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Abs t r ac t . Global analysis of logic programs can be performed effec-
tively by the use of one of several existing efficient algorithms. However, 
the traditional global analysis scheme in which all the program code is 
known in advance and no previous analysis information is available is un-
satisfactory in many situations. Incrementa! analysis of logic programs 
has been shown to be feasible and much more efficient in certain con-
texts than traditional (non-incremental) global analysis. However, incre
mental analysis poses additional requirements on the fixpoint algorithm 
used. In this work we identify these requirements, present an important 
class of strategies meeting the requirements, present sufficient a priori 
conditions for such strategies, and propose, implement, and evalúate ex-
perimentally a novel algorithm for incremental analysis based on these 
ideas. The experimental results show that the proposed algorithm per-
forms very efficiently in the incremental case while being comparable 
to (and, in some cases, considerably better than) other state-of-the-art 
analysis algorithms even for the non-incremental case. We argüe that our 
discussions, results, and experiments also shed light on some of the many 
tradeoffs involved in the design of algorithms for logic program analysis. 

1 Introduction 

Global program analysis is becoming a practical tool in logic program compi-
lation and used to perform provably correct program optimizations [HWD92, 
RD92, MH92, SCWY91, BGH94, Bru91, Deb92]. Several generic analysis en-
gines such as, for example, PLAI [MH92, MH90] and GAIA [CH94] facilitate 
construction of top-down analyzers. Different description domains and related 
functions render different analyzers which provide different types of information 
and degrees of accuracy. The core of such a generic engine is a specialized algo
r i thm for efficient fixpoint computat ion, a subject that has received considerable 
attention [CC77, MH90, MH92, LDMH93, VWL94, Jor94]. 

Incremental analysis of logic programs has been shown to be feasible and 
much more efficient in certain contexts than traditional (non-incremental) global 
analysis [HMPS95, KB95]. In particular, [HMPS95] discussed the different types 
of changes that had to be dealt with in an incremental setting, provided overall 
solutions for dealing with such changes (in terms of which parts of the anal
ysis graph need to be updated and recomputed), and proposed a basic set of 
solutions that showed the feasibility of the approach. It was also observed that 
incremental analysis poses additional requirements on the fixpoint algorithm 
used since some assumptions on the program tha t traditional algorithms make 
are no longer valid. The purpose of this work is to directly address this issue by 



identifying more concretely such requirements and to improve the performance 
of the fixpoint algorithm while meeting the requirements. We also aim to define, 
implement, and evalúate experimentally a novel algorithm for incremental anal-
ysis and compare it to some previously proposed algorithms for incremental as 
well as non-incremental analysis. 

To the best of our knowledge, this is the first work dealing with the design and 
experimentation of fixpoint algorithms specially tailored for incremental analysis 
of logic programs. Additionally, our results imply performance improvements 
even in a non-incremental setting. Thus, we believe our discussions, results, and 
experiments may also clarify some of the many tradeoffs involved in the design 
of algorithms for logic program analysis in general. 

2 Incremental Analysis Requirements 

The aim of the kind of (goal oriented) program analysis performed by the analysis 
engines mentioned in the previous section is, for a particular description domain, 
to take a program and a set of initial calling patterns (descriptions of the possible 
calling modes into the program) and to annotate the program with information 
about the current environment at each program point whenever that point is 
reached when executing calis described by the calling pat terns. The program 
points considered are entry to the rule, the point between each two literals, and 
return from the cali. In essence, the analyzer must produce a program analysis 
graph. For example, for a s tandard operational semantics based on AND-OR 
trees, the analysis graph can be viewed as a finite representation (through a 
"widening") of the set of AND-OR trees explored by the concrete execution 
[Bru91]. For a given program and calling pat tern there may be many different 
analysis graphs. However, for a given set of initial calling patterns, a program, 
and abstract operations on the descriptions, there is a unique least analysis 
graph which provides the most precise information possible. This analysis graph 
corresponds to the least fixpoint of the abstract semantic equations. 

The aim of incremental global analysis is, given a program, its least analysis 
graph, and a series of changes to the program, to obtain the new least analysis 
graph as efficiently as possible. A simple but inefficient way of computing the 
new least analysis graph is just to discard the previous analysis graph and start 
analysis from scratch on the new program. However, much of the information in 
the previous analysis graph may still be valid, and incremental analysis should 
be able to reuse such information, instead of recomputing it from scratch. 

Unfortunately, traditional fixpoint algorithms for abstract interpretation of 
logic programs cannot be used directly (at least in general) in the context of 
incremental analysis for reasons of accuracy, efficiency, and even correctness. 
This is because such algorithms assume that once a local fixpoint has been 
reached for a calling pat tern, i.e., an answer pattern for this calling pat tern 
has been computed, this information will not change and can be used safely 
thereafter. This assumption is no longer valid in the incremental case, since an 
answer pat tern may become inaccurate if some clauses are eliminated from the 
program (incremental deletion) or even incorrect if more clauses are added to 
the program (incremental addition). When performing arbitrary change on the 
program (i.e., when both additions and deletions are performed), the oíd answer 
pat tern can be incorrect, inaccurate, or both. 



We now discuss two requirements that incremental analysis poses on the 
fixpoint algorithm. 

D e t a i l e d D e p e n d e n c y Informat ion: Most practical fixpoint algorithms try 
to make iterations as local as possible by using some kind of dependency infor-
mation. Thanks to this information it is possible to revisit only a reduced set of 
nodes of the graph when an answer pat tern changes during analysis. Addition-
ally, dependency information can also be used to detect earlier that a fixpoint 
has been reached. The more accurate such dependency information is, the more 
localized (and, thus, less costly) the fixpoint iterations can be. 

In the context of incremental analysis, in addition to localizing the fixpoint 
and detecting termination earlier, dependencies are useful for a third reason: 
they help lócate the parts of the analysis graph that may be affected by program 
changes and which thus need to be recomputed as required by such changes. Ob-
viously, if more detailed dependency information is kept track of, a smaller part 
of the analysis graph will have to be recomputed after modifying the program. 

P r o p a g a t i o n of I n c r e m e n t a l l y U p d a t e d A n s w e r P a t t e r n s : Incremental 
deletion and local and arbitrary change ([HMPS95]) do not pose extra require
ments on the analysis algorithm, provided that detailed dependency informa
tion is available, since such changes only require the analysis algorithms to deal 
with new calling pat terns. However, in incremental addition, i.e., new clauses 
are added to a program already analyzed, the new clauses may also genérate 
unexpected changes to previously computed answer patterns, i.e., they may up
date any answer pat tern in the analysis graph. Once a global fixpoint has been 
reached, there is usually no way to propágate this updated information to the 
places in the analysis graph tha t may be affected using traditional analysis algo
ri thms. If an algorithm is to deal efficiently with incremental addition it needs 
to be able to deal incrementally with the update of any answer pat tern. 

3 A Generic Analysis Algorithm 

We now present a generic analysis algorithm taken from [HMPS95], tha t we will 
use as the basis for describing the optimized analysis algorithms proposed in the 
paper. We will refer to this algorithm simply as "the generic algorithm." 

We first introduce some notation. CP, possibly subscripted, stands for a call
ing pat tern (in the abstract domain) . AP, possibly subscripted, stands for an 
answer pat tern (in the abstract domain) . Each literal in the program is sub
scripted with an identifier or pair of identifiers. A : CP stands for an a tom (un-
subscripted) together with a calling pat tern. Rules are assumed to be normalized 
and each rule for a predicate p has identical sets of variables p(xPl, .. .xPn) in 
the head atom. Cali this the base form of p. Rules in the program are written 
with a unique subscript attached to the head atom (the rule number) , and dual 
subscript (rule number, body position) attached to each body atom (and con-
straint redundantly) e.g. Hk <— 5fc,i, . . ., P>ktnk where 5 ¿ ¿ is a subscripted a tom 
or constraint. The rule may also be referred to as rule k, the subscript of the 
head atom. E.g., the append program is written: 

a p p U . Y . Z h : - X = [ ] M , Y=Zi,2. 
a p p ( X , Y , Z ) 2 : - X=[U| V ] 2 , i , Z=[U| W ] 2 | 2 , a p p ( V , Y , W ) 2 , 3 . 



analyze(5') 
foreach A : CP £ S 

aáá-&jent(newcall(A : CP)) 
main_loop() 

mainJLoopQ 
while E := next_event() 

if ( £ • = = rtewcaU(A: CP)) 
new_calling-pattern(yl : CP) 

elseif (E = = updated(A : CP)) 
add_dependent_rules(yl : CP) 

elseif (E == arc(R)) 
process-arc(P) 

endwhi le 
remove_useless_calls(5) 

new_calling-pattern(yl : CP) 
foreach rule Ak <- Bk,i ,•••, Bk,nk 

CP! := Aproject(CP,BM) 
add_event (arc( 

Ak : CP ^> [CP] Bk¡1 -.CPr)) 
AP := initial-guess(A : CP) 
if {APo _L) 

add-event{updated{A : CP)) 
add A : CP H> AP to answer_table 

add_dependent_rules(yl : CP) 
foreach are of the form 

Hk : CPo => [CP!] Bk,i : CP2 

in dependency_arc_table 
where there exists renaming a 

s.t. A : CP= (Bk,i : CP2)a 
add_event(arc( 

Hk : CPo => [CP!] Bk¡i : CP2)) 

Bk CP2 

CP2 

process.arc(iífc : CP0 =>• [CPi] 
if (Bk ¡ is not a constraint) 

add Hk : CPo =>• [CP!] Bk¡, 
to dependency_arc_table 

AP0 := get_answer(.Bfc,; : CP2) 
CP3 := Acombine(CPi,AP0) 
if (CP3 O -L and i O nk) 

CPi := Aproject(CP3,-8?i,1 

add_event( arc{ 
Hk : CPo =>• [CP3] Bk,t 

elseif {CP3 O _L and i 
AP! := Apro]ect{CP3,Hk) 
insert-answer_inf o{H : CPo H> APi 

i + i j 

CP4)) 

get_answer(L : CP) 
if (L is a constraint) 

r e t u r n Aadd(L, CP) 
else r e t u r n lookup_answer(L, CP) 

lookup_answer(yl : CP) 
if (there exists a renaming a s.t. 

tr(A : CP) H> AP in answer_table) 
return a~1{AP) 

else 
add-event{newcaU{ir{A : CP))) 
where a is a renaming s.t. 
<j{A) is in base form 
r e t u r n _L 

insert_answer_inf o{H : CP H> AP) 
APo := lookup_answer(ií : CP) 
AP! := A\ub(AP,APo) 
if (APo O AP!) 

add ( i í : CP H> APi) to answer_table 
add-event{updated{H : CP)) 

F i g . 1. Generic fixpoint algorithm 

The program analysis graph is defmed in terms of an initial set of callmg 
pat terns, a program, and four abstract operations on the description domain: 

— Aproject(CP, L) which performs the abstract restriction of a calling pat tern 
CP to the variables in the literal L; 

— Aadd{C, CP) which performs the abstract operation of conjoining the actual 
constraint C with the description CP; 

— Acombine(CPi, CP2) which performs the abstract conjunction of two de-
scriptions; 

— Alub(CP\, CP'¿) which performs the abstract disjunction of two descriptions. 

The analysis graph has two sorts of nodes: those belonging to rules (also called 
"AND-nodes") and those belonging to atoms (also called "OR-nodes"). Atoms 
in the rule body have ares to OR-nodes with the corresponding calling pat tern. 



If such a node is already in the tree it becomes a recursive cali. The graph is 
implicitly represented in the algorithm by means of two da ta structures, the 
answer table and the dependency are table. The answer table contains entries of 
the form A : CP t-t AP. A is always a base form. This represents a node in 
the analysis graph of the form (A : CP t-t AP). It is interpreted as the answer 
pat tern for calis of the form CP to A is AP. A dependency are is of the form 
Hk '• CPQ =>• [CPi] Bkti '• CPi- This is interpreted as follows: if the rule with Hf¡ 
as head is called with calling pat tern CPQ then this causes literal 5 ¿ ¿ to be called 
with calling pat tern CPi- The remaining part CP\ is the program annotation 
just before 5 ¿ ¿ is reached and contains information about all variables in rule 
k. CP\ is not really necessary, but is included for efBciency. Dependency ares 
represent the ares in the program analysis graph from atoms in a rule body to 
an a tom node. 

Intuitively, the analysis algorithm is just a graph traversal algorithm which 
places entries in the answer table and dependency are table as new nodes and 
ares in the program analysis graph are encountered. To capture the different 
graph traversal strategies used in different fixpoint algorithms, a priority queue 
is used. Thus, the third, and final structure is a prioritized event queue. Events 
are of three forms. The first, updated(A : CP), indicates tha t the answer pat tern 
to a tom A with calling pat tern CP has been changed. The second, arc(R), 
indicates that the rule referred to in R needs to be (re)computed from the 
position indicated. The third, newcall(A : CP), indicates that a new cali has 
been encountered. The priority mechanism for the queue is left as a parameter 
of the algorithm. 

Figure 1 shows the generic analysis algorithm. Apart from the parametric 
domain dependent functions, the algorithm has several other undefined func-
tions. The functions add_event and next_event respectively add an event to the 
priority queue and return (and delete) the event of highest priority. When an 
event being added to the priority queue is already in the priority queue, a single 
event with the máximum of the priorities is kept in the queue. When an are 
Hk '• CP => [CP"\R>kti '• CP' is added to the dependency are table, it overwrites 
any other ares of the form Hk '• CP =>• [-]-B/¿,¿ : - in the table and in the priority 
queue. The function initiaLguess returns an initial guess for the answer to a new 
calling pat tern. The default valué is _L but if the calling pat tern is more gen
eral than an already computed cali then its current valué may be returned. The 
procedure remove_useless_calls traverses the dependency graph given by the de
pendency ares from the initial calis S and marks those entries in the dependency 
are and answer table which are reachable. The remainder are removed. 

In [HMPS95] the following results are presented: 

T h e o r e m l . For a program P and calling patterns S, the generic analysis al
gorithm returns an answer table and dependency are table which represents the 
least program analysis graph of P and S. 

The corollary of this is tha t the priority strategy does not affect the correct-
ness of the analysis. 

C o r o l l a r y 2. The result of the generic analysis algorithm does not depend on 
the strategy used to prioritize events. 



4 Optimizing the Generic Algorithm 

The algorithm presented in Section 3 is parametric with respect to the event 
handling strategy in the priority queue, in order to capture the behavior of 
several possible algorithms. Correctness of the analysis does not depend on the 
order in which events are processed. However, efBciency does. 

The cost of analysis can be split into two components. The cost of computing 
the are events, which for a given program P and a queuing strategy q will be 
denoted Ca{P,q), and the cost associated with dealing with the event queue 
which will be denoted Cq(P, q). There is clearly a trade-off between Ca{P, q) and 
Cq{P,q) in tha t a more sophisticated event handling strategy may result in a 
lower number of ares traversed but at a higher event handling cost. We now 
discuss some possible optimizations to the generic fixpoint algorithm. 

4.1 Genera l S impl i f icat ions 

D e a l i n g Only w i t h Are E v e n t s in t h e Pr ior i ty Queue : The original fix
point algorithm in Section 3 has to deal with three different kinds of events, 
namely updated, are and newcall. This can make the priority mechanism for 
the queue rather complicated. Looking at the actions performed for each one 
of these events and the optimizations presented below, it can be seen that the 
effect of both updated and newcall can be reduced to that of the are events. 
Additionally, newcall performs an initial guess of the answer pat tern. However, 
we will always use _L as the trivial initial guess for newcall events. Therefore, the 
event queue only needs to deal with are events. Whenever the generic analysis 
algorithm would add to the queue an updated or newcall event, the optimized 
algorithm will directly add to the queue the required are events. 

In what follows, the current event queue will be denoted as Q and will be 
a set of triples (are, q(arc),type), where type can be either newcall or updated 
and indicates whether such are was introduced due to a newcall or an updated 
answer pat tern, and q will be a function called queuing strategy tha t will assign 
a priority (a natural number) to each are event. T(Q) is a function that returns 
(and deletes) from a non-empty queue Q an element with highest priority. A 
strongly connected component (SCC) in a directed graph is a set of nodes S such 
that Vrii, r»2 G S there is a path from ni to n%-

Only O n e Pr ior i ty per R u l e a n d Cal l ing P a t t e r n : The generic algorithm 
makes an intensive use of the event queue. Without loss of generality, we will 
assign priorities to ares at a somewhat coarser level. Instead of assigning a (pos-
sibly) different priority to each are event, we will always assign the same priority 
to all the ares for the same rule and calling pat tern. 

N e v e r S w i t c h i n g from an Are t o A n o t h e r w i t h t h e S a m e Pr ior i ty : 
Once computat ion for an are has finished (no other are with a higher priority 
can be in the queue), the generic algorithm would add the rest of the are (if 
any) to the queue and retrieve one of the ares with highest priority. Instead, as 
there cannot be any other are with higher priority, it is always safe to continué 
with the are just added to the queue. Rather than adding the rest of the are 
and retrieving it immediately, it is more efficient to process it directly. This 
optimization allows using the queue only once for each rule and calling pat tern. 



I n d e x i n g t h e D e p e n d e n c y Are Table: Whenever a pat tern is updated, all 
the ares that used the oíd (incorrect) pat tern must be found in order to genérate 
are events for them. This is done in procedure add_dependent_rules by checking 
all the entries in the dependency are table against the pat tern that has been 
updated. This process has linear complexity in the size of the analysis graph. 
The proposed optimization implies keeping a table that for each calling pat tern 
contains the set of ares that have used this information. In such a way, the set 
of ares that depend on a given calling pat tern can be found in constant t ime. 

4.2 R e s t r i c t i n g t h e Set of Q u e u e i n g S tra teg i e s 

D e f i n i t i o n 3 D y n a m i c Cali G r a p h . The dynamic cali graph of a program P, 
denoted as D(P) is the graph obtained from the answer table and the dependency 
are table generated for P by the generic analysis algorithm as follows: for each 
entry A : CP t-t APQ in the answer table créate the node A : CP and for each 
entry H : CPQ =>• [CPi] Bk¡i '• CP2 in the dependency are table créate a are from 
node H : CPQ to node B : CPB, where B : CPB is the unique calling pat tern 
for which there exists a renaming a s.t. B : CPB = (Bk¡i : CP2)a'. 

D e f i n i t i o n 4 R e d u c e d Cali G r a p h . The reduced cali graph of a program P, 
represented as DR(P) is the directed aeyelie graph obtained by replacing each 
SCC in D(P) by a single node in DR(P) labeled with the set of nodes in the 
SCC, and eliminating all ares which are internal to the SCC. 

D e f i n i t i o n 5 S C C - p r e s e r v i n g . A queuing strategy q is SCC-preservmg if 
V program P \/(Ai,q(Ai),typeí), (A2, q(A2),type2) £ Q, where Ai = arc(Hk : 
CPo => [CP!] Bkii : CP2) and A2 = arc{Hk, : CP0< => [CPy] Bk,y : CP¿) : 
if there is a path in DR(P) from Hk : CPo to Hkt : CPo> then q{A\) < q(A2). 

T h e o r e m C For any program P and any queumg strategy q there is a queumg 
strategy q' which is SCC-preservmg and Ca{P, q') < Ca(P, q) 

This theorem implies that if Cq(P, q') is low enough, the set of queuing strate
gies considered can be restricted to those which are SCC-preserving. Definition 5 
(SCC-preserving) is not operational because DR(P) cannot be computed until 
analysis has finished. It is thus an "a posteriori" condition. Next we give sufñcient 
"a priori" conditions that ensure that a queuing strategy is SCC-preserving. 

D e f i n i t i o n 7 N e w c a l l Se l ec t ing . Let Q ^ 0 be a queue with (A, q(A),type) 
= T(Q) where A = arc(Hk : CP0 => [CPi] Bkti : CP2). Let A1}..., An be the 
set of are events which the event newcall(Bk¡i : CP2) will insert in the queue. A 
queuing strategy q is newcall selecting iff V(yl/, q(A'),type') £ Q Mi = 1 . . ., n : 
q(Ai) > q(A'). 

The intuition behind a newcall selecting strategy is that analysis processes 
calling pat terns in a depth-first fashion. Note also tha t if no recursive predicate 
appears in the program, the least fixpoint would be obtained in one iteration. If 
the queuing strategy is not newcall selecting, several iterations may be needed 
even for non-recursive programs. 



D e f i n i t i o n 8 U p d a t e Se l ec t ing . Let Q ^ 0 be a queue with (A, q(A),type) 
= T ( Q ) . Suppose that after processing the last literal in A, an updated(H : CP) 
event is generated. Let A-\_,...,An be the set of are events which the event 
updated(H : CP) will insert in the queue and let (Ai¡,q(Ai¡), newcall) G Q be 
such that V(A',q(A'), newcall) £ Q : q(Af¡) > </(^4')- A queuing strategy q is 
«pcíaíe selecting iff V ^ ' , g(A'), ¿t/pe') E ( J ¥ i = l . . . , n : (g(-4fc) > ?(-4')) "^ 
(g (A, - )>g(A ' ) ) . 

Le., the are events generated by an updated event must have higher priority 
than any existing are in the queue except for the ares of updated type that were 
introduced after the last newcall. 

When update selecting strategies are used together with delayed dependen-
cies introduced below, the analysis algorithm iterates whenever an answer pat-
tern may not be final rather than using this possibly incorrect information in 
parts of the analysis graph outside the SCC the answer pat tern belongs to . 

D e l a y i n g Entr ies in t h e D e p e n d e n c y Are Table: This modification to the 
generic algorithm consists in executing aAPo := get_answer(5fe¿ : CP2)" before 
the conditional "if {Bk,% is not a constraint) add ( . . . ) to dependency_arc_table" 
in the procedure process_arc in the generic algorithm. The aim is not no intro
duce any dependency until an answer pat tern is actually used. 

Notice than in this case we are not restricting the set of considered queuing 
strategies but rather we are modifying the generic algorithm itself. 

T h e o r e m 9 D e l a y i n g D e p e n d e n c i e s . If the quemng strategy is newcall and 
update selecting then the algorithm obtained from the generic one by delaying 
dependencies produces the same analysis results as the generic algorithm. 

T h e o r e m 10. / / dependencies are delayed and the queuing strategy is newcall 
and update selecting then all the are events generated by an updated(A : CP) 
event belong to the same SCC as A : CP. 

Suppose that when processing the event arc(Hk '• CPQ =>• [CPi] Bkt% '• CP2), 
the answer pat tern for Bkti '• CPi is updated m t imes. In the worst case, the 
continuation of arc(Hi¡ : CPQ => [CPi] Bkti '• CP2) would be computed m t imes. 
Additionally, this computat ion may genérate an updated(Hk '• CPQ) event which 
may in turn genérate update events for any calling pat tern in the analysis graph. 
This theorem ensures that unless Bk¿ '• CPi and Hk '• CPQ are in the same SCC, 
the continuation of the are will only be computed once due to updated valúes 
of Bkti '• CP2, independently of the number of times the answer pat tern for 
Bk,i '• CP'i is updated and the number of iterations needed to compute it. 

T h e o r e m 11 S C C - p r e s e r v i n g . If dependencies are delayed then if a queuing 
strategy q is newcall selecting and update selecting then q is SCC-preserving. 

This is a sufficient "a priori" condition to obtain SCC-preserving strategies. 

4.3 U n d e f i n e d Func t ions 

Order ing Ares from N e w c a l l E v e n t s t h e N e w c a l l S tra tegy: Although 
SCC-preserving strategies are efficient in general, for any given program P differ-
ent SCC-preserving strategies may have different valúes for Ca{P, q) and Cq(P, q). 
There are still several degrees of freedom associated with the event handling 



analyze(S) 
foreach A : CP £ S 

new_calling_pattern(yl: CP) 

process_updat e(Updates) 
if Updates = Ai :: As 

UAs : = process_arc(Ai) 
NAs : = 
global_updating_strategy(As,í/As) 
process_update(iVAs) 

insert_answer_inf o(H : CP H> AP) 
APo := lookup_answer(_ff : CP) 
APt := A\ub(AP,AP0) 
A:={} 
if (APo O APi) 

add (H : CP H> APi) to answer_table 
foreach are of the form 

Hk : CPo =>• [CP!] Bk:1 : CP2 

in dependency_arc_table 
where there exists renaming a 
s.t. H :CP=(Bkl : CP2)a 
A:=A{J 

{Hk : CPo =* [CP,.] Bkli : CP2} 
return:=local_updating_strategy(yl) 

lookup_answer(yl : CP) 
if (there exists a renaming a s.t. 

a(A : CP) H> AP in answer_table) 
r e t u r n a~l (AP) 

else 
return <r~l( 

ne¥_calling4>attern((r(yl : CP))) 
where a is a renaming s.t. 
a(A) is in base form 

new_calling-pattern(yl : CP) 
add A : CP H> _l_ to answer_table 
A0 := {} 
foreach rule Ak <- Bk,i ,•••, Bk:Uk 

CPi := Aproject(CP,Bi;!i) 
A0 := A0 U 
{Ak :CP=>[CP]Bkll : C P i } 

Ares := newcall_strategy(ylo) 
process_newcall (Ares) 
Let a be a renaming s.t. 

tr(A : CP) H> AP in answer_table 
r e t u r n cr~1(AP) 

process_ne¥call(NewCalls) 
if NewCalls = At :: As 

UAres := process-arc(yli) 
process_update (U Ares) 
process_newcall(yls) 

CP2) 
:CP2 

Vrocess^rc(Hk :CP0 => [CPi] Bk,t :CP2 

if (Bk¡¡ is not a constraint) 
APo := lookup-answer(Bft ¿ 
add Hk : CPo =>• [CPi] Bk, 
to dependency_arc_table 

else 
APo := Aadd(BM , CP2) 

CP3 := Acombine(CPi, AP0) 
if (CP3 O ± and i O nfc) 

CP4 := Aproject(CP3,BM+i) 
U := process_arc( 

Hk : CPo => [CP3] Bk¡1+1 : CP* 
elseif (CP3 O -L) 

APi := Aproject(CP3,/ífc) 
Í7 := insert_answer_inf o( 

H : CPo i-> APi) 
return Í7 

Fig. 2. Optimized SCC-preserving analysis algorithm 

strategy. The hrst one, which we will cali the neweall strategy refers to the pri-
orities among the different ares generated by a single neweall (there will be one 
are event per clause defining the called predicate). We know that all of them 
should have a higher priority than the existing ares, but nothing has been said 
up to now about their relative priorities. 

Order ing Ares f rom U p d a t e d E v e n t s t h e U p d a t i n g S tra tegy: The 
neweall selecting condition is in a sense stronger than the updat ing strategy 
condition. The neweall selecting condition requires the new ares to be assigned 
priorities which are higher than any other existing one. Therefore, there is even 
more freedom to assign priorities to ares generated by updated events. The 
approach taken will be to split the updat ing strategy into two components. One 
is the relative order of the are events introduced by a single updated event 
(local updating strategy). The other one is the order of these new are events with 
respect to the already existing updated type are events in the queue that were 



incremental-addition(.fi) 
A0 = {} 
foreach rule Ak <- Bk,i,..., Bk,nk € R 

foreach entry A : CP H> AP 
in the answer_table 
CPi := Aproject(CP, B M ) 
Ao=Ao{J 

{Ak:CP=>[CP]Bkll : C P i } 
A : = inc_updating_strategy(ylo) 
process_inc_update(yl) 

process_inc_update(í7p<iates) 
ifUpdates = Ai :: As 

U : = process_arc(yli) 
NAs : = 

inc_updating_strategy(yls,í7) 
process_inc_update(iVyls) 

Fig. 3 . Incremental Addition Algorithm 

introduced in the queue later than any newcall type are event (global updatmg 
strategy). 

5 An Optimized Analysis Algorithm 

Figure 2 presents an optimized analysis algorithm in which dependencies are 
delayed. It also ensures that the newcall selecting and updat ing selecting condi-
tions will hold, thus always providing SCC-preserving strategies (Theorem 11). 
It is parametric with respect to the newcall strategy and local and global updat
ing strategies introduced above. Different choices of these strategies will provide 
different SCC-preserving instances of the algorithm with possibly different effi-
cieney. 

The two different types of are events are treated separately by procedures 
process_newcal l and process_update. Also, rather than having an external 
da ta structure for the queue, we will use explicit parameters to store the are 
events that have to be processed. The run-time stack of procedure and func-
tion calis will isolate and store the ares. Assuming the the pseudo-code used 
to describe the algorithm is sequential, the newcall selecting condition is satis-
fied because if no entry is stored for a calling pat tern in the answer table, the 
procedure look_up_answer will have to wait for new_cal l ing_pattern to fin-
ish before returning control to the calling process^arc procedure. The update 
selecting condition is also satisfied because in the procedure process_newcal l , 
process_update is called after processing each are and before executing the re-
cursive cali to process_newcal l for the remaining ares from the same newcall. 
Therefore, as dependencies are delayed, according to Theorem 11, the algorithm 
is SCC preserving for any newcall and local and global updat ing strategies. 

5.1 A u g m e n t i n g t h e A l g o r i t h m for I n c r e m e n t a l A d d i t i o n 

In order to cope with incremental addition, i.e., a set of rules R is added to a 
program, analysis should process each rule in R with all the existing calling pat-
terns in the answer table for the predicate the rule belongs to. This is done by 
procedure incremental^addit ion in Figure 3. Note that a specialized versión of 
procedure process_update which is called process_inc_update is used to start 
incremental analysis of the new ares. However, in this case delaying dependencies 
is not possible because before incrementally analyzing the new clauses, a fixpoint 
will have been reached and all dependencies will have been introduced. There
fore, for any node A : CP which existed in the analysis graph before incremental 
analysis started the are events generated by an event updated(A : CP) will not 



necessarily belong to the same SCC as A : CP and analysis may no longer be 
SCC-preserving. Thus, it makes sense to use a more involved updat ing strategy 
for this case than for the non-incremental one in order to avoid unneeded re-
computat ions. This strategy will be called the mc-updatingstrategy. Incremental 
addition will be SCC-preserving or not depending on this strategy. However, for 
any new calling pat tern in the analysis graph it is possible to delay dependencies 
and thus the algorithm in Figure 2 will be SCC-preserving for them. Thus, for 
such calling pat terns it is profitable to use p roce s s_upda t e whenever possible 
rather than p roces s_ inc_upda t e . 

6 Experimental Results 

A series of experiments has been performed for both the incremental and non-
incremental case. The fixpoint algorithms we experiment with have been imple-
mented as extensions to the PLAI generic abstract interpretation system. We 
argüe that this makes comparisons between the new fixpoint algorithms and 
that of PLAI meaningful, since on the one hand PLAI is an efficient, highly op-
timized, state-of-the-art analysis system, and on the other hand the algorithms 
have been implemented using the same technology, with many da ta structures 
in common. They also share the domain dependent functions, which is shar-
mg+freeness [MH91] in all the experiments. 

Three analysis algorithms, as well as PLAI. 1 have been considered. D D is 
the algorithm for incremental analysis used in [HMPS95] ( Inc r or I in the ex
perimental results). Both D I and D I 5 are instances of the algorithm presented 
in Figure 2, with the extensions for incremental addition presented in Figure 3. 
The difference between D I and D I 5 is the newcall strategy used. D I 5 uses the 
more elaborated strategy of computing the SCC of the static graph in order to 
give higher priority to non-recursive clauses. D I simply uses the lexical order 
of clauses to assign them different priorities. Both use the same updat ing strat
egy: the local strategy is to process ares in the order they were introduced in 
the dependency are table, and the global strategy is to use a LIFO stack and 
eliminate subsumed ares , i.e., other ares in the queue exist which ensure that 
their computat ion is redundant. Due to lack of space, subsumed ares are not 
studied here [PH96]. The incremental updat ing strategy is to use a FIFO queue 
and eliminate subsumed ares. D D uses depth-dependent and both D I and D I 5 
depth-independent propagations ([PH96]). 

6.1 A n a l y s i s T i m e s for t h e N o n - i n c r e m e n t a l C a s e 

Table 1 shows the analysis times for a series of benchmark programs using the 
algorithms mentioned above. Times are in milliseconds on a Sparc 10 (SICStus 
2.1, fasteode). A relatively wide range of programs has been used as benchmarks. 
They can be obtained from h t t p : / / w w w . c l i p . d i a . f i . u p m . e s . However, the 
number of clauses is included in the table (column Cl) for reference. D D . S U , 
DI,s_SU and D I _ S U are the speed-ups obtained in analysis t ime by each fix
point algorithm with respect to PLAI. As already observed in [HMPS95], the 
performance of D D is almost identical to tha t of PLAI (it introduces no relevant 

The algorithm used for PLAI is the one in the standard distribution which has been 
augmented to keep track of detailed dependencies that are later used in múltiple 
specialization [PH95]. This introduces a small overhead over the original algorithm. 

http://www.clip.dia.fi.upm.es


B e n c h . 
aiakl 
ann 
bid 
boyer 
browse 
deriv 
fib 
grammar 
hanoiapp 
mmatr ix 
occur 
peephole 
progeom 
qplan 
qsortapp 
query 
rdtok 
read 
serialize 
tak 
warplan 
witt 
zebra 

Cl 
12 

170 
50 

133 
29 
10 
3 

15 
4 
6 
8 

134 
18 

148 
7 

52 
54 
88 
12 
2 

101 
160 

18 

P L A I 
3526 
6572 

783 
2352 

329 
420 

29 
132 
579 
309 
296 

5855 
199 

1513 
346 
108 

2528 
44362 

629 
98 

3439 
1902 
3376 

D D 
3532 
6593 

779 
2346 

339 
436 

36 
128 
565 
306 
299 

5919 
199 

1499 
332 
116 

2509 
44259 

629 
99 

3352 
1902 
3356 

Dís 

2563 
6615 

769 
2339 

343 
421 

29 
129 
619 
312 
316 

4870 
199 

1422 
323 
109 

1316 
14123 

663 
102 

2789 
1762 
3362 

D I 
2483 
6906 

789 
2475 

393 
406 

33 
119 
539 
326 
273 

5090 
219 

1383 
402 

89 
1209 

11765 
616 
103 

2803 
1738 
3259 

Overal l 

D D . S U 
1.00 
1.00 
1.01 
1.00 
0.97 
0.96 
0.81 
1.03 
1.02 
1.01 
0.99 
0.99 
1.00 
1.01 
1.04 
0.93 
1.01 
1.00 
1.00 
0.99 
1.03 
1.00 
1.01 

(1.00) 1.00 

D I S _ S U 
1.38 
0.99 
1.02 
1.01 
0.96 
1.00 
1.00 
1.02 
0.94 
0.99 
0.94 
1.20 
1.00 
1.06 
1.07 
0.99 
1.92 
3.14 
0.95 
0.96 
1.23 
1.08 
1.00 

(1.13) 1.75 

DL.SU 
1.42 
0.95 
0.99 
0.95 
0.84 
1.03 
0.88 
1.11 
1.07 
0.95 
1.08 
1.15 
0.91 
1.09 
0.86 
1.21 
2.09 
3.77 
1.02 
0.95 
1.23 
1.09 
1.04 

(1.12) 1.84 

Table 1. Analysis Times for the Non-Incremental Case 

overhead) but has the advantage of being able to deal with incremental addition. 
On the other hand, both D I and DI^ show significant advantage with respect to 
D D (and PLAI). D I is the most efficient of the three, but the margin over DI5 is 
small. Two overall speed-ups appear in the table for each algorithm. The one in 
brackets represents the overall speed-up after eliminating the read benchmark, 
because of the atypical results. The relative advantage of D I and DI5 is inverted 
in this case. The peculiarity in read stems from the fact that the dynamic cali 
graph has many cycles with lengths that are as high as 13. However, even when 
taking read out D I and DI5 are both still somewhat better that D D and PLAI. 

6.2 A n a l y s i s T i m e s for t h e I n c r e m e n t a l Case 

Among the different types of incremental change identified in [HMPS95] the 
one which is really relevant for experimentation is incremental addition. The 
performance of the fixpoint algorithms in the other types of changes will be 
directly related to the efñciency of the algorithms in the non-incremental case, 
as no incremental update propagation is needed. Table 2 shows the analysis times 
for the same benchmarks but adding the clauses one by one. Le., the analysis 
was first run for the first clause only. Then the next clause was added and the 
resulting program (re-)analyzed. This process was repeated until the last clause 
of the program. The total t ime involved in this process is given by D D , DI5 , 
and DI . Columns SU/ ; / ; , S U ^ j S I and SU/ ; / contain the speed-up obtained 
with respect to analyzing with the same algorithm the program clause by clause 
but erasing the analysis graph between analyses. Thus, it is a measure of the 
incrementality of each algorithm. An important speed-up is observed in SU/ ; / ; 



Bench. 
aiakl 
ann 
bid 
boyer 
browse 
deriv 
fib 
grammar 
hanoiapp 
mmatrix 
occur 
peephole 
progeom 
qplan 
qsortapp 
query 
rdtok 
read 
serialize 
tak 
warplan 
witt 
zebra 
Overall 

DD 
3860 

41680 
4220 

20029 
1110 
3083 

57 
510 
990 
709 
456 

59899 
389 

39890 
623 

2296 
24176 

176779 
1496 

139 
41999 
19336 
8580 
6.64 

Dís 

3527 
25686 

2240 
9039 

652 
1570 

49 
300 
779 
360 
396 

15333 
360 

11303 
506 
919 

3822 
35760 

1290 
120 

9436 
18606 
2716 
2.13 

DI 
3237 
8120 
1433 
3870 

556 
1126 

49 
209 
816 
343 
322 

8533 
283 

2342 
466 
277 

2363 
22160 

973 
113 

5479 
2523 
2480 

1 

s u ^ 
1.52 

12.66 
3.82 

13.00 
5.61 
0.54 
1.68 
2.41 
1.37 
1.37 
1.32 
8.66 
2.63 
3.69 
1.81 
2.23 
1.66 
5.57 
2.23 
1.31 
2.69 
3.08 
4.87 

6.15 

SUDJS 

1.38 
22.82 

6.54 
29.21 

3.91 
1.63 
1.96 
4.17 
1.86 
2.67 
3.73 

28.19 
2.87 

12.42 
2.17 
7.14 
6.96 
8.16 
2.63 
1.75 

10.71 
3.37 

15.32 
13.74 

s u w 
1.29 

72.83 
9.80 

69.35 
4.82 
2.07 
1.84 
5.34 
1.46 
3.12 
3.97 

52.05 
3.44 

56.94 
2.73 

20.32 
10.06 
11.28 
3.25 
1.77 

17.32 
17.57 
16.44 
28.36 

SÜDD 
1.09 
6.32 
5.42 
8.54 
3.27 
7.07 
1.58 
3.98 
1.75 
2.32 
1.53 

10.12 
1.95 

26.61 
1.88 

19.79 
9.64 
3.99 
2.38 
1.40 

12.53 
10.17 
2.56 
5.69 

SY>DJS 

1.38 
3.88 
2.91 
3.86 
1.90 
3.73 
1.69 
2.33 
1.26 
1.15 
1.25 
3.15 
1.81 
7.95 
1.57 
8.43 
2.90 
2.53 
1.95 
1.18 
3.38 

10.56 
0.81 

3.18 

SDm 

1.30 
1.18 
1.82 
1.56 
1.41 
2.77 
1.48 
1.76 
1.51 
1.05 
1.18 
1.68 
1.29 
1.69 
1.16 
3.11 
1.95 
1.88 
1.58 
1.10 
1.95 
1.45 
0.76 

1.57 

T a b l e 2. Incremental Addition Times 

(as already noted in [HMPS95]), but the incrementality of D I 5 is twice as high, 
and that for D I in turn twice as high as that of D I 5 . 

The last three columns in the table contain the slow-downs for clause by 
clause incremental analysis with respect to the time taken by the same algorithm 
when analyzing the file all at once. If we use the D D algorithm in an incremental 
way, the overhead resulting from analyzing clause by clause is greatly reduced 
with respect to the non-incremental case. However, the t ime required if we use 
D I incrementally is only about 3/2 of the time required to analyze the program 
all at once. There is even one case (the z e b r a benchmark) in which using the 
D I algorithm clause by clause is somewhat faster than analyzing the program 
all at once. However, we believe this is related to working set size and cache 
memory effects, as the number of are events processed in both cases (presented 
in Table 3) is almost the same. In the O v e r a l l row we give the average analysis 
times for each algorithm, taking as unit the t ime for analysis clause by clause 
using the D I algorithm. At least for the benchmark programs D I is more than 
twice as fast as D I 5 and more than 6 times faster than D D ([HMPS95]). 

6.3 M e a s u r i n g Ca(P, q): N u m b e r of A r e E v e n t s 

Table 3 shows the number of are events needed to analyze each benchmark pro
gram in both the non-incremental and incremental case using the D I algorithm. 
This is equivalent to counting the number of times the function p r o c e s s ^ a r c 
in the algorithm in Figure 2 is called (including any recursive calis) from (N) 
p roces s_newca l l , (U) p r o c e s s _ u p d a t e , and (UI) p roces s_ inc_upda te . T is 
the total number of are events processed. j is used for the incremental case. The 



B e n c h . 
aiakl 
ann 
bid 
boyer 
browse 
deriv 
fib 
grammar 
hanoiapp 
mmatr ix 
occur 
peephole 
progeom 
qplan 
qsortapp 
query 
rdtok 
read 
serialize 
tak 
warplan 
witt 
zebra 
O v e r a l l 

N 

50 
570 
191 
248 

41 
24 
14 
24 
21 
10 
15 

255 
41 

384 
44 
59 

332 
840 

43 
27 

330 
389 

51 
4003 

U 

19 
179 

14 
70 
19 

1 
3 
0 

15 
9 

14 
170 

9 
41 
15 

0 
33 

155 
15 

5 
38 
39 

2 
865 

T 

69 
749 
205 
318 

60 
25 
17 
24 
36 
19 
29 

425 
50 

425 
59 
59 

365 
995 

58 
32 

368 
428 

53 
4868 

U / T 

0.28 
0.24 
0.07 
0.22 
0.32 
0.04 
0.18 

0 
0.42 
0.47 
0.48 
0.40 
0.18 
0.10 
0.25 

0 
0.09 
0.16 
0.26 
0.16 
0.10 
0.09 
0.04 
0.18 

Ny 
52 

496 
144 

82 
21 

0 
6 
2 

18 
2 

12 
180 

38 
205 

23 
0 

145 
720 

16 
17 

169 
352 

28 
2728 

Uy 
8 

203 
10 
34 

3 
0 
3 
0 

11 
3 

12 
23 

9 
31 

4 
0 

24 
22 

1 
5 

13 
36 

2 
457 

Uly 

76 
101 
165 
330 

78 
52 

8 
28 
26 
14 
4 

440 
3 

235 
41 
62 

328 
1398 

102 
10 

362 
44 
24 

3931 

T j 
136 
800 
319 
446 
102 

52 
17 
30 
55 
19 
28 

643 
50 

471 
68 
62 

497 
2140 

119 
32 

544 
432 

54 
7116 

U I j / T j 

0.56 
0.13 
0.52 
0.74 
0.76 
1.00 
0.47 
0.93 
0.47 
0.74 
0.14 
0.68 
0.06 
0.50 
0.60 
1.00 
0.66 
0.65 
0.86 
0.31 
0.67 
0.10 
0.44 
0.45 

T a b l e 3 . Number of are Events Processed 

last row in the table shows the number of are events of each type needed to 
analyze all the benchmarks. The remaining two columns ( U / T and U l y / T y ) 
give respectively the ratio of the total are events that were due to update events 
in the non-incremental case and those due to the newly introduced clauses in 
the incremental case. U / T gives an idea of how much analysis effort is due to 
fixpoint computat ion for recursive calis. These figures show that using a good 
analysis algorithm, less than 20% of the effort is due to iterations. U l y / T y gives 
the ratio of the computat ion performed by p roces s_ inc_upda te (which may use 
a more complex updat ing strategy). The ratio between the total number of ares 
computed in the incremental and non-incremental case explains the slow-down 
associated to the analysis clause by clause. It is 7116-^4868 =1.46 in number of 
are events processed and 1.57 in analysis times for the D I algorithm. The table 
also seems to imply tha t , for the strategies used, counting are events is a good 
(and architecture independent) indicator of analysis t ime. 
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