
Optimized Algorithms for Displaying 16-bit Gray Scale Images
on 8-bit Computer Graphic Systems

Thurman Gil lespy III

Most personal computers contain 8-bit graphic display
hardware, whereas most medical gray scale images
are stored at 16-bit per pixel integers. To display
medical gray scale images on such computers, the
16-bit image data must be remapped into 8-bit gray
scale images. This report presents the algorithms and
computer code that allow very rapid 16-bit to 8-bit
image data transformation. These algorithms are help-
fui in allowing personal computers with at least the
performance of a Macintosh II (Apple Computer, Cuper-
tino, CAl computer to function as Iow-end picture
archiving communication systems or personal worksta-
tions.
Copyright �9 1993 by W.B. Saunders Company

KEY WORDS: window width, window level, personal
computer, Macintosh, workstation.

M OST DIGITAL radiographic images are
represented as 16-bit (2 byte) integers

per pixel element. The actual dynamic range of
the image data usually varŸ from 9 to 12 bits,
depending on the imaging modality. When such
images ate displayed on imaging consoles of
picture archiving communica t ion systems
(PACS)/teleradiology workstations, a window
and level control is usually provided to allow
visualization of the full-image dataset. This
function is usually implemented with special
graphic hardware that allows window and level
settings to be applied in real time. However,
most personal computers and some low-end
PACS/teleradiology workstations have stan-
dard 8-bit graphic systems. To display 16-bit
images on 8-bit graphic systems, at least two
steps are required: First, the 16-bit image data
must be remapped to an 8-bit representation
using user selected window and level settings.
Second, the 8-bit data must be translated into
different colors of gray scales (most commonly
in hardware using a lookup table) before being

projected onto the display monitor. The first
step is performed in software and is usually
computationally expensive. The second step is
performed quite rapidly, usually in real time.
This report presents algorithms and C program-
ming Ianguage examples that optimize the re-
mapping of l£ image data into an 8-bit
color/gray scale representation.

DIRECT CALCULATION TRANSFORMATION

The 16-bit to 8-bit transformation requires
that an 8-bit value be substituted for each 16-bit
value in the image dataset (Fig 1). Typically this
is n o t a one to one transformation; often image
values less than a certain number are clipped to
black (in gray scale images), and images values
greater than a certain number are clipped to
white. Two parameters are usually chosen that
determine the slope and end points of this
transformation function: the window and level
(also known as the window width and window
level). From Fig 1, the following definitions are
derived:

window = x2 - xi (Equation 1)
level = xl + (window/2) (Equation 2)
xl = level - (window/2) (Equation 3)

The equation for a line on an x,y-coordinate
system is defined as:

y = (m * x) + b (Equation 4)

For the present discussion, y is the 8-bit gray
scale/color value of interest, x is the known
16-bit image data value, m is the slope of the
line, and b i s the y-intercept. Thus from Equa-
tion 4 the following formulas can be derived:

rn = Av/ Ax (Equation 5)
rn = GRAYSCALES /window (Equation 6)

where GRAYSCALES is the difference between
the lowest and highest gray scale value (usually
255 Gy).

Furthermore, i fx = xl, then y = 0 (Fig 1).
Thus, substituting for Equation 4 we find the
following:

0 = (m * xl) + b (Equation 7)
b = - (m * xl) (Equation 8)
b = - (GRA YSCALES/window)
�9 xl (substituting Equation 6) (Equation 9)

From the Department of Radiology, University of Washing-
ton, Seattle, WA.

Address reprint requests to Thurman Gillespy HI, MD,
Department of Radiotogy, SB-05, University of Washington,
Seatth', WA 98195.

Copyright �9 1993 by WB. Saunders Company
0897-1889/93/0601-0003503.00/0

JournalofD/gitallmaging, Vol 6, No 1 (February), 1993: pp 25-29 25

26 THURMAN GILLESPY III

Thus, given the values for window, level, and
GRAYSCALES, the 16-bit data can be re-
mapped into 8-bit data as follows:

[Code 1]
#deline RSIZE /* size of image data, in pixels, defined

as rows x columns of the image matrix*\
unsigned short src/RSIZE]; /* array of l £ image

data */
unsigned char img[RSIZE]; /* arrav of 8-bit

remapped image data */
short i, window, level, temp;
short b; /* y-intercept, as defined Oz Eq 8 */
float m ; / * slope, as defined in Eq 9 */

lo; 0 = 0; i < RSlZE; i+ +) I
t e m p = (m * s r c [i]) +b; / * y = (m . x) + b * /
if (temp > 255)

temp = 255 ;
else ir (temp < O)

ten W = O;
img[i] = temp;

Although many refinements on the above algo-
rithm are possible, this approach is unavoidably
computationally expensive when performed on
the data sets that are commonly encountered in
medical imaging.

LOOKUP TABLE TRANSFORMATION

A better approach is to consider the x-axis of
Fig 1 to represen tan array, where each position
on the x-axis is an element of the array, and the
y-value (color/gray scale value) is the value of
that element (Fig 2). The calculation of this

250

u~

D 200

~>

150

g~

100

O

O
0

x~/
500

// I
J

X2

1000 1500 2000

16-bit Image Data
2500

Fig 1, The transformation of 16-bit image data into 8-bit
gray scale values.

Fig 2. The lut[] array. Compare X1 and)(2 with Fig 1.

array is as follows:

[Code 2]
#define RRANGE / * the absohae difference between

the smallest and largest image
data vah~e */

unsigned char lut [RRANGE];

for (i = O. i < RRANGE; i + +) {
temp = (en * i) + b;
if (temp > 255)

tetnp = 255 ;
etse ir (temp < O)

ten W = O:
lutli] = temp;

Further refinements in the calculation of lut[]
are possible, but are not essential to the present
discussion. The array lut[] now contains ah
ordered set of integers (cast as unsigned chars)
from (and usually including) black (0) to white
(255) (Fig 2). The 16-bit to 8-bit transformation
can now be performed by using the 16-bit image
data value of each pixel as the index for lut[] to
obtain the 8-bit value of interest, as fotlows:

[Code 3]
for (i = O; i < RS1ZE; i+ +)

img[i] = lut[sre[i]];

This is a common programming algorithm known
as a lookup rabie. Code 3 can profitably be
rewritten using pointers a n d a do . . . whiIe loop
as in the following code:

[Code 4]
unsigned citar *ip = intg;
unsigned short *sp = src;

t = RStZE;
do {

*ip++ = *(lut + *sp++):
} while (--i);

ALGORtTFIMS FOR 16-BIT GRAY SCALE IMAGE$ 27

This algorithm is very fast because the only
calculations required are a counter decrement,
twa poinler address increments, and memory
transfers, A furlher slight improvement is possi-
bte by "'uncoi[[ng" the Ioop:

[Code .S I

i = RSIZE/16:

*lp++ = *(lut + *so++); *ii)++ = *(lut + *~p++);
*lp++ = *(lut + *si)++); *ii)++ = *(lut + *so++);
*lp++ = *(lut + *st)++): *lp++ = *(lut + *sp++);
*lp++ = *(lut + *sp++): *lp++ = *(h~t + *~p++);
*lp++ = *(lut + *sp++); *ip++ = *(lut + *sp++);
*ip++ = *(h~t + *sp++); *ip++ = *(lut + *sp++);
* l p + + = *(lut + *sp++); ~'ip++ = *(lut + *sp++);
*lp++ = *(lut + *sp++); *ip++ = *(tut + *sp++):

} w~ile (- -i).

FURTHER OPTIMIZATION

Whereas the above algorithm is a significant
improvement, ir still requires up to RRANGE
number of floating point and integer calcula-
tions to calculate a new lut [] for a new window
and/or level setting. These calculations are a
potential performance bottleneck if nearly in-
stantaneous window and leve[adjustments are
desired. For fu~ther optimization, consider the
following proposilions to be true: (t) Continu-
ous adlustment of the window setting is not
required, le, preset window settings ate clini-
cafly acceptable (and in fact have been used on
many clinical systems in the past). (2) However,
continuous of nearly continuous adjustment of
the level setting is desirable. (3) The maximum
range of level settings required is the difference
between those settings necessary to convert the
image from complete black to complete white
(this range is not always needed, but is the
maximum Iba! woulcl be required). (4) Furlher-
more, consider that f o r a given window, a
change in the level setting only "shifts" the
values in lut [] to different positions within the
array (Fig 3).

The following data structure is then suggested:

/Code 61
unsigned char baseL UT[];

This array has 3 regions (Fig 4): (1) The first
region is RRANGE elements long. Element
baseLUT [RRANGE - 1], hereafter labeled W1,
is fixed. For computed tomographie ~mages,

~,o / /
:~ a0o

> �9
I 1 / .

~ ' L _ ~ Level ~Hi~ #'2 J
100

�91 so
i

0
0 500 1000 1500 2000 2500

16-bit Image Data

Fi 9 3. Different levelsettings.

RJ�91 can be set to 4,096 (12-bit dynamic
range). (2) The region from W1 to W2 is as large
as the current window setting; it contains an
ordered set of integers that progresses from
black to white. It is initially set to MAX_WIND_
SIZE (the largest window setting possible) ele-
ments long. Whereas the array position W1 is
fixed, W2 will vary depending on the size of the
current window. (3) The region from W2 to
END is at least RRANGE elements long, and at
most RRANGE + MAX_W1ND_SIZE elements
long (ie, when wtndow = 0).

The baseLUT[] array performs the same
transformation function as lut[] above, but is
constructed and initia[ized differently. At pro-
grato startup, baseLUT[] is allocated (2*
RRANGE) + MAX_WIND_SIZE elements. The
e lements from baseLUT[O] to baseLUT-
[W1 - 1] are set to black (0), and the elements
from baseLUT[W1] to baseLUT[END] ate set
to white (255).

F~g 4. The barseeLU7"[] arrey,

28 THURMAN GILLESPY II[

Next, an array of unsigned char arrays is
initialized using predefined window settings,
where each subarray is defined from a pre-
defined list ofwindow settings. However, unlike
lut[] above, each array contains at most one
white and black gray scale value: the "flat" or
clipped portions of the transformation curve on
Fig 1 are not included.

[Code 71
#define NUM_OF_WINDS /* number of window

settings * /
short rnyWinds [NUM OF_WINDS]

={100, 200, 2000};/* arrav of defined
window settings */

unsigned char * myWind Array[NUM_OF_WINDS];
/* array of unsigned char arrays, defined ~orn
myWinds[] */

for (i = O; i < NUM_OF WINDS; i+ +)
myWindArray[i] = makeLUT(myWinds[i]);

makeLUTO is a function defined as follows:

[Code 8]
unsigned char * makeLUT(short); /* protoO'pe */
unsigned char * rnakeL UT(short window)
{

short i;
float m = - (GRA YSCA LES / window) ;

/* see Eq. £ * /
unsigned char lut[window/:
/* note that b = 0 */
i = O;
while (i < window)

lut[i + +/ = rn * i:
return (lut);

Finally, a global pointer is used to set thecurrent
level setting (Fig 5):

[Code 91
unsigned char *gLevel;

gLeve l

l ~ l i i
[o1 Wl w2 ZND

Fig 5, ThegLeve/pointer,

Table 1. Algorithm Performance

Macintosh Centra]
Computer Model Processing Unit Time (s) % Time

II 16 MHz 68020 0.51 67
r[ci, no cache 25 MHz 68030 0.41 65
Ilci, 32k cache 25 MHz 68030 0.31 63
Quadra 700 25 MHz 68040 0.17 50

NOTE: Includes total time to change level control with mouse,
calculate new level setting, remap new 8-bit gray scale image
from 16-bit image data, update display. Times recorded using
profiler option in Think C. The "uncoiled'" version of the
algorithm was used (code 5), which was 10% to 20% faster than
the standard version (code 4), depending on specific Macintosh
configuration.

*The percent of the total time spent in the subroutine
performing the 16-bit to 8 bit transformation.

Once a window setting is selected, the corre-
sponding unsigned char array in myWindArr[] is
copied to baseLUT[], starting at position W1.
To set or change the level setting, the gLevel
pointer is set to the appropriate position within
baseL UT[].

[Code 10]
x i = tevel - (window/2);
gLevel = &baseL UT[14/1 - xl];

The design of baseLUT[] allows continuous
level settings with only a change to the gLevel
pointer address. Furthermore, the array design
allows level settings to be selected that set the
image from complete black (&baseLUT[O]) to
complete white (&baseLUT[W1 + window]).
This algorithm also permits the use of nonlinear
lookup tables with no performance penalty.

IMPLEMENTATION

Using the algoritbms above, window and level
adjustments might be performed as the follow-
ing loop:

(1) Store the old selector position (mouse,
trackball, dial, etc).

(2) Get the current selector position.
(3) Calculate the difference between the old

and new selector positions.
(4) If the difference is not zero, use the

difference to calculate a new window and/or
level setting, else repeat loop.

(5) If the window setting has changed, copy
the appropriate array from myWindArray[] to
baseLUT[]. If the level has changed, calculate
xl, then change the address of the gLevel
pointer witbin baseLUT[].

ALGORITHMS FOR 16-BIT GRAY SCALE IMAGES 29

(6) Remap the 16-bit data into 8-bit data
using the portion of baseLUT[] pointed to by
gLevel.

(7) Update the displayed image using the
revised 8-bit data.

The optimized algorithms described above
have been implemented in a sample application
on the Macintosh (Apple Computer, Cupertino,
CA) platform using Think C 5.02 (Symantec
Corp, Cupertino, CA). On a Macintosh II class
computer, the algorithms allow very rapid win-
dow and level adjustments (Table 1). On a
Macintosh Quadra computer, the window and
level adjustments are performed almost instan-

taneously. As expected, algorithm performance
is strongly influenced by microprocessor perfor-
mance.

CONCLUStONS

The algorithms described above allow nearly
real time window and level adjustment of 16-bit
gray scale images on computer systems that
contain standard 8-bit graphic hardware. There-
fore, personal computers with at least the perfor-
mance of a Macintosh II computer may perform
adequately as personal/low-end PACS worksta-
tions without the additional expense of special
graphic hardware.

