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Optimized 3D Watermarking for
Minimal Surface Distortion

Adrian G. Bors, Senior Member, IEEE, and Ming Luo

Abstract— This paper proposes a new approach to 3D
watermarking by ensuring the optimal preservation of mesh
surfaces. A new 3D surface preservation function metric is
defined consisting of the distance of a vertex displaced by
watermarking to the original surface, to the watermarked object
surface as well as the actual vertex displacement. The proposed
method is statistical, blind, and robust. Minimal surface distor-
tion according to the proposed function metric is enforced during
the statistical watermark embedding stage using Levenberg–
Marquardt optimization method. A study of the watermark
code crypto-security is provided for the proposed methodology.
According to the experimental results, the proposed methodology
has high robustness against the common mesh attacks while
preserving the original object surface during watermarking.

Index Terms— 3D digital watermarking, Levenberg–
Marquardt optimization, surface error minimization.

I. INTRODUCTION

D
IGITAL watermarking aims to fulfill simultaneously a

set of requirements such as: non-visibility, robustness,

high bit capacity and crypto-security. Usually, by enforcing

any of these constraints we limit the effectiveness of all

the others. The methodology proposed in this paper aims to

minimize the distortions introduced in the graphical object by

watermarking while being blind and robust as well. Digital

watermarking was considered for a variety of media such as:

images, video, audio, 3D graphical objects or vectorial data.

In the following we consider the meshes of 3D graphical

objects as cover media. Depending on whether the original

graphical object is needed or not in the decoding stage we

have non-blind or blind watermarking. The methods from

the first category usually have good robustness [1], [2] but

a limited range of applications, and in this paper we only

consider blind watermarking. The application of watermarking

methodology includes copyright protection, authentication,

digital fingerprinting, embedding information relevant to the

graphical object for database indexing purposes, etc.

Watermarking methods can be categorized as determin-

istic [3], [4] or statistical [5]–[7]. The methods from the

first category embed a set of constraints [3], [8], while

those from the second category perform statistical changes
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in distributions of measurements from the object’s mesh.

Usually, deterministic methods allow a higher capacity of

information embedding, making them suitable for steganog-

raphy, but on the other hand they have lower robustness to

attacks. Watermarking of graphics has been performed in both

spatial and transform domains. Transform domain watermark-

ing considers embedding the message in the mesh spectral

domain [2], [9], the wavelet domain [10], or in the spher-

oidal harmonic coefficients [11]. Spatial domain considers

embedding the watermark directly in the geometry of the 3D

object [3], [7], [8].

Watermarking, invariably introduces distortions in the mesh

surface. A study of the distortion introduced by digital water-

marking in mesh surfaces of 3D objects was performed in [3].

Visual masking procedures, used for hiding changes produced

by the watermarks in 3D graphics, have been proposed in [12]

for the distortions introduced by the methods proposed in

[4] and [8]. A surface preservation method using embeddings

within distributions of geodesic distances was proposed in [7].

A method minimizing the quadric error metric (QEM) by using

geometric constraints with respect to the cover object surface

was used in [13].

In this paper we propose a new methodology for 3D

watermarking by ensuring a minimal surface distortion.

Distributions of distances from vertices to the object center

are changed according to the watermark code using the

Levenberg–Marquardt optimization in spherical coordinates.

The optimization process minimizes the sum of Euclidean

distances from the vertex, displaced by watermarking, to

the original surface, to the watermarked surface and to its

original location. The Levenberg–Marquardt method [14],

[15] was used in a variety of applications including surface

fitting of graphical objects [16], shape processing [17] and

image watermarking [18]. The proposed methodology ensures

a minimal distortion in the resulting watermarked 3D mesh

and represents a generalization of the 3D watermarking

methods from [6] and [13]. Section II describes the statistical

approach to 3D watermarking. Section III provides the

surface distortion metric used as a watermarking cost

function. Section IV describes the watermark embedding

approach for the vertex placement using the Levenberg–

Marquardt method. A study of watermark robustness in the

minimal 3D object while preserving its surface is provided

in Section V while the crypto-security for the proposed

method is analyzed in Section VI. Section VII provides

the experimental results, while Section VIII concludes the

paper.
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II. STATISTICAL WATERMARKING OF MESH-BASED

REPRESENTATIONS OF 3D OBJECTS

This section describes the processing stages for statistical

watermarking: statistical variable representation, histogram

mapping function and the watermark decoding algorithm.

A. Statistical Variable Representation

Let us assume that we want to embed a message (code) of

M bits into a 3D object O. We denote the object center by O

and a vertex on its surface as V j , while their corresponding

coordinates are o and v j , respectively. The vertices of the mesh

object O are clustered into M bins such that each bin is used

for embedding one bit of message Bi , i = 1, . . . , M . In the

proposed approach, we cluster the vertices according to their

distance from v j to the object center o, which is considered

as reference:
o =

∑

v j∈O A(v j )v j
∑

v j∈O A(v j )
(1)

where A(v j ) represents the area of all triangular faces con-

taining the vertex v j . The object center defined in this way

is more robust than by simply taking the average of all its

vertices, as it was used in [6], particularly when considering

the watermark robustness to various attacks such as remeshing

or simplification. For the center calculation we could have used

the object volume moments as in [19], as well.

For a given vertex v j ∈ O, let us denote its distance to the

reference point given by the center, representing the vertex

norm, by ρ j = ‖v j − o‖ and consider this as a statistical vari-

able. After ranking the distances from the center to vertices,

we evaluate ρmin = minv j (ρ j ) and ρmax = maxv j (ρ j ), where

v j ∈ O. Consequently, the vertices are grouped into M sets

according to their distances to the object center, as:

Bi = {v j ∈ O | ρmin + ε(ρmax − ρmin) + (i − 1)ρb ≤ ρ j ,

ρ j < ρmax − ε(ρmax − ρmin ) + iρb} (2)

where i = 1, . . . , M and each of these sets contains a number

of vertices located in an identical range of distances from the

object center equal to:

ρb = (1 − 2ε)(ρmax − ρmin)

M
(3)

where ε ∈ [0, εmax] represents a trimming ratio, accounting

mostly for characteristic object features, which are eliminated

from further consideration for watermark embedding. Such

features would usually represent outliers in the given statistical

representation of vector norms and following watermarking,

their change could be visible. The value of ε is generated

according to the secret key. A study of robustness to crypto-

attacks which depends on the number of bits embedded M

and on εmax is provided in Section VI.

B. Histogram Mapping Function

Histogram mapping was used for statistical watermarking

in various methods including those from [5]–[7]. Each bin of

vertex norms has a width given by ρb, calculated according

to equation (3) with limits defined as ρi,min and ρi,max . In the

following we consider two methods for statistically embedding

a message bit into a bin containing a set of vertex norms.

In the first embedding method, the statistical variables are

firstly normalized to the range [0, 1] by using:

ρ̃i j = ρi j − ρi,min

ρi,max − ρi,min

. (4)

As shown in [6], the distribution of the statistical variable ρ̃i j

is usually close to a uniform distribution. Thus, the expected

mean value of the statistical variable is 1/2. In order to embed

one bit we introduce a bias in the corresponding histogram by

changing its mean value according to:

µ̂i =
{

1
2 + α if Bi = 1
1
2

− α if Bi = 0
(5)

where α is the watermark strength factor influencing the visual

distortion as well as the robustness, with a higher α providing

higher robustness but more watermark visibility, while Bi ,

for i = 1, . . . , M , is the bit to be embedded into the Bi ’s

bin containing vertices according to (2). The first histogram

mapping function changes the normalized distances, in order

to enforce (5), as:
ρ̃′

i j = ρ̃
β
i j (6)

where ρ̃′
i j is the resulting watermarked normalized vertex

norm, and β ∈ (0, 1) when embedding a bit of 1, and

β ∈ (1,∞) for a bit of 0. The watermarked vertex norms

are obtained by mapping ρ̃′
i j back to the original interval as:

ρ̂i j = ρ̃′
i j (ρi,max − ρi,min ) + ρi,min . (7)

The second method embeds the message by changing the

variance of the vertex norm histogram. In this case, ρi j is

normalized to the range [−1, 1] as:

ρ̃i j = 2
ρi j − ρi,min

ρi,max − ρi,min

− 1. (8)

The expected variance for a uniform distribution is 1/3. We

embed one bit by modifying the variance of ρ̃i j according to:

σ̂ 2
i =

{

1
3

+ α if Bi = 1
1
3

− α if Bi = 0.
(9)

The histogram mapping function for modifying each element

from the set Bi is defined in this case as:

ρ̃′′
i j = sign(ρ̃i j )|ρ̃i j |β (10)

where β ∈ (0, 1) when embedding a bit of 1 and β ∈ (1,∞)

for embedding a bit of 0.

The watermarked vertex norms are obtained by the inverse

normalization function:

ρ̂i j = 1

2
(ρ̃′′

i j + 1)(ρi,max − ρi,min ) + ρi,min . (11)

Firstly, a statistical variable from the watermarked dis-

tributions is sampled. Secondly, a chosen vertex from the

corresponding bin is displaced such that its vertex norm

fits the sampled statistical variable while fulfilling a surface

preservation constraint criterion as well. In Section III we

provide a new mesh surface error criterion in order to achieve

a minimal 3D object distortion following 3D watermarking.
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C. Watermark Extraction

The watermark extraction algorithm is blind, i.e. it does

not require the original object in the decoding stage. In the

watermark decoding stage, after evaluating the object center o,

we use the watermark key in order to generate the percentage

ε for finding the vertices which had been eliminated from

the watermark decoding procedure. Consequently, we calculate

ρb, assuming known the number of embedded bits M , and we

form bins with the corresponding extracted vertices. Then, the

watermark code is extracted bit by bit, where for each bin,

the given range of distances from the vertices to the object

center are normalized according to either equation (4) or (8),

for the mean or variance methods, respectively. For the first

watermarking method, the code is extracted by applying a test

on the mean value of the bin histogram:
{

if µ̂i > 1
2 then Bi = 1

if µ̂i < 1
2 then Bi = 0.

(12)

For the second watermarking method, the variance is calcu-

lated, and the bit is extracted following the test:
{

if σ̂ 2
i > 1

3 then Bi = 1

if σ̂ 2
i < 1

3 then Bi = 0.
(13)

III. DISTORTION METRIC CRITERION FOR SURFACE

PRESERVING WATERMARKING

Invisibility of the changes caused by watermarking is one

of the major requirements for watermarking and in this section

we propose a surface error minimization approach for 3D

watermarking. Let us consider that we are provided with the

statistical variable ρ̂ j , sampled from the watermark based dis-

tributions as described in the previous section. Watermarking is

defined by displacing a certain vertex V j to a new location V̂ j

such that ‖OV̂ j ‖ = ρ̂ j . We can observe that this corresponds

to a statistical mapping on a set of spheres centered at O,

while their radii are statistical variables ρ̂ j fulfilling the bit

embedding conditions. Simultaneously, a surface distortion

minimization condition is imposed such that the changes

produced by the watermark would not be identifiable.

The constraints considered in the following consist of the

distortion between the watermarked and the original surface,

the smoothness of the resulting watermarked surface as well as

the original vertex displacement. The cost function E(·) = fT f

is defined by a vector function f = (
√

k1f1,
√

k2f2,
√

k3f3)
T

with three components f1, f2 and f3 defined by weighting

parameters k1, k2, k3 such that k1 +k2 +k3 = 1. The first error

metric component f1 defines the distortion of the watermarked

vertex with respect to the original surface as:

f1 =

⎛

⎜

⎝

< (v̂ j − v j ), n1 > n1

...

< (v̂ j − v j ), nl > nl

⎞

⎟

⎠
(14)

where v̂ j is the location of the watermarked vertex V̂ j ,

< ·, · > is the dot product and nl , l = 1, . . . ,NV j , is the

normal vector of a triangle adjacent to the vertex V j from the

original surface with NV j representing the number of adjacent

triangles to the vertex V j . The vector < (v̂ j − v j ), nl > nl

represents the projection of the vertex displacement along

the orthogonal direction from V̂ j to the polygon Fl , l =
1, . . . ,NV j , which is adjacent to V̂ j . Let us define D(v̂ j , Fl)

as the distance from vertex V̂ j to the polygon Fl . We can

observe that

fT
1 f1 =

NV j
∑

l=1

D2(v̂ j , Fl). (15)

The metric fT
1 f1 represents the Quadric Error Metric (QEM),

i.e. the squared distance from the watermarked vertex to

the original surface following the vertex displacement due

to watermark embedding [13]. QEM was used for assessing

the surface quality for mesh simplification by Garland and

Heckbert [20] and was shown to have a lower computational

complexity than the Hausdorff distance [21]. In the watermark-

ing approach from [13], the vertex is displaced, onto the plane

of a given adjacent triangle from the surface of the object, to

the location of the intersection between the sphere centered in

O, of radius ρ̂ j , and the plane perpendicular on this triangle

and containing O. The resulting displaced vertex minimizes

QEM.

The second vector function component f2, is defined for

measuring the distance of the watermarked vertex to the

updated surface as:

f2 =

⎛

⎜

⎝

< (v̂ j − v j ), n̂1 > n̂1

...

< (v̂ j − v j ), n̂l > n̂l

⎞

⎟

⎠
(16)

where n̂l , l = 1, . . . ,NV j is the normal vector of the

polygon contained in the modified surface, neighboring the

watermarked vertex V̂ j of location v̂ j , where we consider that

the number of triangles and other polygons does not change

following the watermark embedding. If there are no changes in

the orientation of the planes corresponding to the watermarked

object, in the neighborhood of v̂ j , which is unlikely in most

cases, we would have:

Qv j (v̂ j ) = fT
2 f2 = fT

1 f1. (17)

We consider f2 in order to ensure the resulting watermarked

object surface smoothness and its consistency in appearance

with the cover object surface. When updating the vertex v j ,

some of its neighbors may have been previously watermarked

and consequently the local surface is displaced from its

original position. The surrounding updated polygons are most

likely no longer located on the same planes as the original

ones. By considering only the component f1 in f we can obtain

distorted surfaces following watermarking.

The third error function component f3 corresponds to

the vertex displacement, representing the Euclidean distance

between the watermarked and original vertex locations:

f3 = v̂ j − v j (18)

such that the squared Euclidean distance between the original

vertex V j and the watermarked vertex V̂ j is:

fT
3 f3 = ||v̂ j − v j ||2. (19)
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The third constraint is added in order to compensate for the

surface error which is not accounted for by the previous two

error function components f1 and f2. For example, by choosing

any point on the plane containing the original triangle as the

updated vertex, will produce no errors with respect to the

first and second error function components if none of their

neighbors’ locations are changed by watermarking. However,

if the new vertex is displaced too far away from its original

location on the plane, it will introduce a very large distortion

to the object surface, although fT
1 f1 = fT

2 f2 = 0 in this case.

Therefore, the third error function component is necessary as

a dragging force in order to ensure the minimal displacement

for the watermarked vertex from its original location.

Fig. 1 displays an example illustrating the three error

function components for a single triangle on the surface of

the object when displacing the vertex V j into V ′
j following

watermark embedding. If only the distance to the original

surface would be considered, i.e. the plane containing △V j AB ,

then V ′′
j introduces the smallest distortion because it is located

on the surface of the original object and consequently has

fT
1 f1 = 0. But obviously in the example from Fig. 1, the result-

ing △V ′′
j A′B ′ is twisted, where A′ and B ′ correspond to new

locations following watermarking and may result into unpleas-

ant visual effects for the object surface when considering the

illumination of the graphical scene. This type of distortion

will be prevented by considering the second error function

component f2. The location of the new vertex must take into

account simultaneously the location of the original surface and

that of the updated surface in order to ensure an appropri-

ate surface smoothness after watermarking. The user defined

parameters k1, k2 and k3 weigh the error with respect to the

original surface, watermarked object surface and the Euclidean

distance between the original and updated vertices. We can

adjust these parameters in order to emphasize the impor-

tance of an error function component over the others accord-

ing to specific watermarking requirements. When k2 = 0

and k3 = 0 we obtain the criterion used in [13] for water-

marking, while when k1 = 0 and k2 = 0 we have the criterion

used in [6]. A comprehensive empirical study about how to

choose these parameters is provided in Section VII-B from the

experimental results.

IV. OPTIMAL VERTEX PLACEMENT FOR

WATERMARK EMBEDDING

In this section we describe how we embed the watermark

by displacing a given vertex such that it minimizes the surface

distortion criterion function E(·). The constraint that we have

to enforce is ||OV̂ || = ρ̂ j , i.e. the watermarked vertex

should be on the sphere S(O, ρ̂ j ) centered in the object

center O, of the radius given by the statistical variable ρ̂ j

corresponding to the bit to be embedded and calculated as

described in Section II. Simultaneously we aim to produce

minimal distortion to the object surface. Due to the embedding

symmetry with respect to object’s center, in the following we

consider the spherical coordinate representation for the vertex

Fig. 1. The three components of the surface preservation criterion when fol-
lowing watermark embedding, a triangle △V j AB is modified into △V ′

j A′ B ′.
The statistical watermark variable corresponds to the sphere centered in O ,
with radius ||OV ′′

j || = ||OV ′
j || = ρ̂ j . A′ and B ′ are vertices displaced

following watermark embedding from their original locations A and B .

location v̂:

v̂ =

⎛

⎝

ρ̂ j cos φ̂ sin θ̂

ρ̂ j sin φ̂ sin θ̂

ρ̂ j cos θ̂

⎞

⎠. (20)

In the following we update the vector ψ = ( φ̂ , θ̂ )T , while

considering the vertex norm ρ̂ j as constant, while minimizing

the criterion given by E(·).
Initially, we can select any location on the sphere of radius

ρ̂ j , centered in the object center, as the initial value. For

example, we move the vertex V to V̂ along the direction

of
−→
OV such that ||OV̂ || = ρ̂ j , as it was considered in [6],

as an appropriate initialization. Then, we use the iterative

Levenberg–Marquardt optimization method in order to find

the optimal vertex location minimizing the surface error E(·).
Levenberg–Marquardt method [14], [15] represents an iter-

ative gradient-descend minimization approach which solves

nonlinear least square problems, subject to constraints and

can be viewed as a Gauss–Newton method using a trust

region approach which is robust to the choice of initializa-

tion as well. Levenberg–Marquardt firstly linearizes the given

nonlinear problem by using a Taylor expansion around the

vector ψ = (φ̂, θ̂ )T :
f(ψ + h) = f(ψ) + Jh (21)

where f(·) is the given surface distortion function, defined in

the previous section and used here as a constraint criterion,

and h = ( 	φ , 	θ )T is the step size. J is the Jacobian

matrix of the vector function f and is calculated as:

J =

⎛

⎜

⎜

⎝

∂fT

∂φ̂

∂fT

∂θ̂

⎞

⎟

⎟

⎠

. (22)

The optimal step hk is calculated at each iteration k, in order

to update the vector ψk :
ψk+1 = ψk + hk . (23)

Levenberg–Marquardt uses iteratively the following equation

in order to calculate hk :
(JT

k Jk + µkI)hk = JT
k fk (24)
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where µk > 0 is the damping factor, fk and Jk represent

the surface distortion metric and its Jacobian, calculated at

iteration k with respect to ψk . The initial value of the step µ0

is chosen as in [17]:

µ0 = 10−6 max{diag(JT
0 J0)} (25)

where diag represents the diagonal of the matrix JT
0 J0, which

corresponds to the Jacobian matrix of f calculated for ψ0.

µk is updated according to the approach proposed by Nielsen

in [22]. The algorithm is not sensitive to the initial choice of

µ0 as this value is continuously optimized by the updating

procedure as in [14]. The damping factor serves two main

purposes. Firstly, because µk > 0, the coefficient matrix

is positive definite, and this ensures that hk leads to the

minimization of the cost function in the descent error direction.

Secondly, the damping parameter influences both the step size

and the direction of the gradient descent. When ψk is close

to the optimal value, the convergence rate of the Levenberg–

Marquardt is almost quadratic. Levenberg–Marquardt was

proved to converge and the optimization process is terminated

when either the step size hk becomes too small, or the error

E(·) is too small, or when the loop exceeds a pre-set number

of iterations [14], [17].

V. MINIMAL OBJECT WATERMARKING

Surface distortion produced by watermarking was analyzed

in [3] for diverse surface variations. In the following we pro-

vide a minimal object watermarking analysis when employing

the proposed watermark embedding approach. The sphere is

known as the object of maximal compactness for a given

volume and is chosen for this study due to its radial symmetry

to its center as well. The watermarking methodology proposed

in this paper as well as those of the approaches from [6], [13]

are based on radial symmetry properties of objects with respect

to their center and a sphere represents the simplest cover object

for such methods.

In the following we consider the asymptotic analysis when

embedding a single bit into a sphere of radius 1, whose

vertices are distributed angular uniform on its surface, while

assuming ε = 0 and the mean distribution embedding as in (5).

When enforcing the minimization of the cost function f ,

provided in Section III, the embedding of the watermark

will produce displacements of the vertices along their radius

which results into a series of bumps on the surface.

Let us consider the cross-section through a sphere as the

circle of center O and radius R from Fig. 2. We consider a

point C on the sphere and assume that the embedded water-

mark is represented asymptotically as a set of semispheres-

like bumps, one of them centered in C . By embedding the

watermark in the sphere cover object by means of such bumps

we ensure the enforcing of maximal radial change while

preserving surface smoothness and fulfilling the constraints

given in Section III. Let us consider that the watermark is

characterized by six bumps with each of them semisphere-like,

regularly placed on the surface of the sphere object. When

considering placing 6 semisphere-like bumps onto a sphere,

their radius is r = R
√

2 −
√

3, where R is the radius of the

Fig. 2. Cross-section through a sphere cover object, where the watermark is
embedded as a set of semisphere-like bumps on its surface.

sphere cover object, for covering symmetrically the area all-

round the sphere. Each of these bumps can be seen as located

on top of a cone with the apex in the center of the sphere and

characterized by an angle of π/3. When embedding a given

watermark, a vertex D on the surface of the sphere is displaced

by a distance d along the direction of
−−→
O D and moved to a

new location A. Let us consider an angle D̂OC = θ between

the angular location on the original object for D and that of

C . After applying the sine and cosine theorems in △AC D

and △OC D and by using other trigonometrical properties,

we obtain the following distortion equation for the vertices

embedding the watermark:

d2 = R2

[

4 sin2(θ/2)

(

1 −
√

1 −
√

3 + cos2(θ)

)

+ 2 cos2(θ) −
√

3

]

. (26)

The resulting watermarked sphere surface is smooth and the

only discontinuities on the watermarked object surface are

located at the boundary between the semisphere-like bumps

and the sphere cover object. For attenuating the distortion

produced by these bumps we consider a scale factor k > 1

for replacing R with R/k in equation (26). The usage of k is

similar to that of the watermark strength factor α from (5).

Examples of watermarked spheres, when embedding a bit

of 0 and 1, using this watermarking function, are shown in

Figs. 3(a) and (b), respectively, when considering two bumps,

symmetrically placed and a scale of k = 2. In Figs. 3(c)

and (d) we show the watermarked sphere when embedding

a bit of 0 and 1, respectively, using ten bumps, placed along

the intersection of the sphere with two perpendicular planes,

using a scale of k = 4. For the sake of exemplification, the

distortions on the surface of the sphere are visible in these fig-

ures. For a higher value for k such distortions are less visible.

The distortion function is f2 = 2d2 for each vertex displaced

with d from (26). In the case when considering the watermark

embedded by a single semisphere-like bump, after integrating

the difference on the entire sphere’s surface we obtain a
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(c) (d)

(a) (b)

Fig. 3. Semisphere like bumps watermark embeddings on a sphere.
(a) Embedding of bit 0 using 2 bumps and k = 2. (b) Embedding of bit 1
using 2 bumps and k = 2. (c) Embedding of bit 0 using 10 bumps and k = 4.
(d) Embedding of bit 1 using 10 bumps and k = 4.

volume difference of about 0.11π R3 from the original sphere

of radius R and for k = 1. When considering several such

bumps, the distortion would increase proportionally for the

case when they are far away from each other, but less so when

they would overlap. The safety detection difference (SDD)

represents the normalized difference between the distribution

of the distances from the watermarked object surface to the

center and that of a uniform distribution, representing no

watermark embedding. SDD represents the bias which would

result from (12) after assuming the watermark embedding

and possible attacks. SDD, when measured at the watermark

embedding stage, characterizes the level of distortion that

the watermarked object may undergo during an attack, while

the watermark can still be appropriately decoded. SDD is

given by:

SDD =
∣

∣

∣

∣

µ̂s − 1

2

∣

∣

∣

∣

(27)

where µ̂s is the mean of the statistical variable character-

izing the watermark. The bin is provided by the distances

from vertices located on the surface of the watermarked

object to the object center and they correspond to the range

[R, R ± R
k

√

2 −
√

3], where the sign is positive for a bit of

0 and negative for a bit of 1. A larger SDD would represent

a more significant watermarked object distortion as well as a

more robust watermark.

In the following we assess the robustness of the water-

mark, when watermarking a sphere using the distortion

distance (26) and assuming a number of semisphere-like

bumps N = {2, 4, 6, 8, 10}, symmetrically located on the

surface of the sphere cover object and watermark attenuation

R/k for k = {1, . . . , 8}. In all these cases it can be observed

Fig. 4. SDD from (27) when watermarking a sphere using N semisphere-like
bumps, symmetrically located while assuming various attenuation factors k.

that the center of the watermarked object does not change due

to the symmetry of the watermark embeddings. In Fig. 4 we

provide the evaluation of SDD and we can observe that when

embedding fewer bumps actually we have a larger SDD, while

having a smaller distortion. This denotes a higher robustness

of such watermarks to that of random changes to the object

surface. However, fewer semisphere-like bumps watermarks

can be easier identified by a crypto-attacker who may decode

the watermark code.

VI. WATERMARK SECURITY

In this section we analyze the security of the proposed

watermarking approach. We assume the Kerckhoffs’s prin-

ciple, according to which the watermark system is entirely

known to a crypto-attacker aiming to break the watermark

code. We have only one security parameter, ε, representing the

trimming ratio used for removing the vertices that are either

close to the object center or they are from the other extremity,

according to (2).

A crypto-attacker would need to guess the value of ε using

exhaustive search, which given the nature of the watermarking

process would actually be limited to a set of quantized values.

The decoding by the attacker depends on the overlap between

corresponding bins and on the actual sequence of bits. While

overlaps of bins would not affect a set of identical bits because

they are all characterized by the same vertex radii distributions

in their bins, the worst case scenario for an attacker would be

when the watermark code is a sequence of consecutive bits of

1 and 0. Let us assume in the following that the expectations of

the mean for a bin from the region close to the object center as

well as to the one that is far away, is uniform and consequently

E[µ̂] = 1
2 . We assume E[µ̂] = 3

4 for Bi = 1 and E[µ̂] = 1
4

for Bi = 0, resulting into SDD = 1
2 for both cases, according

to (27). In Fig. 5 we evaluate the bias in the estimation of the

mean of the vertices from bins estimated by a crypto-attacker

attempting to break the watermark code. We consider that the

watermark has 8 bits and we assume ε = 0.15. In Fig. 5, we

assume that the attacker tries ε ∈ {0.04, 0.08, 0.12, 0.2}. A

bias of 1
4 or larger, corresponds to a uniform distribution or

to a bit flip and would result into a wrongly estimated bit for
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Fig. 5. Bias in the estimation of the means for each bin, corresponding to
the attempts by a crypto-attacker to find a watermark code when considering
that the embedded code has M = 8 alternating bits of 1 and 0, considering
ε = 0.15.

the crypto-attacker. It can be observed from Fig. 5, that due to

the symmetry of the trimming, according to equation (2), the

middle bits are more likely to be identified during a crypto-

attack.

It can be observed that following a crypto-attack, the

resulting bins containing an overlap of half of bin between

the actual distributions corresponding to two consecutive bins

of 1 and 0, represents a failure for the attacker. The number of

trials τ , that are required for a cryto-attack on the watermark

to succeed, depends on how well the attacker can guess the

location of half bins and the number of embedded bits M , as

follows:

τ = ε(ρmax − ρmin)
ρb

2

= 2εM

(1 − 2ε)
(28)

where we have used (3). This expression would result for

ε = 0.15 into a number of 28 and 55 trials for a crypto-

attacker, when assuming a number of 64 and 128 embedded

bits, respectively. The number of required trials would double

when using an asymmetric trimming for the vertices located

at the extremities of the range of distances from vertices

to the object center. In order to increase the security of

the watermark, the solution would be to introduce additional

key-generated parameters. For example we can consider a

reference point, which is different from the center of the

object. The location of such a reference point with respect to

the center of the object would be represented by a shift vector,

adding three new parameters to be generated by the security

key. Another additional security parameter can be to introduce

key-generated widths for mesh bands ρb in equation (3), each

band being used for embedding a single bit. A crypto-attacker

would have to guess all these parameters and the total number

of trials that he/she will have to perform would increase

significantly to several thousands. Nevertheless, the location

of the center would be limited to a specific region inside the

object and the band width would have a minimal value in order

to achieve a good watermark robustness as well.

VII. EXPERIMENTAL RESULTS

In the following we provide the experimental results when

using the proposed methodology for watermarking 3D graph-

ical objects represented as surface meshes. The experiments

address both the watermark change visibility as well as the bit

capacity, choice of parameters, robustness to various attacks,

etc. In all experiments, excepting for the bit embedding

capacity study, we embed M = 64 bits in each object. The

watermark strength is set as α = 0.1 in both equations

(5) and (9), except for when studying the influence of the

α parameter. The trimming ratio ε used in equation (3) is

considered bounded by εmax = 0.15 in order to ensure

an appropriate balance between robustness, object distortion,

bit-capacity and security. For each result we consider the

embedding of one hundred different watermark codes into each

graphical object and the final figure represents the averaging of

all the corresponding results. In the experiments we compare

the results provided by the watermarking method ensuring

surface preservation based on the Levenberg–Marquardt opti-

mization method, as described in Section IV, (denoted as

L–M) with the methods proposed by Cho et al. [6], and the

method using quadric error metric (QSP), which was proposed

in [13]. All these methods rely on using the object center

as the reference. For each method we employ two different

statistical approaches, corresponding to modifying the mean

or the variance of the histogram of distances from vertices to

the object center, according to either equation (5) or (9) and

these are identified by appending either “Mean” or “Var” to

the name of the watermarking method.

A. Experimental Models and Their Surface Preservation

Assessment

The proposed methodology was applied on several graphical

objects and in this paper, we provide the results when hiding

digital information into six 3D graphical models shown in

Fig. 6: Bunny, Fish, Gear, Dragon, Buddha and Head. The

number of vertices and polygons for each of these graphical

objects are provided in Table I. The meshes of these objects

display a large variation of surfaces and shapes. Bunny is a

small mesh object which is widely used in computer graphics

experiments. Gear is a CAD object which contains large flat

regions and sharp corners as well as circular holes. Such

objects may have regions which can be modified only up

to the admissible tolerance or even can not be modified due

to their functionality, and watermarking such objects would

require additional constraints. Dragon is considered as a large

3D model, considering its numbers of vertices and polygons,

which has high variance in certain regions. Buddha has a

complex surface variation and contains irregular holes. Head

is an ellipsoidal like object with many smooth surfaces which

has human features.

Surface distortion assessment is essential when evaluating

3D object watermarking methodology. We measure the surface

quality of the watermarked objects using the method proposed

by Cignoni et al. in [23] which represents an approximation

of the Hausdorff distance for 3D mesh surfaces. This method

employs a criterion which evaluates the forward E f (O, Ô)
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(a) (b) (c)

(d) (e) (f)

Fig. 6. 3D Models used in the experiments. (a) Bunny. (b) Fish. (c) Gear.

(d) Dragon. (e) Buddha. (f) Head.

TABLE I

CHARACTERISTICS OF THE 3D MODELS USED IN EXPERIMENTS

Models No. of Vertices No. of Polygons

Bunny 34 833 69 449

Fish 64 982 129 664

Gear 231 703 463 430

Dragon 422 335 844 886

Buddha 89 544 179 222

Head 100 759 201 514

and the backward Eb(Ô,O) root mean square (RMS) errors

between the surfaces of the original graphical object O and

the watermarked graphical object Ô. The maximum root mean

square (MRMS) value is used as the measure of distortion:

E(O, Ô) = max{E f (O, Ô), Eb(Ô,O)} (29)

where:

E f (O, Ô) =

∑

v∈O
min
v̂∈Ô

‖v − v̂‖

|O| (30)

Eb(Ô,O) =

∑

v̂∈Ô

min
v∈O

‖v̂ − v‖

|Ô|
(31)

where v ∈ O and v̂ ∈ Ô represent vertices from the original

object and from the watermarked object, respectively, while

|O| represents the number of vertices from the graphical

object O. We can observe from these formulae that this

error measure is a good indicator of the local distortions

such as spikes that may emerge following the 3D surface

watermarking. Such significant changes to the object surface

are undesirable to be produced by watermarking. However,

the Hausdorff distance does not evaluate how spread are the

surface errors on a specific object and the visual surface

assessment is necessary to be undertaken for a full surface

evaluation.

TABLE II

EVALUATING THE MRMS ERROR, ACCORDING TO (29), WHEN

CHANGING k1 , k2 , AND k3 , WHERE THE RESULTS SHOULD

BE MULTIPLIED WITH 10−4

Parameters Bunny Gear

k1 k2 k3 L–MMean L–MVar L–MMean L–MVar

1.0 0.0 0.0 0.44 0.17 949.09 428.09

0.0 1.0 0.0 0.46 0.18 1025.21 355.11

0.0 0.0 1.0 1.18 0.62 1861.15 1024.07

0.5 0.5 0.0 0.41 0.18 654.57 303.15

0.5 0.0 0.5 1.10 0.59 1546.87 862.52

0.0 0.5 0.5 1.17 0.62 1817.69 998.94

0.45 0.45 0.1 0.69 0.36 621.97 313.10

0.4 0.4 0.2 0.88 0.46 1007.14 537.90

0.49 0.49 0.02 0.40 0.21 410.57 148.12

B. Evaluating the Parameter Setting

In this section we analyze the effect when varying the

weighting parameters for the error function components used

in the optimization process outlined in Section IV when

applied on the cost function described in Section III. The

parameters k1, k2 and k3 weigh the error function compo-

nents f1, f2 and f3 characterizing the errors of the updated

vertex with respect to the original surface, watermarked

surface and the Euclidean distance to the original vertex

location, respectively. Various parameter combinations (k1, k2,

k3), emphasizing one or another of the error components,

are listed in the first column of Table II. L–MMean and

L–MVar denote the watermarking methods using the error cost

function minimization by Levenberg–Marquardt, as described

in Section IV, when employing either equation (5) for mean

change, or equation (9) for variance change. The results are

evaluated according to the distortion produced to the 3D object

surface, measured using the maximum mean root squared error

(MRMS) provided in equation (29). Table II provides the

MRMS results for two of the graphical objects: Bunny and

Gear. The first three sets of parameters consider the effects

of each cost function component individually, while equating

the contribution of the other two to zero. When considering

only the Euclidean distance with respect to the original vertex,

i.e. for k3 = 1 and k1 = k2 = 0, the resulting surface

distortion is much larger. For this parameter combination it can

be observed that the watermarking method becomes identical

with the method of Cho et al. described in [6]. For the

parameter setting of k1 = 1 and k2 = k3 = 0, we have

the QSP approach from [13]. The results show that if the

errors with respect to the original surface and the watermarked

surface are considered simultaneously and equally weighted,

the resulting distortion is much smaller than the other two

cases when using two error components. This indicates that

the significance of the first two error function components f1

and f2 should outweigh the third error function component,

respectively f3. According to Section III, the error function

components with respect to both the original surface and the

updated surface must be considered. The fourth parameter

selection provides less surface distortion than the first and the



1830 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 5, MAY 2013

(a) (b)

(c) (d)

Fig. 7. Visual effects for various k1, k2, and k3 settings. (a) k1 = 0.0,
k2 = 0.0, k3 = 1.0. (b) k1 = 0.5, k2 = 0.5, k3 = 0.0. (c) k1 = 0.45,
k2 = 0.45, k3 = 0.1. (d) k1 = 0.49, k2 = 0.49, k3 = 0.02.

second cases, according to these experiments. We found that

the last case, where k1 = k2 = 0.49 and k3 = 0.02, provides

the minimum surface distortion according to the MRMS

criterion. This result verifies our error function construction,

as described in Section III, while underlying the importance

of minimizing the error with respect to the original object

surface together with enforcing the smoothness of the resulting

watermarked object surface, nevertheless without neglecting

the error with respect to the original vertex location. Fig. 7

illustrates various visual effects on the Gear object when

using different configurations of k1, k2 and k3. In the rest

of the paper, we consider the configuration of (k1, k2, k3) =
(0.49, 0.49, 0.02) for the weighting parameters because this

provides the best watermarked object surface quality.

C. Evaluation of Surface Distortion

A very important requirement for hiding digital information

into graphical objects consists of achieving a minimal surface

distortion such that it is not visible to an outsider. Table III

compares the distortions introduced by the watermarking

methods proposed in this paper and the Cho’s methods under

the same experimental settings. For each method we use

both statistical approaches corresponding to equation (5) for

mean change and equation (9) for variance change. We use

MRMS, proposed in [23] and provided in equation (29), as

the numerical distortion measure for comparing various water-

marking methods. As it can be observed from these results,

L–MMean and L–MVar provide better surface preservation

results than the other methods. There was no object surface

distortion variation observed when changing the watermark

code embedded.

Fig. 8 shows the visual differences among the watermarked

Bunny object when employing the methods based on mean

histogram updating according to equation (5). The surface

TABLE III

WATERMARKED OBJECT DISTORTION MEASURED BY MRMS, WHERE

ALL THE FIGURES SHOULD BE MULTIPLIED WITH 10−4

Object L–MMean L–MVar QSPMean QSPVar ChoMean ChoVar

Bunny 0.40 0.21 0.43 0.25 1.18 0.62

Fish 0.12 0.06 0.15 0.07 0.48 0.24

Gear 409.59 148.16 679.46 212.11 1860.67 1023.67

Dragon 0.29 0.13 0.36 0.15 1.09 0.57

Buddha 0.29 0.16 0.27 0.16 0.91 0.47

Head 0.12 0.06 0.13 0.06 0.32 0.16

(a) (b)

(c) (d)

Fig. 8. Distortions produced when watermarking the Bunny object.
(a) Original object. (b) L–MMean. (c) QSPMean. (d) ChoMean.

distortion minimization methods proposed in this paper pro-

duce much smaller distortion than Cho’s method. As it can

be observed from Fig. 8(d), Cho et al. [6] method introduces

ripple like distortions to the surface of graphical objects. Fig. 9

compares close details of the distortions produced by L-M and

QSP methods. From these images of details we can observe

that the surface error minimization methods using Levenberg–

Marquardt produce better results than the methods based on

the QSP approach, proposed in [13].

D. Watermark Robustness Assessment

The proposed watermarking methodology is robust against

attacks that do not distort the graphical object surface includ-

ing the affine transformations, vertex reordering, etc. However,

the proposed information hiding methodology is not robust to

changes in the object center. Such object center changes can be

produced by object cropping, when applying significant asym-

metric scaling or by adding localized noise of high amplitudes.

However, such large changes may result into the destruction of
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(a) (b) (c) (d)

Fig. 9. Visual comparison of graphical object details following watermarking.
From the first row to the bottom, the following are represented on each
row: original objects and watermarked by L–MMean, L–MVar, QSPMean
and QSPVar, respectively. (a) Bunny. (b) Fish. (c) Gear. (d) Dragon.

the graphical object. In the following, we assess the robustness

against additive noise, Laplacian smoothing, mesh simplifica-

tion, quantization and uniform resampling. We compare the

results provided by the proposed methodology with those

of Cho’s method [6] for all six graphical objects. Each test

result represents the average of bit error ratios (BER). BER

is represented as a number in the range [0, 1] representing

the ratio of bits lost after each attack from the total number

of embedded bits considering the embedding of one hundred

different watermark codes into each object. Fig. 10 displays

the effects on the Bunny model after certain attacks.

Additive noise is a common attack, which can be used to

model other more complex mesh changes. In the following

we consider additive random noise according to the following

equation:

ṽi = v̂i + ǫ‖v̂max‖−→p (32)

where ṽi represents the noisy watermarked vertex v̂i , ǫ ∈ [0, 1]
is the percentage of ‖v̂max‖, which corresponds to the largest

Euclidean distance measured from the object center to all

object vertices, and −→
p is a unitary vector of random direction.

Fig. 10(a) shows the watermarked Bunny graphical object after

noise addition with ǫ = 0.5%. The plots from Fig. 11 show the

robustness against noise when varying ǫ = [0.1, 1]% for all

four methods (two using Levenberg–Marquardt optimization

and two based on the Cho et al. approach from [6]) and for all

six graphical objects under consideration. From these plots we

can observe that the robustness of L–MMean is better in Fish

(a) (b)

(c) (d)

Fig. 10. Watermarked Bunny model after various attacks. (a) Noise ǫ = 0.5%.
(b) Laplacian smoothing λ = 0.5, 10 iterations. (c) 90% mesh simplification.
(d) 7 b quantization.

(f)(e)

(d)(c)

(a) (b)

Fig. 11. Robustness against additive noise. (a) Bunny. (b) Fish. (c) Gear.
(d) Dragon. (e) Buddha. (f) Head.

and Buddha, ChoMean is better in the Dragon object while the

noise robustness results are similar in the other objects. The

results on the Gear object are not that good as those achieved

when attacking the other five objects because this is a CAD
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 12. Robustness against Laplacian smoothing. (a) Bunny. (b) Fish.
(c) Gear. (d) Dragon. (e) Buddha. (f) Head.

object containing large flat areas and sharp angles. Additive

noise can easily destroy such distinctive features.

For the smoothing attack test we use the Laplacian algo-

rithm proposed in [24]. A watermarked and smoothed Bunny

when considering a smoothing parameter λ = 0.5 after

10 iterations is shown in Fig. 10(b). The robustness of the

watermarking methods against the Laplacian smoothing when

applied for 1 to 20 iterations with λ = 0.5 are provided in

Fig. 12 for the six objects. The proposed methods show in

general similar results to each other, but it can be observed that

L–MVar is better than ChoVar in the Fish, Buddha and Head

objects. It can be observed that the robustness to smoothing is

higher for larger objects. The watermarked Bunny, which has

fewer vertices than the other objects, is the least robust to the

Laplacian smoothing attack among the six objects.

Mesh simplification is commonly used in computer graph-

ics, particularly for graphics compression, and represents a

challenging attack to watermarked 3D objects [3]. The quadric

metric simplification software, described in [20], was used

for testing the robustness at mesh simplification. Fig. 10(c)

shows the watermarked Bunny object after 90% simplification.

Fig. 13 provides the robustness to the simplification attack for

the four methods and for the given six graphical objects. In

these experiments, we test the robustness of the watermarking

methods when varying the mesh simplification ratio between

5% and 95%. The proposed methodology performs excellently

in the case of the mesh simplification attack. According to

the results from Fig. 13, L–MMean method provides the best

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 13. Robustness against mesh simplification. (a) Bunny. (b) Fish.
(c) Gear. (d) Dragon. (e) Buddha. (f) Head.

results for the Fish, Gear, Dragon and Head objects while

L–MVar is better than ChoVar in most cases. This is because

the L–M methods represent the watermarked object surface as

being consistent with the original 3D object surface.

Fig. 10(d) shows the Bunny object attacked after 7 bits

quantization. As shown in the plots from Fig. 14 all four

algorithms are fairly robust up to applying 8 bits quantization

attacks, while the histogram mean changing methods when

using (5) perform usually better than methods that change the

histogram variance when using (9), which is a result similar

to that provided by the noise attack tests.

We compare the robustness of all four methods against

the remeshing attack after uniformly sampling a percentage

of 100%, 80%, 60%, 40% and 20% from all vertices of the

original objects, using the method proposed in [25]. The new

points are sampled from the tangent plane to the object surface

and the mesh surface is reconstructed by remeshing. From the

robustness plots shown in Fig. 15 we can see that L–MMean

provides similar results to ChoMean for the Bunny object

while its robustness results are better than the other methods

for the other five objects. In these five objects L–MVar

provided again better results than the ChoVar approach.

E. Computational Requirements

Table IV provides the comparison of the timing required for

embedding 64 bits when using all the watermarking methods

considered, for all six graphical objects. The second and

third columns of Table IV provide the average number of
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 14. Robustness against bit quantization. (a) Bunny. (b) Fish. (c) Gear.
(d) Dragon. (e) Buddha. (f) Head.

iterations required by the Levenberg–Marquardt method for

each model. In Fig. 16(a) we provide the convergence of

the step function ‖hk‖, where k is the iteration, as well

as that of the minimization of the infinity norm ||fT
k ψk ||∞,

which represents the entry with the largest absolute value

from the matrix fT
k ψk , evaluated for a typical vertex which

is watermarked by using the L–M method at iteration k. From

these results it can be observed that L–M method converges in

just a few iterations. Fig. 16(b) shows the variation of the error

function E(·) for the same vertex considered for Fig. 16(a).

The Levenberg–Marquardt method automatically adjusts the

step size and the step direction of hk , while testing whether

the step size is appropriate. In this example, although nine

iterations are required for convergence, the vertex is actually

only moved once at step 5 where it can be observed that both

||fT
k ψk ||∞ and the error E(·) are decreasing.

F. Evaluation of the Bit-Capacity and of the Embedding

Strength Factor α

In the following tests we consider the Bunny object whose

characteristics are provided in Table I. Fig. 17(a) illustrates

the relations between the 3D object surface distortion and the

watermark strength factor α. Fig. 17(b) shows the distortion

variation with respect to the watermarking capacity. It can

be observed that the distortion is increased when either α or

the embedding capacity is increased. Figs. 18(a) and (b) pro-

vide the robustness plots when considering additive noise for

L–MMean and QSPMean methods, respectively, while

(a)

(c)

(e)

(b)

(d)

(f)

Fig. 15. Robustness against uniform resampling and remeshing where the
horizontal axes show the percentages of original vertices. (a) Bunny. (b) Fish.
(c) Gear. (d) Dragon. (e) Buddha. (f) Head.

(a) (b)

Fig. 16. Typical convergence of Levenberg–Marquardt for a vertex.
(a) Variation of the step size ||h|| and || f T

k ψk ||∞. (b) Error function.

(a) (b)

Fig. 17. Distortion with respect to the watermark strength factor α and
bit-capacity. (a) Distortion when varying α. (b) Distortion when increasing
capacity.

increasing the embedded bit capacity. Figs. 19(a) and (b)

provide the robustness plots when increasing the water-

mark strength factor α while considering additive noise for

L–MMean and QSPMean methods, respectively.
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TABLE IV

COMPARISON OF THE WATERMARK COMPUTATIONAL REQUIREMENTS. THE SECOND AND THIRD COLUMNS PROVIDE THE AVERAGE

NUMBER OF ITERATIONS REQUIRED BY THE LEVENBERG–MARQUARDT METHOD UNTIL CONVERGENCE FOR THE MEAN AND

VAR METHODS. THE COLUMNS 4–9 REPRESENT AVERAGE PROCESSING TIMES IN SECONDS

Object
L–MMean Iter. L–MVar Iter. L–MMean L–MVar QSPMean QSPVar ChoMean ChoVar

(No) (No) (s) (s) (s) (s) (s) (s)

Bunny 6.20 5.74 5.75 5.3 1.7 1.79 0.39 0.4

Fish 5.69 5.03 10.28 9.36 3.29 3.25 0.85 0.88

Gear 5.87 5.24 42.55 38.52 12.96 12.69 3.98 3.87

Dragon 5.88 5.35 77.55 69.78 22.82 22.4 6.09 6.67

Buddha 5.56 5.03 13.52 12.45 4.87 4.93 1.56 4.83

Head 5.96 5.29 16.21 14.44 4.88 4.91 1.09 4.9

(a) (b)

Fig. 18. Robustness to additive noise when increasing the bit capacity.
(a) Robustness of L–MMean when varying capacity. (b) Robustness of
QSPMean when varying capacity.

(a) (b)

Fig. 19. Robustness when increasing the watermark strength factor α.
(a) Robustness of L–MMean when varying α. (b) Robustness of QSPMean
when varying α.

G. Receiver Operating Characteristic Analysis

Receiver Operating Characteristic (ROC) curves represent

the relation between the probability of false positives P f p and

the probability of false negatives P f n . The probabilities P f p

and P f n are evaluated by varying the decision threshold in

the correlations for the bits extracted from each of the objects

when deciding whether the watermark is present or not, as

in [1], [5]–[7]. The tests are performed for 100 correct and

100 wrong keys and the correlation results are approximated

by Gaussian distributions. Figs. 20(a) and (c) show the ROC

curves for the Bunny object for L–MMean and L–MVar

when considering additive noise levels of {0.1%, 0.2%, 0.3%}.
Figs. 20(b) and (d) show the ROC curves for the Bunny

object for L–MMean and L–MVar when considering mesh

simplifications of {25%, 50%, 75%}. The corresponding equal

error rates (EER) are indicated in each plot from these figures.

As it can be observed from Fig. 20, L–MMean provides better

results than L–MVar and better than the ROC curve results

from [6] and [7].

(c) (d)

(a) (b)

Fig. 20. ROC analysis. (a) and (b) L–MMean with noise and simplification
attacks. (c) and (d) L–MVar with noise and simplification attacks.

VIII. CONCLUSION

In this paper, we propose a new 3D watermarking method-

ology which minimizes the object surface distortions. The

watermark is embedded into histograms of distances from the

object center to vertices on its surface by slightly displacing

the location of the vertices. The proposed method considers

a novel surface error function consisting of three components

measuring the distortion with respect to the original surface,

the watermarked surface and the Euclidean distance from the

original vertex location. This error function ensures both a

minimal distortion with respect to the original surface as well

as it enforces smoothness in the object surface resulting after

watermarking. The 3D object surface distortion is minimized

by using the Levenberg–Marquardt optimization method for

vertices represented in spherical coordinates. We provide a

study of minimal object watermark embedding and a study

of the watermark security for the proposed methodology.

The security of the watermark can be improved if additional

key-generated parameters would be added. As shown in the

experiments, the proposed watermarking methodology has

high robustness against common mesh attacks while ensuring
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a minimal surface distortion. The proposed methodology can

be adapted for usage on other 3D object representations such

as voxel-based or on parametric models after using quanti-

zation. The watermarks can be used for information hiding,

copyright protection, for embedding information relevant to

database organization as well as for embedding object-specific

information which would be used during graphics animation.
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