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Abstract: Vibration is one of the most dangerous phenomena that happens to a structure. It leads to
premature fatigue and eventually failure, with potentially fatal consequences. A smart structure is
an excellent solution to this problem; it adds an actuator, a sensor, and an appropriate control law
to the system to reduce/eliminate the vibration. This study developed a complete analytical model
for a cantilever beam with a collocated PZT sensor/actuator pair. First, we used a coupling of a
collocated PZT sensor and an actuator to measure and control vibration levels based on a PID control
law considering the physical constraints associated with PZT operation as the voltage level of the
actuator. Next, the damping coefficient of the structure was determined by using genetic algorithms
best fit to satisfy specific vibration conditions. Finally, we conducted a complete optimization for
sensor/actuator position and PID parameters, using genetic algorithms. Thus, this paper gives a
thorough understanding of the potential vibration control of the cantilever beam.

Keywords: vibration control; piezoelectric material; genetic algorithm; optimization; analytical model

1. Introduction

Even though vibration can be helpful in some applications, and we can harvest energy
from it, as shown by Jamadar et al. in Reference [1], vibration is, in most cases, harmful
to structures. It can lead to high cycle fatigue failure; internal rubs, especially in rotating
machines; decreased productivity; and fastener loss, which is a significant concern in high-
performance machinery [2]. Crawley et al. [3] and Bailey et al. [4] introduced vibration
control of structures by using a piezoelectric material in the mid-1980s. Subsequently, a
lot of research addressed this subject. The concept of vibration control using Piezoelectric
material transforms the structure into a smart one which usually consists of four major
components: an actuator, a sensor, a controller, and the structure itself [5]. Piezoelectric
material is widely used for its fast response time, low weight, relatively low cost, low
power consumption, easy fabrication, design flexibility, and generation of no magnetic
field while converting electrical energy to mechanical one [5–7]. Moreover, these materials
can be used as actuators/sensors in several forms: surface bonded patches, embedded
patches, distributed layer, cylindrical stacks, screen printed layer, etc. [6]. A crucial criterion
to consider for vibration control is the choice of the control law and the placement of
the actuators/sensors. In the literature, a lot of research has been conducted around the
first criterion, and several control laws were studied, such as direct proportional feedback
control, constant negative velocity feedback, Linear Quadratic Gaussian (LQG), Linear
Quadratic Regulator (LQR), Proportional Integral Derivative (PID), sliding mode, and
H2, as detailed in Reference [8]. Kumar et al. [9] studied the direct proportional position
feedback control law, the constant gain negative velocity feedback control, and the LQR
optimal control. He shows that the constant gain negative velocity feedback control is more
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effective than the direct proportional position feedback control. Chandrashekhara et al. [10]
reached similar conclusions.

Moreover, Kumar has shown that the LQR control offers an effective control by using
lower actuator voltages than the negative velocity feedback. Qui et al. [11] showed that a
combined position feedback control (PPF) with a proportional derivative (PD) control can be
effective in vibration suppression, especially for small-vibration amplitude. Yang et al. [7]
showed the effectiveness of the velocity feedback control in vibration suppression of
a composite laminated plate with different fiber orientations, using an embedded PZT
actuator/sensor.

In addition, He et al. [12] proved the effectiveness of the constant velocity feedback
control law in attenuating the vibration amplitude of functionally graded material (FGM)
plates. Waghulde et al. [5] showed that the LQG control law can reduce 30% of a smart
cantilever beam’s first mode vibration response. LQR is widely used [13–16] because of its
capability to stabilize the closed-loop system and allow the user to define weights on inputs
and states [13]. Zhao et al. [14] tested a hybrid control consisting of a passive shunt circuit
with an LQR controller and has shown better vibration attenuation. Lee et al. [17] applied
the LQR controller to a system of laminated composite stiffener with PZT layers at the top
and bottom. They searched the optimal position of the stiffener. Abdelrahman et al. [16]
studied the effect of the size and material of PZT on vibration control. Using an LQR
controller gave considerable vibration reduction in settling time and the actuation force.
PID controller has also been widely used, and its effectiveness in vibration reduction has
been proven [11,18,19]. Khot et al. [20] used the PID controller based on output feedback to
compare the full and reduced model of a beam, and a good agreement was shown.

On the other hand, Qui et al. [21] proposed a sliding mode controller based on acceler-
ation sensor control strategy. They have shown that this controller, along with proportional
feedback control, can effectively reduce the first and second bending modes of vibration.
Furthermore, Rodriguez et al. [22] confirmed the effectiveness and robustness of sliding
control law to uncertainties and noise. Finally, Caruso et al. [23] proposed using multiple
pairs of actuators/sensors along with an appropriate H2 control strategy designed on a
model with three vibration modes. The controller has shown high performance in vibration
reduction of the clamped plate taken into consideration.

The other criterion mentioned above, the placement of the actuator/sensor, has been
widely studied in the literature. Actuators should be placed in appropriate locations to
excite the desired modes to control effectively [3], as performed in a study by Botta et al. [24]
wherein the positions of the actuators were optimized to control each of the first five modes
of vibration and combined modes of vibration. A bad positioning for the actuator and
sensors leads to non-effective vibration control, and in some cases, more excitation of the
spillover effect. The spillover effect comes from the fact that only the first few low-frequency
modes are considered when modeling a system for vibration, and the high-frequency modes
(residual modes) are treated as uncertainties. In this case, the state feedback based on the
reduced model may destabilize the residual modes, as many controlled structures are
lightly damped [25]. Gupta et al. [6] presented five criteria for the optimal placement of
piezoelectric sensors and actuators: maximizing modal forces/moments applied to the
structure by the PZT actuators, maximizing the deflection of the structure, minimizing
the control energy utilized by the actuators, maximizing the degree of controllability,
maximizing the degree of observability, and minimizing the effects of spillover.

Several papers have studied the optimal placement of the actuator/sensor. For exam-
ple, Qui et al. [11] used an H2 norm to maximize the plate’s controllability and observability.
As a result, the actuator/sensor pair’s best placement for suppressing the bending modal
vibration turns out to be the root of the plate; instead, for suppressing torsional vibration,
the pair should be placed at the tip of the plate. The genetic algorithm was also used to
study the optimal placement in References [15,26,27]. The main objective was to maximize
controllability and observability and reduce the spillover effect.
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In the subsequent sections, we use a couple of collocated PZT sensor and actuator
to measure and control vibration levels of the damped beam based on a PID control law.
In this model, we consider the physical constraints associated with PZT operation as the
voltage level of the actuator. Next, the damping coefficient of the structure is determined
by using genetic algorithms best fit to satisfy specific vibration conditions. Finally, we
conducted a complete optimization for sensor/actuator position and PID parameters, using
genetic algorithms.

The novelty of this paper resides in a thorough analysis of the beam’s vibration control
and the insertion of the actuator’s physical constraints in the derivation of motion’s analyti-
cal equation, which is very important to achieve a more realistic system representation. In
addition, it can improve the vibration control of the structure, since it allows us to take bet-
ter advantage of the actuator by applying the best voltage without damaging it. Moreover,
the use of the genetic algorithm helps optimize the vibration control by determining the
actuator’s best position and the PID controller parameters.

2. Analytical Model for Damped Cantilevered Beam Controlled with PZT Actuator

Obtaining a dynamic system model is very important during structural vibration
control systems analysis. There are three standard techniques for procuring models of
flexible structures [28]: The first is the finite element analysis, which is an approximate
method giving a high-order spatially discrete system. This method was widely used in
the literature to obtain a model for a cantilevered structure with a PZT actuator/sensor.
The second technique is system identification, which uses experimental data to identify
composite structural and piezoelectric model parameters. The third one is the analytical
model, which uses the modal approach to obtain and solve the partial differential equation
of the system.

Figure 1 shows a schematic of the controlled damped cantilever beam used to build
the analytical model. As shown in Figure 1, we have a beam with a pair of PZT patches
fixed in position x1. One acts as an actuator at the beam’s top, and the second, fixed at the
bottom, acts as a sensor. Moreover, an initial load, P, is applied to the tip of the beam.
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In this study, we did not consider the beam’s mass-induced deformation. The partial
differential equation describing the system of a cantilever beam with the pair of sen-
sor/actuator is as follows [28]:

Eb Ib
∂4ω(x, t)

∂x4 + ρb Ab
∂2ω(x, t)

∂t2 + cb
∂ω(x, t)

∂t
= Ma

(
∂δ

∂x (x−x2)
− ∂δ

∂x (x−x1)

)
(1)

where Ma is the moment applied by the PZT actuator, δ is the Dirac function, cb is the
damping coefficient of the beam, and x1 and x2 are the coordinates of the PZT actuator.

Appendix A explains, in detail, the different terms of the partial differential equation
of the system (1).

The moment applied by the PZT actuator can be defined as follows [13]:

Ma = −Ea·ba·d31·
(

hb + ha

2

)
· Ib
Ieq

Va = K∗· Ib
Ieq
·Va = Ka·Va (2)
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where Ea, ba, d31, hb, ha, Va, Ib, and Ieq represent, respectively, Young’s modulus of the
PZT actuator, the width of the actuator, the piezoelectric strain constant, beam height,
PZT actuator height, applied actuator voltage, the moment of inertia of the beam, and the
equivalent moment of inertia of the beam with the PZT pair of actuator/sensor.

In this study, since the pair of actuator/sensor has the exact dimensions; thus, ha = hs
and ba = bs, where hs and bs are the height and the width of the sensor.

Ieq can be defined as follows [13]:

Ieq =
bbhb

3

12
+

ba eqh3
a

12
+ baha

(
hb
2

+
ha

2

)2
+

bs eqh3
s

12
+ bshs

(
hb
2

+
hs

2

)2

Ieq =
bbhb

3

12
+ 2

ba eqh3
a

12
+ 2baha

(
hb
2

+
ha

2

)2

and ba eq = bs eq = ba· Ea
Eb

is the equivalent PZT width.
As we can see in Equation (1), the choice of the control law will affect all the subsequent

model calculations. This study used a Proportional Integral Derivative (PID) controller
based on the sensor voltage. The system’s movement dictates the sensor voltage signal.
This controller aims to reduce the system vibration, reaching stable sensor voltage. In this
case, the voltage fed to the actuator becomes the following:

Va = KP·(Vs −Vdesired) + KD·
( .

Vs −
.

Vdesired

)
+ KI ·

∫
(Vs −Vdesired)dt (3)

where KP, KD, and KI are the parameters of the controller, and Vdesired represents the
desired sensor voltage. In our case, the desired sensor voltage is zero, as we try to reduce
and eventually stop the system’s vibration. Vs is the measured sensor voltage:

Vs = −Es·bs·
g31

2C

(
hb
2

)
· ∂ω(x, t)

∂x

∣∣∣∣x2

x1

= Ks·
∂ω(x, t)

∂x

∣∣∣∣x2

x1

where Es, bs, g31, and C represent, respectively, Young’s modulus of the PZT sensor, the
width of the sensor, the piezoelectric voltage coefficient, and the capacitance of the PZT
sensor.

Thus, we have the following:

Va = KP·Vs + KD·
.

Vs + KI ·
∫

Vsdt (4)

Figure 2 shows the schematic of the PID controller. The PID controller uses the sensor
voltage to calculate the appropriate voltage applied to the actuator.
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By substituting all the variables mentioned above in Equation (1), we obtain the
general equation:

Eb Ib
∂4ω(x,t)

∂x4 +ρb Ab
∂2ω(x,t)

∂t2 + cb
∂ω(x,t)

∂t

= Ka·Ks·
(

KP· ∂ω(x,t)
∂x

∣∣∣x2

x1
+ KI ·

∫ ∂ω(x,t)
∂x

∣∣∣x2

x1
dt

+KD· ∂
∂t

∂ω(x,t)
∂x

∣∣∣x2

x1

)
·( ∂δ

∂x (x−x2)
− ∂δ

∂x (x−x1)
)

(5)

The displacement ω(x, t) can be separated in space and time by using the modal
analysis approach [29]:

ω(x, t) =
∞

∑
i=1

φi(x) fi(t) (6)

Here, φi(x) represents the eigenfunction and is known as the mode-shape. In our case,
we assume that the actuator’s impacts on mode shapes are insignificant, which is true if
the actuator’s dimensions are tiny compared to the beam’s [13]. Thus, the mode-shape
equation for a cantilevered beam is as follows [30,31]:

φi(x) =
1
2

[
cos(γiL)− cos h(γiL) +

(
− cos(γiL)− cos h(γiL)

sin(γiL) + sin h(γiL)

)
(sin(γiL)− sin h(γiL))

]
(7)

where γi
4 = ωi

2

c2 .

Moreover, c =
√

Eb Ib
ρb Ab

. Substituting Equation (6) in (5), multiplying by φj(x), and
integrating over all the length of the beam gives the following:

n
∑

i=1

∫ L
0

(
Eb Ib· fi(t)φj(x)· ∂

4φi(x)
∂x4 + ρb Ab·φj(x)·φi(x) ∂2 fi(t)

∂t2

+ cb·φj(x)·φi(x) ∂ fi(t)
∂t

)
dx

=
∫ L

0

{
Ka·Ks

n
∑

i=1

(
KP· fi(t)·φj(x) ∂φi(x)

∂x

∣∣∣x2

x1

= KI ·φj(x) ∂φi(x)
∂x

∣∣∣x2

x1
·
∫

fi(t)dt

+ KD· ∂ fi(t)
∂t ·φj(x) ∂φi(x)

∂x

∣∣∣x2

x1

)
·( ∂δ

∂x (x−x2)

− ∂δ
∂x (x−x1)

)
}

dx

(8)

Using the property of orthogonality of the mode-shapes results in the following [29]:∫ L

0
φj(x)φi(x)dx = δij

where δij =

{
1 i f i = j

0 otherwise
In addition, using the property of the Dirac Delta function, we achieve the following:∫ ∞

−∞
δ(n)(x− θ)φ(x)dx = (−1)nφ(n)(θ)

The Equation (8) can be reduced to the following:

Eb Ib· fi(t)
∫ L

0 φi(x)· ∂
4φi(x)
∂x4 dx + ρb Ab·

∂2 fi(t)
∂t2 + cb·

∂ fi(t)
∂t

= Ka·Ks·
(

∂φi(x)
∂x

∣∣∣x2

x1

)2
·[KP· fi(t) + KI ·

∫
fi(t)dt

+ KD· ∂ fi(t)
∂t

] (9)
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Regrouping terms give the following:

..
f i(t) +

cb
ρb Ab

.
f i(t) + Ω2 fi(t) = KTi·

(
KP· fi(t) + KD

.
f i(t) + KI ·

∫
fi(t)dt

)
(10)

where Ω2 = Eb Ib
ρb Ab

∫ L
0 φi(x)· ∂

4φi(x)
∂x4 dx

KTi = Ka·Ks·
(

∂φi(x)
∂x

∣∣∣∣x2

x1

)2

To solve Equation (10), the integral term of the PID was integrated by iterations of
solving the following equation:

..
f i(t) +

cb
ρb Ab

.
f i(t) + Ω2 fi(t)

= KTi·(KP· fi(t) + KD
.
f i(t)

+ KI( fi(t) + fi(t− 1) + · · · fi(0)))

(11)

At time, t, all the precedent fi(t− 1), fi(t− 2), . . . fi(0) are already calculated and can
be inserted as coefficients, ai.

Thus Equation (11) can be organized as follows:

..
f i(t) +

(
cb

ρb Ab
+ Ki·KD

)
.
f i(t) +

(
Ω2 + KTiKP + KTi·KI

)
fi(t) + ai = 0 (12)

Equation (12) is for the ith vibration mode. If we truncate to the first n vibration modes,
the dynamics of the system can be represented by the state-space equation:

.
Z(t)− D·Z(t) = A (13)

where Z(t) =
[

f1(t), f2(t), . . . fn(t),
.
f 1(t),

.
f 2(t), . . .

.
f n(t)

]T
represents the

state vector.
In this study, we chose n equal three, considering that the first three modes have the

greatest impact on the vibration response.
The other terms in Equation (13) are as follows:

D =

[
0nxn Inxn

Ω2 + KTiKP + KTi·KI
cb

ρb Ab
+ Ki·KD

]

A =


0nx1
a1
a2
...

an


At this level, we here introduce the voltage limit of the PZT actuator. A PZT actuator

can hold |Va| ≤ Vlimit. Otherwise, the actuator will crack as the generated tensile stress in
PZT exceeds the fracture tensile strength of the material [32].

The methodology used in our code to solve this system is to check at every iteration
of time, t, the actuator voltage, and if this voltage is higher than the limit voltage, the
voltage attributed to the actuator becomes ±Vlimit based on the sign of Va. Equation (5)
then becomes as follows:

Eb Ib
∂4ω(x,t)

∂x4 +ρb Ab
∂2ω(x,t)

∂t2 + cb
∂ω(x,t)

∂t

= Ka· ±Vlimit·
(

∂δ
∂x (x−x2)

− ∂δ
∂x (x−x1)

) (14)



Designs 2022, 6, 36 7 of 15

After performing all of the above mentioned subsequent steps, the final equation to
solve is as follows:

..
f i(t) +

cb
ρb Ab

.
f i(t) + Ω2 fi(t) = Ka· ±Vlimit·

∂φi(x)
∂x

∣∣∣∣x2

x1

(15)

As we can see, the right-handed side of the equation is time-independent, and it can
be replaced by a coefficient, ai

∗, and the state-space equation is as follows:

.
Z(t)− D∗·Z(t) = A∗ (16)

where

D∗ =

[
0nxn Inxn
Ω2 cb

ρb Ab

]

A∗ =


0nx1
a1
∗

a2
∗

...
an
∗


Figure 3 shows the methodology used in our MATLAB code to solve the equation

of motion of the beam controlled by the PZT actuator, with a PID voltage controller and
considering the voltage limit that the actuator can withstand. After calculating Z(t) in
Equations (13) and (16), as in Figure 3, the final solution of ω(x, t) can be calculated by
using Equation (6).
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3. Optimization Using Genetic Algorithm

The genetic algorithm (GA) is one of the earliest population-based stochastic algo-
rithms proposed in history [33]. This research method that was developed by John Holland
back in 1975 [34] is inspired by natural Darwinian evolution [35]. In GA, every individual
is a candidate (chromosome) whose fitness is evaluated every iteration, using an objective
function known as the fitness function. Best individuals are chosen randomly by using a
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selection mechanism, and these candidates are used to improve other solutions, using the
crossover between individuals. The crossover consists of exchanging genetic material of
two parents at a random position in the chromosomes to produce a new child exploiting the
area between the parents, as shown in Figure 4. The parents’ chromosomes, blue and red,
are exchanged at a specific position (single point or double point, as shown in the figure) to
obtain children with alternating blue and red chromosomes. GA also randomly adds new
genetic information to the so-called “mutation” search process. This process adds diversity
to the population and helps avoid local optimal solutions [35]. Figure 5 shows an example
of how the mutation method processes. The genetic information of the randomly chosen
chromosomes for the children is changed from zero to one, as shown in the figure.
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It must be noted that the evaluation process is based on the fitness function; pc is the
parameter representing the probability of crossover, usually between 0.5 and 1; and pm is
the probability of mutation, and it is usually very low, i.e., less than 0.05 [36].

We first used GA as a search technique to determine the structural damping coefficient of
the beam with a prescribed vibration attenuation. After that, we used it to optimize the pair of
PZT sensor/actuator placement. Finally, we used it to determine the optimal PID parameters.

3.1. Finding the Damping Coefficient of the Structure

The damping coefficient is very difficult to determine in any structure. In our case, we
assume that the structural damping coefficient is such that the tip displacement is reduced
by 60% after 10 s. Therefore, we need to find the appropriate damping coefficient that helps
reach this attenuation. We used the genetic algorithm to determine the value that respects
the desired conditions. Here, the objective was to determine the damping coefficient
“cb” that gives an attenuation of 60% of the tip displacement after t f inale = 10 s of free
vibration. The fitness function chosen minimizes the error between data “ωs(L, t)” from
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the searched cb, using the GA and the desired tip displacement “ωd(L, t)” (free undamped
tip displacement with 60% attenuation after 10 s). The fitness function is defined as follows:

J =

t f inale∫
0

[ωs(L, t)−ωd(L, t)]2dt

The parameter of the aluminum beam used and the PZT-5H actuator/sensor are
summarized in Table 1.

Table 1. Summary of characteristics of the beam and PZT actuator/sensor pair.

Parameter Value

Length of the beam L (m) 1
Width of the beam wb (m) 0.3

Thickness of the beam hb (m) 0.004
Beam Young’s modulus Eb (Pa) 69 × 109

Density of the beam ρb (kg/m3) 2705
Damping coefficient c 0.5079

Initial load applied to beam’s tip P (N) 7.038
Length of PZT Lp (m) 0.1
Width of PZT wp (m) 0.1

Thickness of PZT hp (m) 0.002
PZT Young’s modulus Ep (Pa) 6.4 × 1010

Density of PZT ρp (kg/m3) 7500
Piezoelectric constant d31 (C/N) −274 × 10−12

Piezoelectric voltage coefficient g31 (V/N) −0.15099
Free dielectric constant KT

3 3400
PZT capacitance Cp [37] 0.3008

The obtained “cb” was 0.5079. Figure 6 shows a good agreement between the tip dis-
placement of the beam, with “cb” obtained by using the GA and the desired tip displacement.
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3.2. Optimization of the Actuator Position

As mentioned above, the actuator position has a crucial role in controlling the structure.
In our case, GA was used to obtain the actuator’s best position to attenuate the vibration
of the beam’s tip. This study aimed to reduce the tip displacement as much as possible
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with the control of the first three vibration modes, as mentioned above. Thus, the fitness
function (objective function) is used to minimize the tip displacement:

J =

t f inal∫
0

[ωs(L, t)−ωd(L, t)]2dt

where t f inal = 10 s, ωs(L, t) is the tip displacement based on parameters defined in the GA
optimization process and ωd(L, t) is the desired tip displacement (equal to zero).

Using the GA, the optimal x1 found was zero near the fixed end of the beam. To test
this result, the controller parameters (KP, KD, and KI) were fixed as follows:

KP = −1, 000, 000
KI = 0

KD = −1, 000, 000

and several positions of the actuator were tested. As shown in Figure 7, a good agreement
with the GA results is obtained. The actuator becomes less and less efficient when moving
away from the fixed end. The controller itself introduces an instability (vibration increase)
for x1 = 0.3.
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3.3. Optimization of Controller Parameter Using GA

Considering the complexity to determine the optimal parameters of the PID controller
explained above, the genetic algorithm was used to find the best values of KP, KD, and KI .
The objective function is again to minimize the beam’s tip displacement:

J =

t f inal∫
0

[ωs(L, t)−ωd(L, t)]2dt

where t f inal = 10 s, ωs(L, t) is the tip displacement based on parameters defined in the
GA optimization process and ωd(L, t) is the desired tip displacement (equal to zero). The
beam’s damping coefficient is ‘c = 0.5079’, as obtained above (Section 3.1), and the position
of the actuator/sensor pair is given by the previous optimization (Section 3.2), ‘x1 = 0’.
Vlimit is 150 V.
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The best PID parameters obtained by using the GA were as follows:

KP = −500, 227, 077.54
KI = 0.329

KD = −69, 151, 875.29

As shown in Figure 8, the PID controller with optimized parameters using the GA
helps eliminate the structure’s vibration in less than 0.4 s. Without control, the beam takes
over 20 s until vibration stops.
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As shown in Figure 9, the voltage limit of 150 V helps reach the stability of the structure
more rapidly, as it exploits the capacity of the actuator more efficiently.
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To better understand the integration of voltage limit in the model, a test compares
the model with voltage limit with a model without voltage limit. In fact, in the case of the
model without a voltage limit, one can never know precisely the voltage of the actuator,
and it can mount to unrealistic values. We took a case when the PID controller parameters
give an actuator voltage near 150 V without exceeding it. Figure 10 shows that, in this case,
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the beam needs a lot more time to stabilize than the model with a voltage limit. Figure 11
shows the exploitation of the two models for the actuator voltage. As we can see, the model
with a voltage limit gives a more stable response and fast vibration suppression.
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4. Conclusions

This paper presented the analytical vibration models of a damped cantilevered beam
controlled with a PID controller. The model considered the damping coefficient of the beam
and the integration of the voltage limit for the PZT actuator. This model can be used to add
multiple actuators. This paper presents the step-by-step method of resolution of this model.
Furthermore, the genetic algorithm was used to find the damping coefficient, optimize
the PZT actuator position, and determine the optimal parameters of the PID controller.
Analytical results show a good efficiency of the PID controller in suppressing the vibration.

Moreover, integrating the actuator voltage limit leads to fast vibration elimination.
This method is different from traditional control. It helps the controller take advantage
of the capacity of the actuators without damaging its physical structure and eventually
avoid its premature fatigue and failure. The results in this paper can be used in oncoming
research to validate experimental or numerical methods subsequently applied for more
complex geometries for which analytical models are not available.
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The proposed system has multiple applications. It can control the wind turbine blade
vibration by adding an appropriate number of PZT actuators. In aviation, the PZT system
is particularly advantageous, as the lightweight of the vibration control system is crucial.
It can be used in most applications having vibration problems. For example, we have
implemented this system to control an approximate model of a wind turbine blade. The
results are encouraging and will be submitted soon for publication.
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Appendix A

As the force applied by the PZT actuator can be represented at its ends, x1 and x2,
the partial differential equation describing the system of the cantilever beam with a PZT
actuator can be written in the following form:

Eb Ib
∂4ω(x,t)

∂x4 + ρb Ab
∂2ω(x,t)

∂t2 + cb
∂ω(x,t)

∂t = Fx2 − Fx1

Eb Ib
∂4ω(x,t)

∂x4 + ρb Ab
∂2ω(x,t)

∂t2 + cb
∂ω(x,t)

∂t = F·
(

δ(x−x2)
− δ(x−x1)

)
where Fx2 and Fx1 are the forces applied by the PZT actuator on the beam.

Point Moment:

If we consider a force, F, with a distance of d, as represented in Figure A1, then the
resultant moment is M = F·d.
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When d → 0, 
then 𝐹 = 𝑙𝑖𝑚 → (𝐹𝛿 − 𝐹𝛿 )  = 𝑙𝑖𝑚 → 𝑀𝑑 𝛿 − 𝑀𝑑 𝛿  

= 𝑀 𝑙𝑖𝑚 → 𝛿 − 𝛿𝑑  

𝐹 = 𝑀. 𝜕𝛿𝜕𝑥  

Based on this, 𝐹. (𝛿( ) − 𝛿( )) mentioned above can be written in the following 
form: 𝑀 𝜕𝛿𝜕𝑥( ) − 𝜕𝛿𝜕𝑥( )  
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Figure A1. Schematic of forces applied to a beam.

When d→ 0,
then
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Based on this, F·
(

δ(x−x2)
− δ(x−x1)

)
mentioned above can be written in the following form:

Ma

(
∂δ

∂x (x−x2)
− ∂δ

∂x (x−x1)

)
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