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Abstract

While the notion of age of information (AoI) has recently been proposed for analyzing ultra-reliable

low-latency communications (URLLC), most of the existing works have focused on the average AoI

measure. Designing a wireless network based on average AoI will fail to characterize the performance

of URLLC systems, as it cannot account for extreme AoI events, occurring with very low probabilities.

In contrast, this paper goes beyond the average AoI to improve URLLC in a vehicular communication

network by characterizing and controlling the AoI tail distribution. In particular, the transmission power

minimization problem is studied under stringent URLLC constraints in terms of probabilistic AoI for

both deterministic and Markovian traffic arrivals. Accordingly, an efficient novel mapping between AoI

and queue-related distributions is proposed. Subsequently, extreme value theory (EVT) and Lyapunov

optimization techniques are adopted to formulate and solve the problem considering both long and

short packets transmissions. Simulation results show over a two-fold improvement, in shortening the
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AoI distribution tail, versus a baseline that models the maximum queue length distribution, in addition

to a tradeoff between arrival rate and AoI.

Index Terms

5G, age of information (AoI), ultra-reliable low-latency communications (URLLC), extreme value

theory (EVT), vehicle-to-vehicle (V2V) communications.

I. INTRODUCTION

Vehicle-to-vehicle (V2V) communication will play an important role in next-generation (5G)

mobile networks and is envisioned as one of the most promising enabler for intelligent transporta-

tion systems [2]–[4]. Typically, V2V safety applications (e.g., forward collision warning, blind

spot/lane change warning, and adaptive cruise control) are known to be time-critical, as they

rely on acquiring real-time status updates from individual vehicles. In this regard, the European

telecommunications standards institute (ETSI) has standardized two types of safety messages:

cooperative awareness messages (CAMs) and decentralized environmental notification messages

(DENMs) [5]. One key challenge for delivering such critical and status update messages in V2V

networks is how to provide ultra-reliable and low-latency vehicular communication links.

Indeed, achieving ultra-reliable low-latency communication represents one of the major chal-

lenges faced by 5G and vehicular networks [6]. In particular, a system design based on con-

ventional average values (e.g., latency, rate, and queue length) is not adequate to capture the

URLLC requirements, since averages often ignore the occurrence of extreme events (e.g., high

latency events) that negatively impacts the overall performance. To overcome this challenge,

one can resort to the robust framework of extreme value theory (EVT) which characterizes the

probability distributions of extreme events, defined as the tail of the latency distribution or queue

length [7]. Remarkably, the majority of the existing V2V literature focuses primarily on average

performance metrics [8]–[11], which is not sufficient in a URLLC setting. Only a handful of

recent works have considered extreme values for vehicular networks [12], [13]. In particular, the

work in [12] focuses on studying large delays in vehicular networks using EVT, via simulations

using realistic mobility traces, without considering any analytical formulation. In [13], the authors
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study the problem of transmit power minimization subject to a new reliability measure in terms

of maximal queue length among all vehicle pairs. Therein, EVT was utilized to characterize the

distribution of maximal queue length over the network.

Since V2V safety applications are time-critical, the freshness of a vehicle’s status updates

is of high importance along with the low-latency requirement [14]–[16]. A relevant metric in

quantifying this freshness is the notion of age of information (AoI) proposed in [16]. AoI is

defined as the time elapsed since the generation instant of the latest received status update at a

destination. Optimizing the AoI is fundamentally different from delay or throughput optimization.

In [16], the authors derive the minimum AoI at an optimal operating point that lies between the

extremes of maximum throughput and minimum delay. Thus, providing quality-of-service (QoS)

in terms of AoI is essential for any time-critical application and has attracted lots of research

interest recently in various fields1 such as energy harvesting [19], [20], wireless networked

control systems [15], and vehicular networks [16], [21], [22]. However, except for [15], these

works focus on optimizing average AoI metrics. While interesting, a system design based on

average AoI cannot enable the unique requirements of URLLC. Instead, the AoI distribution

needs to be considered especially when dealing with time-critical V2V safety applications. Only

a handful of works investigated the distribution of AoI, e.g., [14], [15], [23], and [24]. In [14],

[15] the authors argue that computing an exact expression for the AoI distribution may not always

be feasible. Therefore, they opt for computing a bound on the tail of the AoI distribution and use

that bound to formulate a tractable α-relaxed upper bound minimization problem (α-UBMP) to

find an optimal sampling (i.e. arrival) rate that minimizes the AoI violation probability for a given

age limit. In [23], the AoI distribution is obtained in terms of the Laplace-Stieltjes transform

(LST) and is expressed in terms of the stationary distributions of the system delay and the peak

AoI2, where the peak AoI, proposed in [25, Def. 3], is another freshness metric used within the

literature [24]–[27]. Finally, in [24], the peak AoI violation probability is first characterized by

deriving the probability generating function (PGF) of the peak age. Then the violation probability

is obtained through a saddlepoint approximation. However, while interesting, these works do not

1An interested reader may refer to [17] and [18] for a comprehensive survey and references on AoI.

2Therefore, considering the AoI violation in this work is a different measure compared to the peak-AoI violation [23]
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consider controlling the tail of AoI violation distribution.

A. Contributions

The main contribution of this paper is a novel framework that allow the control of the tail of

AoI distribution in V2V communication networks, thus going beyond the conventional average-

based AoI. In particular, our key goal is to enable vehicular user equipment (VUE) pairs to

minimize their transmit power while ensuring stringent latency and reliability constraints based

on a probabilistic AoI violation measure. To capture both periodic and stochastic arrivals, we

consider two queuing systems, namely a D/G/1 and a M/G/1 queuing system. To this end,

since the AoI metric is a receiver-side metric while the transmit power allocation occurs at the

transmitter, we first derive a novel relationship between the probabilistic AoI and the queue

length of each VUE for the D/G/1 system, and between the probabilistic AoI and the arrival

rate of each VUE, for the M/G/1 system. Moreover, in order to constrain the exceedance over

the imposed threshold, we use the fundamental concepts of EVT to characterize the tail, and

the excess value of the vehicles’ queues and arrival rates, which are then incorporated as the

statistical constraints within our transmission power minimization problem. Furthermore, it is

assumed that a roadside unit (RSU) is used to cluster VUEs into disjoint groups in terms of their

geographic locations, thus mitigating interference and reducing the signaling overhead between

VUEs and the RSU. Since the objective function and constraints are represented in time-averaged

and steady-state forms, Lyapunov stochastic optimization techniques [28] are leveraged by each

VUE pair to locally optimize its transmission power subject to probabilistic AoI constraints.

Knowing the instantaneous state realization, the Lyapunov optimization framework allows each

VUE to optimize its transmission power in each time slot based on the observed random events

without considering the queue length transition between the current and successive time slots.

Moreover, the Lyapunov framework allows optimization of long-term performance metric while

achieving network stability.

We further note that in V2V communication, the size of safety messages are typically small

(e.g., [29] and [30]). In addition, due to the high mobility of V2V networks, the small time slot

duration restricts the blocklength in each transmission. The finite blocklength transmission will
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hinder the vehicles to achieve the Shannon rate with an infinitesimal decoding error probability

[31]. In this regard, incorporating the blocklength and decoding error probability, the authors

in [32] have provided an approximated rate formula and shown a performance gap between the

Shannon rate-based design and finite blocklength regime. As a result, the impact of short packets

on V2V network performance should also be investigated.

Therefore, in addition to the system analysis based on the Shannon rate, we also study the

power minimization problem considering the short packet transmission which, however, yields a

non-convex optimization problem. To deal with this non-convexity, the convex-concave procedure

(CCP) is used to solve the power minimization problem. Finally, simulation results corroborate

the usefulness of EVT in characterizing the distribution of AoI. The results also show that the

proposed approach yields over two-fold performance gains in AoI compared to two baselines: the

first baseline’s scheme is concerned about the high-order statistics of the network-wide maximal

queue length but oblivious of the AoI [13], while the second baseline does not take into account

the URLLC design for taming the AoI tail. Our results also reveal an interesting tradeoff between

the arrival rate of the status updates, and the average and worst AoI achieved by the network.

Finally, the results show the existence of a blocklength at which the violation probability of AoI

is minimized.

In a nutshell, the main contributions of this work are as follows.

• We derive and propose a novel relationship between the probabilistic AoI and the queue

dynamics of each VUE for the D/G/1 system. (Lemma 1)

• We derive and propose a novel relationship between the probabilistic AoI and the queue

dynamics of each VUE for the M/G/1 system. (Lemma 2,3)

• Utilizing those relationships, we propose a novel framework to minimize VUEs’ transmit

power while ensuring the probabilistic AoI constraint in terms of the derived queue dynamics

relation.

• We invoke EVT to characterize the violation probability and Lyapunov optimization to solve

the problem.

• In the finite blocklength regime, the convex-concave procedure (CCP) is utilized to convexify

the power minimization problem.
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Figure 1. System and path loss models of the considered V2V network.

The rest of this paper is organized as follows. In Section II, the system model is described.

The reliability constraints and the studied problems, for both deterministic and Markovian arrival

cases, are presented in Section III, followed by the proposed AoI-aware resource allocation

policy in Section IV. In Section V, numerical results are presented while conclusions are drawn

in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a V2V communication network based on a Manhattan mobility

model [33], composed of a set K of K VUE transmitter-receiver pairs3 under the coverage of

a single RSU. During the entire communication lifetime, the association of each transmitter-

receiver is assumed to be fixed. One potential application of this setup is to avoid the rear-end

collision between vehicles, where the transmitter (e.g., vehicle in the front) sends a collision-

warning message to the receiver (e.g., vehicle in the back) in a unicast manner4 [34], [35].

3A fixed number of vehicles represents the vehicular mobility behavior under the assumption of equal arrival and departure
flow rates.

4Investigating multicast schemes within the context of V2V communication is important. However, the unicast scheme study
is a challenging problem on its own. The multicast extension is worth a dedicated study, which is left as a future work.
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We consider a slotted communication timeline indexed by t, and the duration of each slot is

denoted by τ . Additionally, all VUE pairs share a set N of N orthogonal resource blocks (RBs)

with bandwidth ω per RB. We further denote the RB allocation as ηnk (t) ∈ {0, 1} , ∀k ∈ K, n ∈
N , where ηnk (t) = 1 indicates that RB n is used by VUE pair k in time slot t and ηnk (t) = 0

otherwise. The transmitter of pair k allocates a transmit power P n
k (t) ≥ 0 over RB n to serve its

receiver subject to a power constraint
∑

n∈N ηnk (t)P
n
k (t) ≤ Pmax, where Pmax is the total power

budget per each VUE pair.

Let hnkk′(t) be the instantaneous channel gain, including path loss and channel fading, from

the transmitter of pair k to the receiver of pair k′ over RB n in slot t. We consider the 5.9 GHz

carrier frequency and adopt the path loss model in [36]. For the path loss model, we have

the line-of-sight (LOS), weak-line-of-sight (WLOS), and non-line-of-sight (NLOS) cases. Let

us first denote an arbitrary transmitter’s and an arbitrary receiver’s Euclidean coordinates as

x = (x1, x2) ∈ R
2 and y = (y1, y2) ∈ R

2, respectively. When the transmitter and receiver are

on the same lane, we have an LOS path loss value as l0 ‖x− y‖−α, where ‖.‖ is the l2-norm, l0

is the path loss coefficient, and α is the path loss exponent. Additionally, when the transmitter

and receiver are located separately on perpendicular lanes, we have the WLOS or NLOS case,

depending on the transmitter and receiver’s locations. If, at least, one is near the intersection

within a distance D , we consider the WLOS path loss, i.e., l0 ‖x− y‖−α1 with the l1-norm ‖.‖1.
Otherwise, the NLOS case, with the path loss value l

′

0 (|x1 − y1|.|x2 − y2|)−α and the path loss

coefficient l
′

0 < l0
(

D

2

)α
, is considered. Fig. 1 illustrates these three path loss cases. The Shannon

data rate of VUE pair k in time slot t (in the unit of packets per slot) is given by5

Rk(t) =
ωτ

Z

∑

n∈N
log2

(

1 +
P n
k (t)h

n
kk(t)

N0ω + Ink (t)

)

, (1)

where Z is the total packet size in bits which includes the payload of the packet as well as any

headers/preambles, and N0 is the power spectral density of the additive white Gaussian noise.

Here, Ink (t) =
∑

k′∈K/k η
n
k′(t)P

n
k′(t)h

n
k′k(t) is the aggregate interference at the receiver of VUE

pair k over RB n received from other VUE pairs operating over the same RB. We rely on a

5Note that (1) is an approximation that holds when τ → ∞.
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bit-pipe abstraction of the physical layer where bits are delivered reliably at a rate equal to (1).

Furthermore, each VUE transmitter has a queue buffer to store the data to be delivered to

the desired receiver following a first-come first-serve (FCFS) policy. Denoting the VUE pair k’s

queue length at the beginning of slot t as Qk(t), the queue dynamics will be given by

Qk(t+ 1) = max (Qk(t)−Rk(t), 0) + Ak(t), (2)

where Ak(t) is the instantaneous packet arrival for VUE pair k during slot t. In order to ensure

queue stability, the following constraint needs to be satisfied

lim
C→∞

1

C

C−1
∑

t=0

Rk(t) > λ, ∀k ∈ K, (3)

where λ = limC→∞
1
C

C−1
∑

t=0

Ak(t) is the average packet arrival rate per slot. Within this work,

two arrival processes will be considered: 1) The deterministic arrival process, i.e., D/G/1, which

account for the periodic nature of CAMs; 2) The Poisson arrival process, i.e., M/G/1, which

accounts for the packet generation triggered by random events such as a hazard on the road6.

In the next section, the AoI-based reliability constrains are formulated for both cases.

III. ENABLING URLLC BASED ON AGE OF INFORMATION

Providing real-time status updates for mission critical applications is a key use case in V2V

networks. These applications rely on the “freshness” of the data, which can be quantified by the

concept of AoI [16]

∆k(T ) , T −max
i

(

TA
k (i) | TD

k (i) ≤ T
)

. (4)

Here, ∆k(T ) is the AoI of VUE pair k at a time instant T . TA
k (i) and TD

k (i) represent the arrival

and departure instants of packet i of VUE pair k, respectively. As a reliability requirement, we

impose a probabilistic constraint on the AoI for each VUE pair k ∈ K, as follows:

lim
T→∞

Pr {∆k(T ) > d} ≤ ǫk, ∀k ∈ K, (5)

6Considering last-come first serve (LCFS) or queuing model based on M(or D)/G/1/1 and M(or D)/G/1/2* could provide
better AoI performance than FCFS. Different queuing models and policies could be investigated as a future extension.
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where d is the age threshold, and ǫk ≪ 1 is the tolerable AoI violation probability. Consider an

average arrival rate λ/τ packets per second. The support of the steady state AoI distribution (and

hence the existence of the limit in (5)) is [τ/λ,∞) since AoI cannot be less than τ
λ

with this

given arrival rate [14]. To this end, since AoI is a receiver-side metric while the transmit power

allocation occurs at the transmitter, a novel mapping between the AoI and the transmitter’s queue

dynamics is proposed for both D/G/1 and M/G/1 cases.

A. D/G/1 Queuing System (Deterministic Arrival)

In D/G/1 systems, arrivals are deterministic and periodic, as in the case of periodic CAMs in

various V2V applications. Hence, the packet arrival rate per slot, Ak(t), is constant and denoted

by A, and the packet i’s arrival time instant will be TA
k (i) = i

A
τ . Note that the indices of the

packets that arrive during slot t satisfy i ∈ [tA, (t+ 1)A− 1], while the packets that are served

during the same slot will satisfy the following condition:

tA−Qk(t) ≤ i ≤ tA− 1−max (Qk(t)−Rk(t), 0) . (6)

In [14], it is shown that for a given age limit dD with A
τ
≥ 1

dD

7, the steady state distribution

of AoI for a D/G/1 queue can be characterized as

lim
T→∞

Pr
{

∆k(T ) > dD

}

= lim
T→∞

PrTD
k (̂ı) > T, (7)

where ı̂ , ⌈A
τ
(T − dD)⌉ is the index of the packet that first arrives at or after time T − dD, and

dD is the age threshold for the D/G/1 system. Next, in Lemma 1, we derive a mapping between

the steady state distribution of the departure instant of a given packet and the queue length.

Lemma 1. Given that T is observed at the beginning of each slot t+ 1, i.e. T = τ(t+ 1), then

Pr
{

TD
k (̂ı) > τ(t+ 1)

}

≤ Pr {Qk(t) > Rk(t)− ψ} ,

where ψ = 2− (dD

τ
− 1)A.

7This condition is to ensure that the process is not undersampled. If A/τ is less than 1/dD, the arrival rate would be too low
to maintain the target age threshold dD [14].
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Proof: See Appendix A.

Combining (7) and Lemma 1, a sufficient condition for the probabilistic constraint (5) to hold

in the slotted system can be written as

lim
C→∞

1

C

C−1
∑

t=0

Pr {Qk(t) > Rk(t)− ψ} ≤ ǫk, ∀k ∈ K, (8)

where the time average on t represents the steady-state in the slotted system.

As previously mentioned, enabling URLLC requires the characterization of the tail of the

AoI distribution. Therefore, we utilize the fundamental concepts of EVT [7] to investigate the

event Qk(t) > Rk(t)−ψ. The Pickands–Balkema–de Haan theorem for threshold violation of a

random variable [7, Theorem 4.1] states that if a random variable Q has a cumulative distribution

function (CDF) denoted by FQ(q), and has a threshold value δ. Then, as the threshold δ closely

approaches F−1
Q (1), the conditional CDF of the excess value X = Q − δ > 0 denoted as

FX |Q>δ(x) = Pr {(Q− δ) < x|Q > δ}, can be approximated by

G (x; σ, ξ) =











1− (max{1 + ξx
σ
, 0})− 1

ξ , if ξ 6= 0,

1− e− x
σ , ξ = 0.

Here, G (x; σ, ξ) is the generalized Pareto distribution (GPD) whose mean and variance are σ
1−ξ

and σ2

(1−ξ)2(1−2ξ)
, respectively. Note that the value of the scale parameter σ is threshold-dependent,

except in the case when the shape parameter ξ = 0 [7]. Also, note that a very low threshold δ

is likely to violate the asymptotic basis of the model, leading to a bias; a very high threshold δ

will generate few excesses with which the model can be estimated, leading to high variance [7].

Moreover, the characteristics of the GPD depend on the scale parameter σ > 0 and the shape

parameter ξ < 1
2
.

The Pickands–Balkema–de Haan theorem states that, for a sufficiently high threshold δ, the

distribution function of the excess value can be approximated by a GPD. In this regard, for

(8), we define the conditional excess queue value of each VUE pair k ∈ K at time slot t as

XD
k (t)|Qk(t)>Rk(t)−ψ = Qk(t)−Rk(t) +ψ. Thus, we can approximate the mean and the variance
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of XD
k (t) as

E
[

XD
k (t)|Qk(t) > Rk(t)− ψ

]

≈ σk
1− ξk

, (9)

Var
[

XD
k (t)|Qk(t) > Rk(t)− ψ

]

≈ σ2
k

(1− ξk)2(1− 2ξk)
, (10)

with a scale parameter σk and a shape parameter ξk. Note that the smaller the σk and ξk, the

smaller the mean value and variance of the GPD. Hence, in order to constraint the exceedance

over the imposed threshold, we further impose thresholds on the scale and the shape parameters,

i.e., σk ≤ σth
k and ξk ≤ ξth

k
8 [37], [38]. Subsequently, applying both parameter thresholds and

Var (XD
k ) = E [(XD

k )
2] − E [XD

k ]
2

to (9) and (10), we impose constraints for the time-averaged

mean and second moment of the conditional excess queue value, i.e.,

X̄D
k = lim

C→∞

1

C

C−1
∑

t=0

E
[

XD
k (t)|Qk(t) > Rk(t)− ψ

]

≤ H, (11)

Ȳ D
k = lim

C→∞

1

C

C−1
∑

t=0

E
[

Y D
k (t)|Qk(t) > Rk(t)− ψ

]

≤ B, (12)

where H =
σth
k

1−ξth
k

, B =
2(σth

k
)2

(1−ξth
k
)(1−2ξth

k
)

and Y D
k (t) := [XD

k (t)]
2
.

By denoting the RB and power allocation vectors as η(t) = [ηnk (t)]
n∈N
k∈K and P (t) = [P n

k (t)]
n∈N
k∈K , ∀t,

respectively, the network-wide transmit power minimization problem is formulated as follows:

PD : min
η(t),P (t)

∑

k∈K

∑

n∈N
P̄ n
k

s.t. (3), (8), (11), and (12),

∑

n∈N
ηnk (t)P

n
k (t) ≤ Pmax, ∀k ∈ K, (13a)

0 ≤ P n
k (t) ≤ Pmax, ∀t, k ∈ K, n ∈ N , (13b)

ηnk (t) ∈ {0, 1}, ∀t, k ∈ K, n ∈ N , (13c)

where P̄ n
k = lim

C→∞
1
C

∑C−1
t=0 P

n
k (t) is the time-averaged transmit power of VUE pair k over RB

n. In the following subsection, a similar problem is formulated and analyzed for the scenario

8The thresholds on the scale and shape parameters are application dependent and they reflect how much excess can be allowed
within the system [37].
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considering the M/G/1 queuing system.

B. M/G/1 Queuing System (Stochastic Arrival)

In M/G/1 systems, arrivals are Markovian (Poisson), which captures scenarios in which the

packet generation in vehicles is triggered by a random event such as a road hazard, or sudden

change in speed. Therefore, the probability of I packet arrivals within the slot duration τ is

Pr {I packet arrivals within the slot duration τ} = e−λ
λI

I!
, (14)

where λ is the average packet arrival rate per slot. In the following Lemma, we present a key

insight regarding the steady state distribution of AoI for the M/G/1 queue, following similar

procedures used in [14] for the D/G/1 case.

Lemma 2. For an M/G/1 queuing system with an age threshold dM and T <∞,

Pr {∆k(T ) > dM} = e−
λdM
τ + PrTD

k (̂ı) > T
(

1− e−λdM
τ

)

,

where ı̂ is the index of the packet that first arrives at or after time T − dM, and dM is the age

threshold for the M/G/1 system.

Proof: See Appendix B.

Next, in Lemma 3 we propose a mapping between the steady state distribution of TD
k (̂ı) and

the arrival rate Ak(t).

Lemma 3. Given that T is observed at the beginning of each slot t, i.e. T = τt, then

Pr
{

TD
k (̂ı) > T

}

= Pr {Ak(t) > Rk(t)} .

Proof: See Appendix C.

Combining the results of Lemma 2 and 3, the probabilistic constraint (5) can be rewritten as,

lim
C→∞

1

C

C−1
∑

t=0

Pr {Ak(t) > Rk(t)} ≤ Ek, ∀k ∈ K, (15)
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where Ek = ǫk−e−
λdM
τ

1−e−
λdM
τ

, and dM ≥ − τ ln ǫk
λ

to ensure Ek ≥ 0. Similar to the previous sub-

section, we investigate the event Ak(t) > Rk(t) and study the tail behavior of AoI using the

Pickands–Balkema–de Haan theorem for threshold violation [7]. This yields two constraints for

the time-averaged mean and second moment of the conditional excess value, as follows:

X̄M
k = lim

C→∞

1

C

C−1
∑

t=0

E
[

XM
k (t)|Ak(t) > Rk(t)

]

≤ H, (16)

Ȳ M
k = lim

C→∞

1

C

C−1
∑

t=0

E
[

Y M
k (t)|Ak(t) > Rk(t)

]

≤ B, (17)

where XM
k (t)|Ak(t)>Rk(t) = Ak(t) − Rk(t), and Y M

k (t) := [XM
k (t)]

2
. In this regard, the network

wide transmit power minimization problem for the M/G/1 case is given by

PM : min
η(t),P (t)

∑

k∈K

∑

n∈N
P̄ n
k

s.t. (3), (13a), (13b), (13c), (15), (16), and (17).

IV. AOI-AWARE RESOURCE ALLOCATION USING LYAPUNOV OPTIMIZATION

Since the objective function and the constrains are represented in a time-average and steady-

state forms, and in order to find the optimal resource η(t) and power P (t) allocation vectors

of both deterministic and Markovian arrivals corresponding to problems PD and PM, we invoke

techniques from Lyapunov stochastic optimization [28]. Later on, we will study the impact of

short packets and their effect on the problem formulation.

A. Deterministic Arrivals

To solve PD, we first rewrite the probabilistic constraint in (8) as a time-averaged constraint,

so it could be utilized by the Lyapunov stochastic optimization, as follows:

lim
C→∞

1

C

C−1
∑

t=0

Rk(t)✶ {Qk(t) > Rk(t)− ψ} ≤ ǭk, (19)

where ǭk = limC→∞
1
C

∑C−1
t=0 Rk(t)ǫk is the product of the time-averaged rate and the tolerance

value ǫk, and ✶ {.} is the indicator function. Using Lyapunov optimization, the time-averaged

constraints (11), (12), (3), and (19) can be satisfied by converting them into virtual queues and
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J
(X)
k (t+ 1) = max

(

J
(X)
k (t) + (XD

k (t)−H)✶ {Qk(t) > Rk(t)− ψ} , 0
)

, (20)

J
(Y )
k (t+ 1) = max

(

J
(Y )
k (t) + (Y D

k (t)− B)✶ {Qk(t) > Rk(t)− ψ} , 0
)

, (21)

J
(R)
k (t+ 1) = max

(

J
(R)
k (t)−Rk(t) + A, 0

)

, (22)

J
(Q)
k (t+ 1) = max

(

J
(Q)
k (t) +Rk(t)✶ {Qk(t) > Rk(t)− ψ} −Rk(t)ǫk, 0

)

. (23)

maintain their stability [28], i.e. the lower bound of these constraints are considered as the arrival

rate to the virtual queue, while the upper bounds are considered as its service rate. In this regard,

we introduce the corresponding virtual queues with the dynamics shown in (20)–(23).

For notation simplicity, let J(t) =
[

J
(X)
k (t), J

(Y )
k (t), J

(Q)
k (t), J

(R)
k (t), Qk(t) : k ∈ K

]

denotes

the combined physical and virtual queues vector. Then, in order to maintain the stability of J(t),

we use the conditional Lyapunov drift-plus-penalty for time slot t, which can be expressed as

E

[

L (J(t+ 1))−L (J(t)) +
∑

k∈K

∑

n∈N
V P n

k (t)|J(t)
]

, (24)

where L (J(t)) = JT(t)J(t)
2

is the Lyapunov function with JT(t) being the transpose of J(t),

and V ≥ 0 is a parameter that controls the tradeoff between optimal transmit power and queue

stability. By calculating the Lyapunov drift and leveraging the fact that (max (a− b, 0) + c)2 ≤
a2 + b2 + c2 − 2a(b − c), ∀a, b, c ≥ 0, and (max (x, 0))2 ≤ x2, on (2) and (20)–(23), an upper

bound on (24) can be obtained as

(24) ≤ C
D + E

[

∑

k∈K

(

(

J
(Q)
k (t)− J (X)

k (t)− 2 (Qk(t) + ψ)3

−
(

2J
(Y )
k (t) + 1

)

(Qk(t) + ψ)
)

· ✶ {Qk(t) > Rk(t)− ψ}

−
(

J
(R)
k (t) + A+Qk(t) + J

(Q)
k (t) · ǫk

)

)

Rk(t)

+
∑

k∈K

∑

n∈N
V P n

k (t)|J(t)
]

. (25)

Here, CD = A2 +
(

J
(R)
k (t) +Qk(t)

)

A +
(

1 + 1
2
ǫ2k
)

R2
k(t) +

(

1
2

(

(Qk(t) + ψ)4 +H2 +B2
)

+
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M
(X)
k (t+ 1) = max

(

M
(X)
k (t) + (XM

k (t)−H)✶ {Ak(t) > Rk(t)} , 0
)

, (27)

M
(Y )
k (t+ 1) = max

(

M
(Y )
k (t) + (Y M

k (t)− B)✶ {Ak(t) > Rk(t)} , 0
)

, (28)

M
(R)
k (t+ 1) = max

(

M
(R)
k (t)−Rk(t) + Ak(t), 0

)

, (29)

M
(Q)
k (t+ 1) = max

(

M
(Q)
k (t) +Rk(t)✶ {Ak(t) > Rk(t)} −Rk(t)Ek, 0

)

. (30)

(Qk(t) + ψ)2
(

1
2
− B + J

(Y )
k (t)

)

+(Qk(t) + ψ)
(

J
(X)
k (t)−H

)

−J (X)
k (t)H −J (Y )

k (t)B+
(

H +

2B (Qk(t) + ψ)
)

Rk(t)+
(

1+3 (Qk(t) + ψ)2−B+J
(Y )
k (t)− ǫk

)

R2
k(t)−2 (Qk(t) + ψ)R3

k(t)+

1
2
R4
k(t)

)

·✶ {Qk(t) > Rk(t)− ψ} is a bounded term that does not affect the system performance.

Note that the solution to problem PD can be obtained by minimizing the upper bound in (25)

in each slot t [28], i.e.,

P̂D : min
η(t),P(t)

∑

k∈K

[

∑

n∈N
V P n

k (t)−
[

J
(R)
k (t) + A+Qk(t)

+ J
(Q)
k (t) · ǫk +

(

−J (Q)
k (t) + J

(X)
k (t)

+ (2J
(Y )
k (t) + 1)(Qk(t) + ψ) + 2(Qk(t) + ψ)3

)

· ✶ {Qk(t) > Rk(t)− ψ}
]

Rk(t)

]

s.t. (13a)-(13c).

B. Markovian Arrivals

To solve PM, we first rewrite (15) as

lim
C→∞

1

C

C−1
∑

t=0

Rk(t)✶ {Ak(t) > Rk(t)} ≤ Ēk, (26)

where Ēk = limC→∞
1
C

∑C−1
t=0 Rk(t)Ek. Following the same procedures as in Section IV-A, the

time-averaged constraints (16), (17), (3), and (26) are converted into virtual queues with the

dynamics shown in (27)–(30).

Denoting M (t) =
[

M
(X)
k (t),M

(Y )
k (t),M

(Q)
k (t),M

(R)
k (t), Qk(t) : k ∈ K

]

as the combined
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physical and virtual queue vector, the conditional Lyapunov drift-plus-penalty for slot t is given

by

E

[

L (M (t+ 1))−L (M (t)) +
∑

k∈K

∑

n∈N
V P n

k (t)|M (t)

]

. (31)

By calculating the Lyapunov drift and leveraging the fact that (max (a− b, 0) + c)2 ≤ a2 +

b2 + c2 − 2a(b− c), ∀a, b, c ≥ 0, and (max (x, 0))2 ≤ x2, on (2) and (27)–(30), an upper bound

on (31) can be obtained as follows:

(31) ≤ C
M + E

[

∑

k∈K

(

(

M
(Q)
k (t)−M (X)

k (t)− 2A3
k(t)

−
(

2M
(Y )
k (t) + 1

)

Ak(t)
)

· ✶ {Ak(t) > Rk(t)}

−
(

M
(R)
k (t) + Ak(t) +Qk(t) +M

(Q)
k (t) · Ek

)

)

Rk(t)

+
∑

k∈K

∑

n∈N
V P n

k (t)|M (t)

]

. (32)

Here, CM = 1
2
(A2

k(t) + Ak(t))+
(

M
(R)
k (t)+Qk(t)

)

Ak(t)+
(

1 + 1
2
E2
k

)

R2
k(t)+

(

1
2
(A4

k(t) +H2 +B2)+

A2
k(t)

(

1
2
− B +M

(Y )
k (t)

)

+Ak(t)
(

M
(X)
k (t)−H

)

−M (X)
k (t)H−M (Y )

k (t)B+
(

H+2BAk(t)
)

Rk(t)+
(

1+3A2
k(t)−B+M

(Y )
k (t)−Ek

)

R2
k(t)−2Ak(t)R3

k(t)+
1
2
R4
k(t)

)

·✶ {Ak(t) > Rk(t)} is a bounded

term that does not affect the system performance. The solution to problem PM can be obtained

by minimizing the upper bound in (32) in each slot t [28], i.e.,

P̂M : min
η(t),P(t)

∑

k∈K

[

∑

n∈N
V P n

k (t)−
[

M
(R)
k (t) + Ak(t) +Qk(t)

+M
(Q)
k (t).Ek +

(

−M (Q)
k (t) +M

(X)
k (t)

+ (2M
(Y )
k (t) + 1)Ak(t) + 2A3

k(t)
)

· ✶ {Ak(t) > Rk(t)}
]

Rk(t)

]

s.t. (13a)–(13c).

To solve P̂D and P̂M each time slot t, the RSU needs full global channel state information
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(CSI) and queue state information (QSI). This is clearly impractical for vehicular networks since

frequently exchanging fast-varying local information between the RSU and VUEs can yield a

significant unacceptable overhead. To alleviate the information exchange burden, we utilize a

two-timescale resource allocation mechanism which is performed in two stages. Therein, RBs

for each VUE pair are centrally allocated over a long timescale at the RSU whereas each VUE

pair minimizes its transmit power over a short timescale. In the next subsection, a more about

the two-stage resource allocation mechanism is presented.

C. Two-Stage Resource Allocation

1) Spectral Clustering and RB Allocation at the RSU: It can be noted that the co-channel

transmission of nearby VUE pairs can lead to severe interference. In order to avoid the inter-

ference from nearby VUEs, the RSU first clusters VUE pairs into g > 1 disjoint groups, in

which the nearby VUE pairs are allocated to the same group, and then the RSU orthogonally

allocates all RBs to the VUE pairs in each group. Vehicle clustering is done by means of spectral

clustering due to its ease of implementation and its efficient solvability by standard linear algebra

methods [39]. We adopt the VUE clustering and RB allocation technique as in [13], denoting

vk ∈ R
2 as the Euclidean coordinate of the midpoint of VUE transmitter-receiver pairs k. Here,

we use a distance-based Gaussian similarity matrix F to represent the geographic proximity

information, in which the (k, k′)-th element is defined as

fkk′ :=











e−‖vk−vk′‖2/γ2 , ‖vk − vk′‖ ≤ φ,

0, otherwise,

where φ captures the neighborhood size, while γ controls the impact of the neighborhood size.

Subsequently, F is used to group VUE pairs using spectral clustering as shown in Algorithm

1. The most expensive step, in terms of computational complexity, within Algorithm 1 is the

computation of the eigenvalues/eigenvectors of I−D− 1

2FD− 1

2 (step 3) which has a complexity

O (K3). The overall computational complexity of Algorithm 1 is O (K3) [40]. Note that, the

number of VUE pairs K under the coverage of a single RSU is typically small. Hence, the

computational complexity of the proposed solution will be reasonable in practice.
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Algorithm 1 Spectral Clustering for VUE Grouping
1: Inputs: the Euclidean coordinate vk of each VUE pair k, and the number of groups g.
2: Calculate matrix F and the diagonal matrix D with the diagonal dj =

∑K
q=1 fjq.

3: Let U = [u1, · · · ,ug] in which ug is the eigenvector of the g-th smallest eigenvalue of
I −D− 1

2FD− 1

2 .
4: Use k-means clustering approach to cluster K normalized row vectors (which represent K

VUE pairs) of matrix U into g groups.
5: Output: K VUE pairs distributed among g groups.

After forming the groups, the RSU orthogonally allocates RBs to the VUEs inside the group.

Hereafter, we denote Nk as the set of RBs that are allocated for VUE pair k ∈ K. Moreover, to

reduce the signaling overhead due to frequent information exchange between the RSU and VUE

pairs, it is assumed that VUE clustering and RB allocation are performed in a longer time scale,

i.e., every T0 ≫ 1 time slots since the vehicles’ geographic location do not change significantly

during the slot duration τ (i.e., coherence time of fading channels). Therefore, VUE pairs send

their locations to the RSU only once every T0 slots instead of every slot9.

2) Transmit Power Allocation at the VUE: Since VUE pair k can only use the set Nk of

allocated RBs for the communication, we modify the power allocation and RB usage constraints,

i.e., (13a)–(13c), ∀k ∈ K, as































∑

n∈Nk

P n
k (t) ≤ Pmax, ∀t,

P n
k (t) ≥ 0, ∀t, n ∈ Nk,

P n
k (t) = 0, ∀t, n /∈ Nk.

(33)

Note that the RBs in Nk are reused by VUE transmitters in different groups. For tractability, we

approximately treat the aggregate interference as a constant term I0
10 and rewrite the transmission

rate in (1) as

Rk(t) ≈
ωτ

Z

∑

n∈Nk

log2

(

1 +
P n
k (t)h

n
kk(t)

N0ω + I0

)

. (34)

9Since there is no communication between VUEs and RSU during these T0 time slots, the performance of V2V communication
observed in a single cell represents the average V2V communication performance over multiple cells.

10Since interference is from multiple distant VUEs in other clusters, there is no dominant and significantly-dynamic interference
signal. We approximately treat the aggregate interference power as a constant term.
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Subsequently, applying (33) and (34) to P̂D and P̂M, the VUE transmitter of each VUE pair k

locally allocates its transmit power by solving the following convex optimization problem P1 in

each slot t

P1 : min
Pn
k
(t)

∑

n∈Nk

V P n
k (t)−ℑk(t) log2

(

1 +
P n
k (t)h

n
kk(t)

N0ω + I0

)

subject to (33),

where for P̂D that represents the D/G/1 system, ℑk(t) = τω
Z

[

J
(R)
k (t) +A+Qk(t) + J

(Q)
k (t)ǫk +

(

−J (Q)
k (t)+J

(X)
k (t)+(2J

(Y )
k (t)+1)(Qk(t)+ψ)+2(Qk(t)+ψ)

3
)

·✶ {Qk(t) > Rk(t)− ψ}
]

, while

for P̂M that represents the M/G/1 system, ℑk(t) = τω
Z

[

M
(R)
k (t) +Ak(t) +Qk(t) +M

(Q)
k (t)Ek +

(

−M (Q)
k (t) + M

(X)
k (t) + (2M

(Y )
k (t) + 1)Ak(t) + 2A3

k(t)
)

· ✶ {Ak(t) > Rk(t)}
]

. Based on the

Karush-Kuhn-Tucker (KKT) conditions, the optimal VUE transmit power P n∗
k (t), ∀n ∈ Nk, of

P1 satisfies
ℑk(t)hnkk(t)

(N0ω + I0 + P n∗
k (t)hnkk(t)) ln 2

= V + ζ,

if
ℑk(t)h

n
kk

(t)

(N0ω+I0) ln 2
> V + ζ. Otherwise, P n∗

k (t) = 0. Moreover, the Lagrange multiplier ζ is 0 if
∑

n∈Nk
P n∗
k (t) < Pmax, and we have

∑

n∈Nk
P n
k (t) = Pmax when ζ > 0 . Note that, given a small

value of V , the derived power P n∗
k (t) provides a sub-optimal solution to problems PD and PM,

whose optimal solution is asymptotically obtained by increasing V .

D. Impact of Finite Blocklength

Due to the high mobility feature in V2V networks, the small time slot duration τ restricts the

blocklength in each transmission. This obstructs vehicles from achieving the Shannon rate (34)

with an infinitesimal decoding error probability [32]. In consequence, the ultra-low packet loss

probability cannot be ensured. Hence, depending on the Shannon rate (34) may be optimistic for

designing and optimizing V2V networks. According to [41], finite blocklength performance can

be characterized by several techniques. one possibility is to fix the transmission rate and study

the exponential decay of the error probability as the blocklength grows. This technique is referred

to as “error exponent analysis”. An alternative analysis of the finite blocklength performance

follows from fixing the decoding error probability and studying the maximum transmission rate
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as a function of the blocklength. This technique is referred to as “normal approximation” [32].

Taking into account this practical concern in finite blocklength transmission and following the

normal approximation approach11, the transmission rate Rk(t) (in the unit of packet per slot)

can be reformulated as [32]

Rk(t) =
ωτ

Z

∑

n∈Nk

(

log2 (1 + ρk)−
√

νk
L
Q−1(ε) +

log2 L

2L

)

, (35)

where ρk =
Pn
k
(t)hn

kk
(t)

N0ω+I0
is the signal-to-interference-plus-noise ratio (SINR)12 at the receiver of

VUE pair k, νk =
ρk(2+ρk)

(1+ρk)
2 log22 e is the channel dispersion, L is the blocklength, ε is the desired

block error probability, and Q−1(.) is the inverse Gaussian Q function [32]. Note that, (35)

implies that, in order to maintain the desired block error probability ε for a given blocklength

L, a penalty is paid on the Shannon rate (34) that is proportional to 1√
L

. Accordingly, the queue

dynamics (2) is rewritten as

Qk(t+ 1) = max (Qk(t)− Sk(t), 0) + Ak(t),

where Sk(t) is the service rate of VUE pair k during slot t, which is equal to (35) with probability

1− ε, and equal to zero with probability ε. Moreover, in our considered system, the blocklength

L is determined by the bandwidth ω and the time slot duration τ as per L = ωτ . Moreover, as

L→∞, (35) asymptotically converges to the Shannon capacity (34).

By replacing (34) with (35) in P1, P1 can be rewritten as

P2 : min
Pn
k
(t)

∑

n∈Nk

V P n
k (t)−ℑk(t) log2 (1 + ρk)

+
ℑk(t)√
L

(log2 e)Q−1(ε)

√

ρk(2 + ρk)

(1 + ρk)
2

subject to (33),

yielding a non-convex objective function. However, V P n
k (t) − ℑk(t) log2 (1 + ρk) is a convex

11The accuracy of the normal approximation approach within our framework is verified in Section V.

12Interference is treated as noise in our work. Moreover, different decoders could be used that have a performance very close
to the normal approximation, i.e. extended Bose, Chaudhuri, and Hocquenghem (eBCH) codes with ordered statistics decoder
(OSD) [42].
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function whereas ℑk(t)√
L
(log2 e)Q−1(ε)

√

ρk(2+ρk)

(1+ρk)
2 is a concave function. Therefore, P2 belongs to

the family of difference of convex (DC) programming problems. In this regard, the convex-

concave procedure (CCP) provides an iterative and tractable procedure which converges to a

locally optimal solution [43].

1) Convex-Concave Procedure: We first define G (P k) = −ℑk(t)√
L
(log2 e)Q−1(ε)

√

ρk(2+ρk)

(1+ρk)
2

where P k denotes the transmit power allocation vector for VUE pair k. Then, we select an initial

feasible power allocation x0 and convexify G (P k) using its first order Taylor approximation as

follows:

Ĝ (P k; x0) , G (x0) +∇G (x0)
T (P k − x0) ,

∇G (x0) = −
ℑk(t)√
L

(log2 e)Q−1(ε) ·
[

(1 + ρk)
−2

(

ρk(2 + ρk)
)− 1

2

][

hnkk(t)

N0ω + I0

]

∣

∣

∣

∣

∣

P k=x0

.

By substituting G (P k) by Ĝ (P k; x0) in P2, P2 can be rewritten as follows:

P3 : min
Pn
k
(t)

∑

n∈Nk

(V −∇G (x0))P
n
k (t)

−ℑk(t) log2 (1 + ρk) + C

subject to (33),

where C = ∇G (x0)
T · x0 −G (x0) is constant for a given x0. It is worth noting that P3 can be

solved by following the same steps used in solving P1, by simply replacing V by V −∇G (x0),

and it can be solved in the same way. At each iteration, P3 is solved for a given x0, and the

optimal solution is used to replace x0 for the next iteration. This procedure is repeated until

a stopping criterion is satisfied. One reasonable stopping criterion is that the improvement in

the objective value is less than some threshold δ. The steps of the CCP algorithm are shown

in Algorithm 2. Note that the computation complexity of Algorithm 2 arises from step 4 when

solving P3. P3 is a water filling problem whose worst case complexity is O (N2
k ) where Nk is the

total number of RBs that are allocated for VUE pair k. Therefore, the computational complexity

per iteration of Algorithm 2 is O (N2
k ).
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Algorithm 2 CCP for solving P2

1: Initialize a feasible point xj to problem P2 with j = 0.
2: repeat

3: Convexify G (P k) by Ĝ (P k; xj) .
4: Solve P3 and denote the optimal solution as x∗(j).
5: Update xj+1 = x∗(j) and j ← j + 1.
6: until Stopping criterion is satisfied.

Table I
SIMULATION PARAMETERS [13].

Parameter Value Parameter Value

N 20 H 0.05
ω 180 KHz B 0.0033
τ 3 ms g 10

Pmax 23 dBm γ 30 m
Z 500 Byte φ 150 m
N0 −174 dBm/Hz T0 100

Arrival rate 0.5 Mbps α 1.61
dD 30 ms D 15 m
dM 60 ms l0 −68.5 dB
ǫk 0.001 l

′

0 −54.5 dB
ψ −3.25 ε 10−5

V 0 L 550

V. SIMULATION RESULTS AND ANALYSIS

In our simulations, we use a 250×250 m2 area Manhattan mobility model as in [9], [13]. The

average vehicle speed is 60 km/h, and the distance between the transmitter and receiver of each

VUE pair varies with time. However, the average distance is maintained as 15 m. Unless stated

otherwise, the remaining parameters are listed in Table I. The performance of our proposed

solution is compared to two baselines, where Baseline 1 is [13], where a power minimization

is considered subject to a reliability measure in terms of maximal queue length, and Baseline 2

is a variant of our model, where the EVT constraints are not considered. Results are collected

over a large number of independent runs.
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Figure 2. CCDF of the exceedance value fitted to GPD for various VUEs densities K with deterministic arrivals, finite
blocklength case with L = 550.

A. Validation of the Tail Distribution Modeling Using EVT

In Fig. 2 and 3, we verify the accuracy of using EVT to characterize the distribution of the

excess value XD
k (t)|Qk(t)>Rk(t)−ψ = Qk(t)−Rk(t)+ψ and XM

k (t)|Ak(t)>Rk(t) = Ak(t)−Rk(t) for

both large and finite blocklengths. Fig. 2 and 3 show, respectively, the complementary cumulative

distribution functions (CCDF) of the generalized Pareto distribution (GPD) and of the actual

threshold violation for both deterministic and Markovian arrival processes. An accurate fitting

can be noted, which verifies the accuracy of using EVT to characterize the distribution of the

excess value. However, due to the limitations of simulations, the fitting becomes less accurate at

higher exceedance values. For a clear representation, the curves of the Markovian case for finite

blocklengths are omitted from Fig. 3 as they overlap with the curves for the large blocklength

case.
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Figure 3. CCDF of the exceedance value fitted to GPD for various VUEs densities K with Markovian arrivals, large blocklength
case.

B. Validation of Normal Approximation

In Fig. 4, we validate the accuracy of using normal approximation within our proposed frame-

work. According to [32, Section IV-C], the normal approximation is quite accurate when trans-

mitting at a large fraction of the channel capacity (e.g., 0.8 of channel capacity). Fig. 4 shows

the CDF histogram of the rate to capacity ratio experienced within our simulations. Note that the

transmission rate is equal to or larger than 0.8 of the channel capacity about 99% of the time,

which verifies the accuracy of using normal approximation within our proposed framework.

C. Performance Comparison Based on AoI

In Fig. 5 and 6, the CCDFs of the AoI are plotted for the deterministic arrivals with large

and finite blocklengths, with a comparison to Baseline 1 and Baseline 2. Note that, by using (4)

the AoI can be calculated at the beginning of every time slot and then used to plot the CCDF.

In particular, Fig. 5 and 6 show the AoI distributions for two densities of VUEs with large
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Figure 4. Histogram of the experienced rate to capacity ratio, for various densities of VUEs K with deterministic arrivals, finite
blocklength case.

Figure 5. CCDF of the AoI for various densities of VUEs K with deterministic arrivals, for large blocklength.
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Figure 6. CCDF of the AoI for various densities of VUEs K with deterministic arrivals, for finite blocklength with L = 550.

blocklength and finite blocklength (L = 550 channel uses (CU)), respectively. From these two

figures, we can see that the AoI performance for the proposed method outperforms the baseline

models for both VUE densities, yielding improved reliability, except for Baseline 2 when K = 20.

For K = 20, due to the low VUE density, each transmitter-receiver pair maintains high data rate

yielding low-to-no events where AoI exceeding the threshold. Therefore, the constraints modeled

using EVT to control the extreme events have no impact in which the proposed and Baseline

2 exhibit similar AoI distributions. Note that, as VUE density increases to K = 80, increased

interference and lower rates results in events with AoI exceeding the threshold. Therein, the

proposed EVT-based constraints actively contribute to maintain the extreme AoI events whereas

Baseline 2 has no control on such extreme events. As a result, the proposed method yields

reduced AoI over the network compared to Baseline 2. From Fig. 5, we observe that, when

K = 80, Baseline 1 experiences at least 0.6 s in AoI with 10−5 probability, while the proposed

model experiences less than 0.1 s for the same probability. Also, the probability of having the

AoI greater than 0.1 s is more than 10−2 in the case of Baseline 2, while it is less than 10−5
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Figure 7. Transmit power, average AoI, and queue length trade-off for various VUEs densities K with Markovian arrivals for
large blocklength.

in the proposed approach. In short, our proposed approach succeed in managing the AoI tail

compared to the baselines.

D. Impact of the Lyapunov Tradeoff Parameter V

Next, we discuss the impact of Lyapunov control parameter V on the AoI and the optimal

transmit power. In Luapunov optimization, V controls the tradeoff between transmit power and

queue stability. Therefore, the impacts of V on AoI, queue length, and the transmission power

on average are analyzed in Fig. 7 for two different VUE densities K = {80, 140} with the

Markovian arrival case and large blocklength. It can be noted that, when V is small, the priority

of the VUEs is to minimize the physical and virtual queue lengths (i.e. maximize data rates)

rather than minimizing the power consumption. Therefore, for small V , a smaller AoI can be

observed at the price of an increased power consumption as illustrated in Fig. 7. In contrast, a

large V ensures a reduced power consumption with increased AoI. Fig. 7 shows that the average

AoI and queue length of all VUE pairs in the Markovian arrival case increases as the Lyapunov

parameter V increases, while the total average transmitted power decreases.
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Figure 8. The AoI’s CCDF for various Lyapunov parameter V when K = 80 with Markovian arrivals for large blocklength.

Fig. 8 shows the CCDFs of AoI in the Markovian arrival case for different V . Similar to the

average AoI, Fig. 8 validates our claim on the performance loss of overall AoI with increasing

V . Although similar behavior can be observed for the deterministic arrival case, the differences

are insignificant, in which the results are not presented.

E. Impact of the Arrival Rate

This subsection studies the impact of the status updates’ arrival rate for two different VUE

densities, K = 80 and K = 20, for both average and worst AoI. The worst AoI is defined as the

maximum AoI experienced by all VUEs during the simulation duration. Fig. 9 shows that, when

the arrival rate is less than 0.1 Mbps (0.5 Mbps) when K = 80 (20), the network experiences

a higher average AoI. It also shows that increasing the arrival rate will lead to a better average

AoI, up to a certain point (around 0.8 Mbps when K = 80 and 2 Mbps when K = 20), after

which the average AoI starts increasing again. This happens because, at low arrival rates, queue

stability is easily achieved. Thus, there is no rush of emptying the queue at the transmitter and

data packets are more probable to be queued for a longer period, leading to a higher average

AoI. When arrival rate increases, data packets within the queue are transmitted more frequently
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Figure 9. Arrival rate versus AoI trade-off, with K = 80 and K = 20 VUEs in the deterministic arrival case with large
blocklength.

to maintain the queue stability. Thus, achieving lower average AoI. Further increasing the arrival

rate will make it difficult to stabilize the queues. Hence, packets are lingered in the queue for

longer duration, leading to the increased average AoI. Note that, at low VUE density (K = 20),

the network can withstand higher arrival rates. Fig. 9 also highlights that the worst AoI increases

slightly with the arrival rate up to the aforementioned optimal arrival rate for the average AoI,

and exhibits a rapid increase afterwards. Moreover, we note that the worst AoI is about 10

fold higher than the average AoI. Although the AoI achieves a small average, the worst AoI is

heavy-tailed. In this situation, relying on the average AoI is inadequate for ensuring URLLC. This

discrepancy between these two metrics demonstrates that the tail characterization is instrumental

in designing and optimizing URLLC-enabled V2V networks.

F. Impact of Blocklength L and Block Error Probability ε

Fig. 10 illustrates the effect of changing the blocklength L on the probability of AoI exceeding

a set of deadlines, Pr {AoI ≥ deadline}. For a given L, e.g., when L = 550, Pr {AoI ≥ deadline}
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Figure 10. Blocklength L vs. AoI violation probability, K = 80 VUEs in the deterministic arrival case.

Figure 11. AoI violation probability vs. block error probability ε, K = 80 VUEs in the deterministic arrival case.
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can be computed from Fig. 6, where Pr {AoI ≥ deadline} is the actual achieved probability. Since

the blocklength L is determined by the bandwidth ω and the time slot duration (coherence time)

τ as per L = ωτ , L is varied by changing the coherence time τ (i.e., vehicle speed [44]). Fig. 10

shows that there exists a blocklength L above which the AoI violation probability increases with

increasing the blocklength L. Within this region, when the blocklength L increases, both the

transmission rate and transmit power consumption increase yielding more interference and, hence,

the increase in the AoI violation probability. However, within the region where the blocklength

and deadline are small, the small blocklength L results in a small transmission rate and, hence,

the packets are accumulated within the queue yielding a higher AoI violation probabilities.

Moreover, for a fixed blocklength L, the AoI violation probability decreases with increasing

the deadline. Finally, we show the impact of changing the block error probability ε on the AoI

violation probability in Fig. 11. Note that lowering the block error probability ε decreases the

transmission rate R but increases the AoI. When ε is large, e.g., ε ∈ [10−2, 0.5], the AoI violation

probability is mainly caused by unsuccessful packet decoding. Thus, lowering ε decrease the

AoI violation probability. When ε is below 10−3, the effect of unsuccessful packet decoding is

not significant. In this regime, AoI violation is caused by the low transmission rate which results

in a high AoI. Due to this reason, lowering ε increases the AoI violation probability.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of ultra-reliable and low-latency vehicular commu-

nication, considering both deterministic and stochastic arrivals . For this purpose, we have first

defined a new reliability measure, in terms of probabilistic AoI, and have established a novel

relationship between the AoI and queue-related probability distributions. Then, we have shown

that characterizing the AoI tail distribution can be effectively done using EVT. Subsequently,

we have formulated a transmit power minimization problem subject to the probabilistic AoI

constraints and solved it using Lyapunov optimization. Furthermore, we have studied the impact

of short packets and how it affects the optimization of AoI. Simulation results have shown

that the proposed approach yields significant improvements in terms of AoI and queue length,

when compared to baseline models. Moreover, an interesting tradeoff between the status updates’
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arrival rate and the average and worst AoI achieved by the network has been exposed. We have

also shown the existence of a blocklength at which the AoI violation probability is minimized.

Many future extensions can be considered as follows: packet retransmissions, dynamic vehicle

association, vehicles’ handover between RSUs, considering a multicast/broadcast scheme and

finally, incorporating different queuing models and policies.

APPENDIX A

PROOF OF LEMMA 1

Since T = τ(t+1), then Pr {TD
k (̂ı) > τ(t+ 1)} = Pr {ı̂ is NOT served before time τ(t+ 1)},

which means that ı̂ is not served at or before time slot t. Subsequently, we apply (6) and derive

Pr
{

TD
k (̂ı) > τ(t+ 1)

}

(a)
= Pr {ı̂ > tA− 1−max (Qk(t)−Rk(t), 0)}

≤ Pr

{

A

τ
(τ(t+ 1)− dD) + 1 > tA− 1− (Qk(t)−Rk(t))

}

= Pr {Qk(t) > Rk(t)− ψ} ,

where ı̂ = ⌈A
τ
(T − dD)⌉ ≤ A

τ
(τ(t+ 1)− dD) + 1 is used in step (a). It also should be noted that

if ı̂ departs after τ(t+ 1), then Qk(t)−Rk(t) > 0, which is used in the same step.

APPENDIX B

PROOF OF LEMMA 2

Let ı̌ be the last packet that departed at or just before time T . Thus, ∆k(T ) = T − TA
k (̌ı).

Case 1: If no arrivals occurred during the time interval [T − dM, T ), then the arrival time of

ı̌ must be strictly less than T − dM, i.e., TA
k (̌ı) < T − dM. Therefore,

Pr {∆k(T ) > dM} = Pr
{

T − TA
k (̌ı) > dM

}

= 1.

Case 2: If at least one arrival occurred during the time interval [T − dM, T ), then TA
k (̂ı) is

bounded between T − dM ≤ TA
k (̂ı) < T . Since ı̂ is the first arrival on or after time T − dM, in

this case, we need to show that the event {∆k(T ) < dM} is equivalent to the event {TD
k (̂ı) < T}
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as in [14]. If the event {∆k(T ) < dM} occurred, then TA
k (̌ı) ≥ T − dM. By definition of ı̂, we

should have TA
k (̂ı) ≤ TA

k (̌ı) which entails that TD
k (̂ı) ≤ TD

k (̌ı) ≤ T , due to FCFS assumption.

As a result, {∆k(T ) < dM} ⊆ {TD
k (̂ı) < T}.

To show equivalence of the two events, we show that the previous relation also holds the

other way round. If event {TD
k (̂ı) < T} occurred, we must have TA

k (̂ı) ≤ TA
k (̌ı). Otherwise,

TD
k (̌ı) < TD

k (̂ı) ≤ T which contradicts the definition of ı̌. Therefore, ∆k(T ) = T − TA
k (̌ı) ≤

T−TA
k (̂ı) ≤ T−(T−dM) = dM. This implies that {TD

k (̂ı) < T} ⊆ {∆k(T ) < dM} and therefore,

{∆k(T ) < dM} ≡ {TD
k (̂ı) < T}.

Note that, due to the Poisson arrivals assumption. Using (14), the probability of no arrivals

occurring during the time interval [T − dM, T ) (Case 1) is e−
λdM
τ , while the probability of at

least one arrival during the same interval (Case 2) is 1− e−λdM
τ . Therefore, Pr {∆k(T ) > dM} =

1 · e−λdM
τ + Pr {TD

k (̂ı) > T}
(

1− e−λdM
τ

)

.

APPENDIX C

PROOF OF LEMMA 3

Since ı̂ is the packet that first arrives on or after time T − dM, then Pr {TD
k (̂ı) > T} =

Pr {Sojourn time > dM}, where the sojourn time is the total time a packet spend within the

system.

Observing the time slot t and given that Rk(t) is the number of packets that will be served

during this slot, i.e. during period [τt, τ(t+ 1)]. Therefore, {Sojourn time > dM} if the number

of packets arrived during time period [τt− dM, τ(t+ 1)− dM] is more than Rk(t).

From (14), the Poisson distribution is irrelevant to the start and end times of a given pe-

riod, therefore, Pr

{

Number of packets arrived during time period
[

τt − dM, τ(t + 1) − dM

]

>

Rk(t)

}

= Pr {Ak(t) > Rk(t)} = Pr {Sojourn time > dM}.
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