates θ(t) as applying stochastic mirror descent (above) to ft. Hence, by Theorem 15

51

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

and the definition of f̃t (notice that we can take B∇̌ = B∆̌):

1

T

T∑

t=1

f̃t

(
θ(t)
)
− 1

T

T∑

t=1

f̃t (θ
∗) ≤2B∇̌

√
BΨ

T

1

T

T∑

t=1

ft

(
θ(t)
)
− 1

T

T∑

t=1

ft (θ
∗) ≤2B∇̌

√
BΨ

T
+

1

T

T∑

t=1

(
f̃t (θ

∗)− ft (θ
∗)
)

≤2B∇̌

√
BΨ

T
+

1

T

T∑

t=1

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
, (25)

where the last step follows from the convexity of the fts. Consider the second term on the RHS.

Observe that, since the ∆̌(t)s are stochastic subgradients, each of the terms in the sum is zero in

expectation (conditioned on the past), and the partial sums therefore form a martingale. Furthermore,

by Hölder’s inequality:

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
≤
∥∥∥∆̌(t) − ∇̌ft

(
θ(t)
)∥∥∥

∗

∥∥∥θ∗ − θ(t)
∥∥∥ ≤ 4B∆̌

√
2BΨ,

where the last line holds because
∥∥θ∗ − θ(t)

∥∥ ≤
∥∥θ∗ − θ(1)

∥∥+
∥∥θ(t) − θ(1)

∥∥ ≤ 2 supθ∈Θ

√
2DΨ

(
θ | θ(1)

)
≤

2
√
2BΨ, using the fact that DΨ is 1-strongly convex w.r.t. ‖·‖, and the definition of θ(1). Hence, by

the Hoeffding-Azuma inequality:

Pr

{
1

T

T∑

t=1

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
≥ ǫ

}
≤ exp

(
− Tǫ2

64BΨB2
∆̌

)
.

Equivalently:

Pr

1

T

T∑

t=1

〈
∆̌(t) − ∇̌ft

(
θ(t)
)
, θ∗ − θ(t)

〉
≥ 8B∆̌

√
BΨ ln 1

δ

T

 ≤ δ.

Substituting this into Equation 25, and applying the inequality
√
a +

√
b ≤

√
2a+ 2b, yields the

claimed result.

Corollary 20 (Stochastic Gradient Descent) Let f1, f2, . . . : Θ → R be a sequence of convex

functions that we wish to minimize on a compact convex set Θ.

Define the step size η = BΘ/B∆̌

√
2T , where BΘ ≥ maxθ∈Θ ‖θ‖2, and B∆̌ ≥

∥∥∆̌(t)
∥∥
2

is a

uniform upper bound on the norms of the stochastic subgradients. Suppose that we perform T
iterations of the following stochastic update, starting from θ(1) = argminθ∈Θ ‖θ‖2:

θ(t+1) = ΠΘ

(
θ(t) − η∆̌(t)

)
,

where E
[
∆̌(t) | θ(t)

]
∈ ∂ft(θ

(t)), i.e. ∆̌(t) is a stochastic subgradient of ft at θ(t), and ΠΘ projects

its argument onto Θ w.r.t. the Euclidean norm. Then, with probability 1− δ over the draws of the

52

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

stochastic subgradients:

1

T

T∑

t=1

ft

(
θ(t)
)
− 1

T

T∑

t=1

ft (θ
∗) ≤ 2BΘB∇̌

√
1 + 16 ln 1

δ

T
,

where θ∗ ∈ Θ is an arbitrary reference vector.

Proof Follows from taking Ψ(θ) = ‖θ‖22 /2 in Theorem 19.

Corollary 21 Let M :=
{
M ∈ R

m̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃
}

be the set of all left-stochastic

m̃× m̃ matrices, and let f1, f2, . . . : M → R be a sequence of concave functions that we wish to

maximize.

Define the step size η =
√

m̃ ln m̃/TB2
∆̂

, where B∆̂ ≥
∥∥∥∆̂(t)

∥∥∥
∞,2

is a uniform upper bound

on the norms of the stochastic supergradients, and ‖·‖∞,2 :=
√∑m̃

i=1 ‖M:,i‖2∞ is the L∞,2 matrix

norm. Suppose that we perform T iterations of the following stochastic update starting from the

matrix M (1) with all elements equal to 1/m̃:

M̃ (t+1) =M (t) ⊙ . exp
(
η∆̂(t)

)

M
(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1
,

where E

[
−∆̂(t) | M (t)

]
∈ ∂

(
−ft(M

(t))
)
, i.e. ∆̂(t) is a stochastic supergradient of ft at M (t),

and the multiplication and exponentiation in the first step are performed element-wise. Then with

probability 1− δ over the draws of the stochastic supergradients:

1

T

T∑

t=1

ft (M
∗)− 1

T

T∑

t=1

ft

(
M (t)

)
≤ 2B∆̂

√
2 (m̃ ln m̃)

(
1 + 16 ln 1

δ

)

T
,

where M∗ ∈ M is an arbitrary reference matrix.

Proof The same reasoning as was used to prove Corollary 17 from Theorem 15 applies here (but

starting from Theorem 19).

Lemma 22 Let Λ := ∆m̃ be the m̃-dimensional simplex, define

M :=
{
M ∈ R

m̃×m̃ : ∀i ∈ [m̃] .M:,i ∈ ∆m̃
}

as the set of all left-stochastic m̃ × m̃ matrices, and take f1, f2, . . . : Λ → R to be a sequence of

concave functions that we wish to maximize.

Define the step size η =
√

m̃ ln m̃/TB2
∆̂

, where B∆̂ ≥
∥∥∥∆̂(t)

∥∥∥
∞

is a uniform upper bound on

the ∞-norms of the stochastic supergradients. Suppose that we perform T iterations of the following

53

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

update, starting from the matrix M (1) with all elements equal to 1/m̃:

λ(t) is any stationary distribution of M (t)

A(t) =∆̂(t)
(
λ(t)
)T

M̃ (t+1) =M (t) ⊙ . exp
(
ηA(t)

)

M
(t+1)
:,i =M̃

(t+1)
:,i /

∥∥∥M̃ (t+1)
:,i

∥∥∥
1
,

where a stationary distribution of M (i.e. a λ ∈ Λ such that Mλ = λ) always exists because M is

left-stochastic, E

[
−∆̂(t) | λ(t)

]
∈ ∂

(
−ft(λ

(t))
)
, i.e. ∆̂(t) is a stochastic supergradient of ft at λ(t),

and the multiplication and exponentiation of the third step are performed element-wise. Then with

probability 1− δ over the draws of the stochastic supergradients:

1

T

T∑

t=1

ft

(
M∗λ(t)

)
− 1

T

T∑

t=1

ft

(
λ(t)
)
≤ 2B∆̂

√
2 (m̃ ln m̃)

(
1 + 16 ln 1

δ

)

T
,

where M∗ ∈ M is an arbitrary left-stochastic reference matrix.

Proof The same reasoning as was used to prove Lemma 18 from Corollary 17 applies here (but

starting from Corollary 21).

C.3. Two-Player Convergence Rates

Proof [Proof of Lemma 3] Applying Corollary 16 to the optimization over λ gives:

1

T

T∑

t=1

L
(
θ(t), λ∗

)
− 1

T

T∑

t=1

L
(
θ(t), λ(t)

)
≤ BΛB∆

√
2

T
.

By the definition of Oρ (Definition 1):

1

T

T∑

t=1

L
(
θ(t), λ∗

)
− inf

θ∗∈Θ

1

T

T∑

t=1

L
(
θ∗, λ(t)

)
≤ ρ+BΛB∆

√
2

T
.

Using the linearity of L in λ, the fact that BΛ = R, and the definitions of θ̄ and λ̄, yields the claimed

result.

Lemma 23 (Algorithm 5) Suppose that Θ is a compact convex set, Λ and R are as in Theorem 2,

and that the objective and constraint functions g0, g1, . . . , gm are convex. Define the three upper

bounds BΘ ≥ maxθ∈Θ ‖θ‖2, B∆̌ ≥ maxt∈[T]

∥∥∥∆̌(t)
θ

∥∥∥
2
, and B∆ ≥ maxt∈[T]

∥∥∥∆(t)
λ

∥∥∥
2
.

If we run Algorithm 5 with the step sizes ηθ := BΘ/B∆̌

√
2T and ηλ := R/B∆

√
2T , then the

result satisfies the conditions of Theorem 2 for:

ǫ = 2 (BΘB∆̌ +RB∆)

√
1 + 16 ln 2

δ

T
,

with probability 1− δ over the draws of the stochastic (sub)gradients.

54

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

Algorithm 5 Optimizes the Lagrangian formulation (Equation 3) in the convex setting. The parameter

R is the radius of the Lagrange multiplier space Λ :=
{
λ ∈ R

m
+ : ‖λ‖1 ≤ R

}
, and the functions ΠΘ

and ΠΛ project their arguments onto Θ and Λ (respectively) w.r.t. the Euclidean norm.

StochasticLagrangian (R ∈ R+,L : Θ× Λ → R, T ∈ N, ηθ, ηλ ∈ R+):

1 Initialize θ(1) = 0, λ(1) = 0 // Assumes 0 ∈ Θ
2 For t ∈ [T]:

3 Let ∆̌
(t)
θ be a stochastic subgradient of L

(
θ(t), λ(t)

)
w.r.t. θ

4 Let ∆
(t)
λ be a stochastic gradient of L

(
θ(t), λ(t)

)
w.r.t. λ

5 Update θ(t+1) = ΠΘ

(
θ(t) − ηθ∆̌

(t)
θ

)
// Projected SGD updates . . .

6 Update λ(t+1) = ΠΛ

(
λ(t) + ηλ∆

(t)
λ

)
// . . .

7 Return θ(1), . . . , θ(T) and λ(1), . . . , λ(T)

Proof Applying Corollary 20 to the two optimizations (over θ and λ) gives that with probability

1− 2δ′ over the draws of the stochastic (sub)gradients:

1

T

T∑

t=1

L
(
θ(t), λ(t)

)
− 1

T

T∑

t=1

L
(
θ∗, λ(t)

)
≤2BΘB∆̌

√
1 + 16 ln 1

δ′

T

1

T

T∑

t=1

L
(
θ(t), λ∗

)
− 1

T

T∑

t=1

L
(
θ(t), λ(t)

)
≤2BΛB∆

√
1 + 16 ln 1

δ′

T
.

Adding these inequalities, taking δ = 2δ′, using the linearity of L in λ, the fact that BΛ = R, and

the definitions of θ̄ and λ̄, yields the claimed result.

Proof [Proof of Lemma 7] Applying Lemma 18 to the optimization over λ (with m̃ := m+ 1) gives:

1

T

T∑

t=1

Lλ

(
θ(t),M∗λ(t)

)
− 1

T

T∑

t=1

Lλ

(
θ(t), λ(t)

)
≤ 2B∆

√
(m+ 1) ln (m+ 1)

T
.

By the definition of Oρ (Definition 1):

1

T

T∑

t=1

Lθ

(
θ(t), λ(t)

)
− inf

θ∗∈Θ

1

T

T∑

t=1

Lθ

(
θ∗, λ(t)

)
≤ ρ.

Using the definitions of θ̄ and λ̄ yields the claimed result.

Proof [Proof of Lemma 8] Applying Corollary 20 to the optimization over θ, and Lemma 22 to

that over λ (with m̃ := m+ 1), gives that with probability 1− 2δ′ over the draws of the stochastic

55

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

(sub)gradients:

1

T

T∑

t=1

Lθ

(
θ(t), λ(t)

)
− 1

T

T∑

t=1

Lθ

(
θ∗, λ(t)

)
≤2BΘB∆̌

√
1 + 16 ln 1

δ′

T

1

T

T∑

t=1

Lλ

(
θ(t),M∗λ(t)

)
− 1

T

T∑

t=1

Lλ

(
θ(t), λ(t)

)
≤2B∆

√
2 (m+ 1) ln (m+ 1)

(
1 + 16 ln 1

δ′

)

T
.

Taking δ = 2δ′, and using the definitions of θ̄ and λ̄, yields the claimed result.

References

A. Agarwal, A. Beygelzimer, M. Dudı́k, J. Langford, and H. Wallach. A reductions approach to fair

classification. In ICML, 2018.

S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and

applications. Theory of Computing, 8(6):121–164, 2012.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference Under Order

Restrictions; The Theory And Application Of Isotonic Regression. Wiley, New York, USA, 1972.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex

optimization. Operations Research Letters, 31(3):167–175, May 2003.

K. Bellare, G. Druck, and A. McCallum. Alternating projections for learning with expectation

constraints. UAI, 2009.

A. Blum and Y. Mansour. From external to internal regret. JMLR, 8:1307–1324, 2007.

D. G. Bocian, K. S. Ernst, and W. Li. Race, ethnicity and subprime home loan pricing. Journal of

Economics and Business, 60(1-2):110–124, 2008.

H. F. Bohnenblust, S. Karlin, and L. S. Shapley. Games with continuous, convex pay-off. Contribu-

tions to the Theory of Games, 1(24):181–192, 1950.

M. Bonakdarpour, S. Chatterjee, R. F. Barber, and J. D. Lafferty. Prediction rule reshaping. In ICML,

2018.

J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial

gender classification. In Conference on Fairness, Accountability and Transparency, pages 77–91,

2018.

K. Canini, A. Cotter, M. R. Gupta, M. Milani Fard, and J. Pfeifer. Fast and flexible monotonic

functions with ensembles of lattices. In NIPS, pages 2919–2927, 2016.

R. S. Chen, B. Lucier, Y. Singer, and V. Syrgkanis. Robust optimization for non-convex objectives.

In NIPS, 2017.

56

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

X. Chen and X. Deng. Settling the complexity of two-player Nash equilibrium. In FOCS’06, pages

261–272. IEEE, 2006.

Y. Chen and R. J. Samworth. Generalized additive and index models with shape constraints. Journal

Royal Statistical Society B, 2016.

D. Chetverikov, A. Santos, and A. M. Shaikh. The econometrics of shape restrictions. Annual Review

of Economics, 2018.

P. Christiano, J. A. Kelner, A. Madry, C. A. Spielman, and S. Teng. Electrical flows, Laplacian

systems, and faster approximation of maximum flow in undirected graphs. In STOC, pages

273–282, 2011.

Q. Cormier, M. Milani Fard, K. Canini, and M. R. Gupta. Launch and iterate: Reducing prediction

churn. NIPS, 2016.

A. Cotter, M. R. Gupta, and J. Pfeifer. A Light Touch for heavily constrained SGD. In COLT, pages

729–771, 2016.

A. Cotter, M. Gupta, H. Jiang, N. Srebro, K. Sridharan, S. Wang, B. Woodworth, and S. You. Training

well-generalizing classifiers for fairness metrics and other data-dependent constraints. In ICML,

2019a.

A. Cotter, M. R. Gupta, H. Jiang, E. Louidor, J. Muller, T. Narayan, S. Wang, and T. Zhu. Shape

constraints for set functions. In ICML, 2019b.

A. Cotter, H. Jiang, and K. Sridharan. Two-player games for efficient non-convex constrained

optimization. In Algorithmic Learning Theory, pages 300–332, 2019c.

M. Davenport, R. G. Baraniuk, and C. D. Scott. Tuning support vector machines for minimax and

Neyman-Pearson classification. IEEE Transactions on Pattern Analysis and Machine Intelligence,

2010.

M. Donini, L. Oneto, S. Ben-David, J. Shawe-Taylor, and M. Pontil. Empirical risk minimization

under fairness constraints. NeurIPS, 2018.

E. Eban, M. Schain, A. Mackey, A. Gordon, R. A. Saurous, and G. Elidan. Scalable learning of

non-decomposable objectives. AIStats, 2017.

B. Fish, J. Kun, and A. D. Lelkes. A confidence-based approach for balancing fairness and accuracy.

SIAM ICDM, 2016.

D. Garber and E. Hazan. Playing non-linear games with linear oracles. In FOCS, pages 420–428.

IEEE Computer Society, 2013.

G. Gasso, A. Pappaionannou, M. Spivak, and L. Bottou. Batch and online learning algorithms

for nonconvex Neyman-Pearson classification. ACM Transactions on Intelligent Systems and

Technology, 2011.

I. L. Glicksberg. A further generalization of the Kakutani fixed point theorem with application to

Nash equilibrium points. Proceedings American Mathematical Society, 3:170–174, 1952.

57

COTTER, JIANG, GUPTA, WANG, NARAYAN, YOU, AND SRIDHARAN

G. Goh, A. Cotter, M. R. Gupta, and M. P. Friedlander. Satisfying real-world goals with dataset

constraints. In NIPS, pages 2415–2423, 2016.

G. J. Gordon, A. Greenwald, and C. Marks. No-regret learning in convex games. In ICML, pages

360–367, 2008.

P. Groeneboom and G. Jongbloed. Nonparametric Estimation Under Shape Constraints. Cambridge

Press, New York, USA, 2014.

M. R. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski, and

A. van Esbroeck. Monotonic calibrated interpolated look-up tables. JMLR, 17(109):1–47, 2016.

M. R. Gupta, D. Bahri, A. Cotter, and K. Canini. Diminishing returns shape constraints for inter-

pretability and regularization. NeurIPS, 2018.

M. R. Gupta, A. Cotter, M. Milani Fard, and S. Wang. Proxy fairness. In arXiv:1806.11212, 2019.

M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. NIPS, 2016.

E. Hazan and S. Kale. Projection-free online learning. In ICML, 2012.

H. Heidari, C. Ferrari, K. Gummadi, and A. Krause. Fairness behind a veil of ignorance: A welfare

analysis for automated decision making. In NeurIPS, pages 1265–1276, 2018.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, 2013.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.

In NIPS, pages 315–323, 2013.

T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. Fairness-aware classifier with prejudice remover

regularizer. Machine Learning and Knowledge Discovery in Databases, pages 35–50, 2012.

M. Kearns, S. Neel, A. Roth, and Z. S. Wu. Preventing fairness gerrymandering: Auditing and

learning for subgroup fairness. In ICML, 2018.

B. Letham, C. Rudin, T. H. McCormick, and D. Madigan. Interpretable classifiers using rules and

Bayesian analysis: building a better stroke prediction model. Annals of Applied Statistics, 2015.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/

ml.

Z. Long, Y. Lu, X. Ma, and B. Dong. PDE-Net: Learning PDEs from Data. In ICML, 2018.

R. Luss and S. Rosset. Bounded isotonic regression. Electronic Journal of Statistics, 11(2):4488–

4514, 2017.

M. Mahdavi, T. Yang, R. Jin, S. Zhu, and J. Yi. Stochastic gradient descent with only one projection.

In NIPS, pages 494–502, 2012.

G. S. Mann and A. McCallum. Simple, robust, scalable semi-supervised learning with expectation

regularization. In ICML, 2007.

58

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

OPTIMIZATION WITH NON-DIFFERENTIABLE CONSTRAINTS

G. S. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning with

weakly labeled data. JMLR, 11, 2010.

H. Narasimhan. Learning with complex loss functions and constraints. In AIStats, 2018.

H. Narasimhan, A. Cotter, and M. R. Gupta. Optimizing generalized rate metrics through game

equilibrium. In NeurIPS, 2019a.

H. Narasimhan, A. Cotter, and M. R. Gupta. On making stochastic classifiers deterministic. In

NeurIPS, 2019b.

H. Narasimhan, A. Cotter, M. R. Gupta, and S. Wang. Pairwise fairness for ranking and regression.

In AAAI, 2020.

A. Nemirovski and D. Yudin. Problem Complexity And Method Efficiency In Optimization. John

Wiley & Sons Ltd, 1983.

T Parthasarathy. Equilibria of continuous two-person games. Pacific Journal of Mathematics, 57(1):

265–270, 1975.

N. Pya and S. N. Wood. Shape constrained additive models. Statistics and Computing, 2015.

A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences. In

NIPS, pages 3066–3074, 2013.

A. Rakhlin, K. Sridharan, and A. Tewari. Online learning: beyond regret. In COLT, pages 559–594,

2011.

C. D. Scott and R. D. Nowak. A Neyman-Pearson approach to statistical learning. IEEE Transactions

on Information Theory, 2005.

N. Srebro, K. Sridharan, and A. Tewari. On the universality of online mirror descent. In NIPS, 2011.

R. Stewart and S. Ermon. Label-free supervision of neural networks with physics and domain

knowledge. AAAI, 2017.

J. von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

B. E. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro. Learning non-discriminatory

predictors. In COLT, pages 1920–1953, 2017.

T. Yang, Q. Lin, and L. Zhang. A richer theory of convex constrained optimization with reduced

projections and improved rates. In ICML, pages 3901–3910, 2017.

S. You, K. Canini, D. Ding, J. Pfeifer, and M. R. Gupta. Deep lattice networks for learning partial

monotonic functions. NIPS, 2017.

M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness constraints: A mechanism for

fair classification. In ICML Workshop on Fairness, Accountability, and Transparency in Machine

Learning, 2015.

M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi. Fairness constraints: Mechanisms for

fair classification. In AIStats, pages 962–970, 2017.

59

	Introduction
	The Broad Applicability Of Rate Constraints
	Why Constrain? Why Not Penalize?
	Training With Constraints:
	The Lagrangian May Have No Pure Equilibrium For Non-Convex Problems
	The Lagrangian Is Impractical For Non-differentiable Constraints
	Main Contributions And Organization

	Related Work
	Related Work On Specifying And Optimizing With Rate Constraints
	Other Types Of Constraints On Machine Learned Models
	Related Work In Constrained Optimization As A Two Player Game
	Other Strategies For Constrained Optimization

	What Are Rate Constraints Good For?
	Coverage Constraints
	Constraints On Accuracy, Recall, Precision, AUC
	Churn And Win Loss Ratio Constraints
	Fairness Goals And Other Group-Specific Goals
	Egregious Examples And Steering Examples
	Decision Rule Priors
	How To Best Specify Rate Constraints

	Optimizing With Constraints
	Lagrangian Optimization In The Non-convex Setting
	Oracle For Unconstrained Non-convex Minimization (Additive Approximation)
	Approximate Mixed Nash Equilibrium
	Convergence Of Algorithm 1
	Shrinking The Stochastic Solution

	Proxy Constraints And A Non-Zero Sum Game
	Proxy-Lagrangian Equilibrium
	Proxy-Lagrangian Optimization Algorithm
	Practical Stochastic Proxy-Lagrangian Algorithm
	Shrinking The Stochastic Proxy Lagrangian Solution

	Experiments
	TensorFlow Implementation
	Hyperparameter Optimization
	Algorithms Tested
	Bank Marketing
	Adult
	COMPAS
	Business Entity Resolution
	Thresholding
	Map Intent
	Filtering

	Discussion Of Experimental Results
	Do Rate Constraints Help In Practice?
	Can we effectively solve the rate-constrained optimization problem?
	Can we get good test results by training with rate constraints?
	Do rate constraints interact well with other types of constraints?

	Does the Proxy-Lagrangian Better Solve the Constrained Optimization Problem?
	Does simply using hinge surrogate for both players overconstrain?
	Does the proxy-Lagrangian formulation result in better solutions?
	Is minimizing swap regret necessary, or does external regret suffice?

	Do We Really Need Stochastic Classifiers?
	Do the iterates oscillate in the non-convex setting?
	Does m-stochastic beat T-stochastic?
	Does the best iterate perform as well as the stochastic classifiers?
	Does best iterate perform better in practice than last iterate?

	Conclusions, Advice To Practitioners, And Open Questions
	Advice To Practitioners: How To Train Classifiers With Rate Constraints
	Advice To Practitioners: Plan To Overfit The Constraints
	Advice To Practitioners: How The Constraints Are Specified Matters
	More Experimental Conclusions
	On Making Stochastic Classifiers Deterministic
	Nonlinear Rate Constraints
	Rate Constraints For Ranking or Regression Models
	Some Open Theoretical Questions

	Proofs Of Sub{optimality, feasibility} Guarantees
	Proofs Of Existence Of Sparse Equilibria
	Proofs Of Convergence Rates
	Non-Stochastic One-Player Convergence Rates
	Stochastic One-Player Convergence Rates
	Two-Player Convergence Rates

