
Optimized Algorithms for Incremental Analysis
of Logic Programs

Germán Puebla and Manuel Hermenegildo

{german,herme}@fi.upm.es
Department of Artificial Intelligence

Technical University of Madrid (UPM)

Abs t r ac t . Global analysis of logic programs can be performed effec-
tively by the use of one of several existing efficient algorithms. However,
the traditional global analysis scheme in which all the program code is
known in advance and no previous analysis information is available is un-
satisfactory in many situations. Incrementa! analysis of logic programs
has been shown to be feasible and much more efficient in certain con-
texts than traditional (non-incremental) global analysis. However, incre
mental analysis poses additional requirements on the fixpoint algorithm
used. In this work we identify these requirements, present an important
class of strategies meeting the requirements, present sufficient a priori
conditions for such strategies, and propose, implement, and evalúate ex-
perimentally a novel algorithm for incremental analysis based on these
ideas. The experimental results show that the proposed algorithm per-
forms very efficiently in the incremental case while being comparable
to (and, in some cases, considerably better than) other state-of-the-art
analysis algorithms even for the non-incremental case. We argüe that our
discussions, results, and experiments also shed light on some of the many
tradeoffs involved in the design of algorithms for logic program analysis.

1 Introduction

Global program analysis is becoming a practical tool in logic program compi-
lation and used to perform provably correct program optimizations [HWD92,
RD92, MH92, SCWY91, BGH94, Bru91, Deb92]. Several generic analysis en-
gines such as, for example, PLAI [MH92, MH90] and GAIA [CH94] facilitate
construction of top-down analyzers. Different description domains and related
functions render different analyzers which provide different types of information
and degrees of accuracy. The core of such a generic engine is a specialized algo
r i thm for efficient fixpoint computat ion, a subject that has received considerable
attention [CC77, MH90, MH92, LDMH93, VWL94, Jor94].

Incremental analysis of logic programs has been shown to be feasible and
much more efficient in certain contexts than traditional (non-incremental) global
analysis [HMPS95, KB95]. In particular, [HMPS95] discussed the different types
of changes that had to be dealt with in an incremental setting, provided overall
solutions for dealing with such changes (in terms of which parts of the anal
ysis graph need to be updated and recomputed), and proposed a basic set of
solutions that showed the feasibility of the approach. It was also observed that
incremental analysis poses additional requirements on the fixpoint algorithm
used since some assumptions on the program tha t traditional algorithms make
are no longer valid. The purpose of this work is to directly address this issue by

identifying more concretely such requirements and to improve the performance
of the fixpoint algorithm while meeting the requirements. We also aim to define,
implement, and evalúate experimentally a novel algorithm for incremental anal-
ysis and compare it to some previously proposed algorithms for incremental as
well as non-incremental analysis.

To the best of our knowledge, this is the first work dealing with the design and
experimentation of fixpoint algorithms specially tailored for incremental analysis
of logic programs. Additionally, our results imply performance improvements
even in a non-incremental setting. Thus, we believe our discussions, results, and
experiments may also clarify some of the many tradeoffs involved in the design
of algorithms for logic program analysis in general.

2 Incremental Analysis Requirements

The aim of the kind of (goal oriented) program analysis performed by the analysis
engines mentioned in the previous section is, for a particular description domain,
to take a program and a set of initial calling patterns (descriptions of the possible
calling modes into the program) and to annotate the program with information
about the current environment at each program point whenever that point is
reached when executing calis described by the calling pat terns. The program
points considered are entry to the rule, the point between each two literals, and
return from the cali. In essence, the analyzer must produce a program analysis
graph. For example, for a s tandard operational semantics based on AND-OR
trees, the analysis graph can be viewed as a finite representation (through a
"widening") of the set of AND-OR trees explored by the concrete execution
[Bru91]. For a given program and calling pat tern there may be many different
analysis graphs. However, for a given set of initial calling patterns, a program,
and abstract operations on the descriptions, there is a unique least analysis
graph which provides the most precise information possible. This analysis graph
corresponds to the least fixpoint of the abstract semantic equations.

The aim of incremental global analysis is, given a program, its least analysis
graph, and a series of changes to the program, to obtain the new least analysis
graph as efficiently as possible. A simple but inefficient way of computing the
new least analysis graph is just to discard the previous analysis graph and start
analysis from scratch on the new program. However, much of the information in
the previous analysis graph may still be valid, and incremental analysis should
be able to reuse such information, instead of recomputing it from scratch.

Unfortunately, traditional fixpoint algorithms for abstract interpretation of
logic programs cannot be used directly (at least in general) in the context of
incremental analysis for reasons of accuracy, efficiency, and even correctness.
This is because such algorithms assume that once a local fixpoint has been
reached for a calling pat tern, i.e., an answer pattern for this calling pat tern
has been computed, this information will not change and can be used safely
thereafter. This assumption is no longer valid in the incremental case, since an
answer pat tern may become inaccurate if some clauses are eliminated from the
program (incremental deletion) or even incorrect if more clauses are added to
the program (incremental addition). When performing arbitrary change on the
program (i.e., when both additions and deletions are performed), the oíd answer
pat tern can be incorrect, inaccurate, or both.

We now discuss two requirements that incremental analysis poses on the
fixpoint algorithm.

D e t a i l e d D e p e n d e n c y Informat ion: Most practical fixpoint algorithms try
to make iterations as local as possible by using some kind of dependency infor-
mation. Thanks to this information it is possible to revisit only a reduced set of
nodes of the graph when an answer pat tern changes during analysis. Addition-
ally, dependency information can also be used to detect earlier that a fixpoint
has been reached. The more accurate such dependency information is, the more
localized (and, thus, less costly) the fixpoint iterations can be.

In the context of incremental analysis, in addition to localizing the fixpoint
and detecting termination earlier, dependencies are useful for a third reason:
they help lócate the parts of the analysis graph that may be affected by program
changes and which thus need to be recomputed as required by such changes. Ob-
viously, if more detailed dependency information is kept track of, a smaller part
of the analysis graph will have to be recomputed after modifying the program.

P r o p a g a t i o n of I n c r e m e n t a l l y U p d a t e d A n s w e r P a t t e r n s : Incremental
deletion and local and arbitrary change ([HMPS95]) do not pose extra require
ments on the analysis algorithm, provided that detailed dependency informa
tion is available, since such changes only require the analysis algorithms to deal
with new calling pat terns. However, in incremental addition, i.e., new clauses
are added to a program already analyzed, the new clauses may also genérate
unexpected changes to previously computed answer patterns, i.e., they may up
date any answer pat tern in the analysis graph. Once a global fixpoint has been
reached, there is usually no way to propágate this updated information to the
places in the analysis graph tha t may be affected using traditional analysis algo
ri thms. If an algorithm is to deal efficiently with incremental addition it needs
to be able to deal incrementally with the update of any answer pat tern.

3 A Generic Analysis Algorithm

We now present a generic analysis algorithm taken from [HMPS95], tha t we will
use as the basis for describing the optimized analysis algorithms proposed in the
paper. We will refer to this algorithm simply as "the generic algorithm."

We first introduce some notation. CP, possibly subscripted, stands for a call
ing pat tern (in the abstract domain) . AP, possibly subscripted, stands for an
answer pat tern (in the abstract domain) . Each literal in the program is sub
scripted with an identifier or pair of identifiers. A : CP stands for an a tom (un-
subscripted) together with a calling pat tern. Rules are assumed to be normalized
and each rule for a predicate p has identical sets of variables p(xPl, .. .xPn) in
the head atom. Cali this the base form of p. Rules in the program are written
with a unique subscript attached to the head atom (the rule number) , and dual
subscript (rule number, body position) attached to each body atom (and con-
straint redundantly) e.g. Hk <— 5fc,i, . . ., P>ktnk where 5 ¿ ¿ is a subscripted a tom
or constraint. The rule may also be referred to as rule k, the subscript of the
head atom. E.g., the append program is written:

a p p U . Y . Z h : - X = [] M , Y=Zi,2.
a p p (X , Y , Z) 2 : - X=[U| V] 2 , i , Z=[U| W] 2 | 2 , a p p (V , Y , W) 2 , 3 .

analyze(5')
foreach A : CP £ S

aáá-&jent(newcall(A : CP))
main_loop()

mainJLoopQ
while E := next_event()

if (£ • = = rtewcaU(A: CP))
new_calling-pattern(yl : CP)

elseif (E = = updated(A : CP))
add_dependent_rules(yl : CP)

elseif (E == arc(R))
process-arc(P)

endwhi le
remove_useless_calls(5)

new_calling-pattern(yl : CP)
foreach rule Ak <- Bk,i ,•••, Bk,nk

CP! := Aproject(CP,BM)
add_event (arc(

Ak : CP ^> [CP] Bk¡1 -.CPr))
AP := initial-guess(A : CP)
if {APo _L)

add-event{updated{A : CP))
add A : CP H> AP to answer_table

add_dependent_rules(yl : CP)
foreach are of the form

Hk : CPo => [CP!] Bk,i : CP2

in dependency_arc_table
where there exists renaming a

s.t. A : CP= (Bk,i : CP2)a
add_event(arc(

Hk : CPo => [CP!] Bk¡i : CP2))

Bk CP2

CP2

process.arc(iífc : CP0 =>• [CPi]
if (Bk ¡ is not a constraint)

add Hk : CPo =>• [CP!] Bk¡,
to dependency_arc_table

AP0 := get_answer(.Bfc,; : CP2)
CP3 := Acombine(CPi,AP0)
if (CP3 O -L and i O nk)

CPi := Aproject(CP3,-8?i,1

add_event(arc{
Hk : CPo =>• [CP3] Bk,t

elseif {CP3 O _L and i
AP! := Apro]ect{CP3,Hk)
insert-answer_inf o{H : CPo H> APi

i + i j

CP4))

get_answer(L : CP)
if (L is a constraint)

r e t u r n Aadd(L, CP)
else r e t u r n lookup_answer(L, CP)

lookup_answer(yl : CP)
if (there exists a renaming a s.t.

tr(A : CP) H> AP in answer_table)
return a~1{AP)

else
add-event{newcaU{ir{A : CP)))
where a is a renaming s.t.
<j{A) is in base form
r e t u r n _L

insert_answer_inf o{H : CP H> AP)
APo := lookup_answer(ií : CP)
AP! := A\ub(AP,APo)
if (APo O AP!)

add (i í : CP H> APi) to answer_table
add-event{updated{H : CP))

F i g . 1. Generic fixpoint algorithm

The program analysis graph is defmed in terms of an initial set of callmg
pat terns, a program, and four abstract operations on the description domain:

— Aproject(CP, L) which performs the abstract restriction of a calling pat tern
CP to the variables in the literal L;

— Aadd{C, CP) which performs the abstract operation of conjoining the actual
constraint C with the description CP;

— Acombine(CPi, CP2) which performs the abstract conjunction of two de-
scriptions;

— Alub(CP\, CP'¿) which performs the abstract disjunction of two descriptions.

The analysis graph has two sorts of nodes: those belonging to rules (also called
"AND-nodes") and those belonging to atoms (also called "OR-nodes"). Atoms
in the rule body have ares to OR-nodes with the corresponding calling pat tern.

If such a node is already in the tree it becomes a recursive cali. The graph is
implicitly represented in the algorithm by means of two da ta structures, the
answer table and the dependency are table. The answer table contains entries of
the form A : CP t-t AP. A is always a base form. This represents a node in
the analysis graph of the form (A : CP t-t AP). It is interpreted as the answer
pat tern for calis of the form CP to A is AP. A dependency are is of the form
Hk '• CPQ =>• [CPi] Bkti '• CPi- This is interpreted as follows: if the rule with Hf¡
as head is called with calling pat tern CPQ then this causes literal 5 ¿ ¿ to be called
with calling pat tern CPi- The remaining part CP\ is the program annotation
just before 5 ¿ ¿ is reached and contains information about all variables in rule
k. CP\ is not really necessary, but is included for efBciency. Dependency ares
represent the ares in the program analysis graph from atoms in a rule body to
an a tom node.

Intuitively, the analysis algorithm is just a graph traversal algorithm which
places entries in the answer table and dependency are table as new nodes and
ares in the program analysis graph are encountered. To capture the different
graph traversal strategies used in different fixpoint algorithms, a priority queue
is used. Thus, the third, and final structure is a prioritized event queue. Events
are of three forms. The first, updated(A : CP), indicates tha t the answer pat tern
to a tom A with calling pat tern CP has been changed. The second, arc(R),
indicates that the rule referred to in R needs to be (re)computed from the
position indicated. The third, newcall(A : CP), indicates that a new cali has
been encountered. The priority mechanism for the queue is left as a parameter
of the algorithm.

Figure 1 shows the generic analysis algorithm. Apart from the parametric
domain dependent functions, the algorithm has several other undefined func-
tions. The functions add_event and next_event respectively add an event to the
priority queue and return (and delete) the event of highest priority. When an
event being added to the priority queue is already in the priority queue, a single
event with the máximum of the priorities is kept in the queue. When an are
Hk '• CP => [CP"\R>kti '• CP' is added to the dependency are table, it overwrites
any other ares of the form Hk '• CP =>• [-]-B/¿,¿ : - in the table and in the priority
queue. The function initiaLguess returns an initial guess for the answer to a new
calling pat tern. The default valué is _L but if the calling pat tern is more gen
eral than an already computed cali then its current valué may be returned. The
procedure remove_useless_calls traverses the dependency graph given by the de
pendency ares from the initial calis S and marks those entries in the dependency
are and answer table which are reachable. The remainder are removed.

In [HMPS95] the following results are presented:

T h e o r e m l . For a program P and calling patterns S, the generic analysis al
gorithm returns an answer table and dependency are table which represents the
least program analysis graph of P and S.

The corollary of this is tha t the priority strategy does not affect the correct-
ness of the analysis.

C o r o l l a r y 2. The result of the generic analysis algorithm does not depend on
the strategy used to prioritize events.

4 Optimizing the Generic Algorithm

The algorithm presented in Section 3 is parametric with respect to the event
handling strategy in the priority queue, in order to capture the behavior of
several possible algorithms. Correctness of the analysis does not depend on the
order in which events are processed. However, efBciency does.

The cost of analysis can be split into two components. The cost of computing
the are events, which for a given program P and a queuing strategy q will be
denoted Ca{P,q), and the cost associated with dealing with the event queue
which will be denoted Cq(P, q). There is clearly a trade-off between Ca{P, q) and
Cq{P,q) in tha t a more sophisticated event handling strategy may result in a
lower number of ares traversed but at a higher event handling cost. We now
discuss some possible optimizations to the generic fixpoint algorithm.

4.1 Genera l S impl i f icat ions

D e a l i n g Only w i t h Are E v e n t s in t h e Pr ior i ty Queue : The original fix
point algorithm in Section 3 has to deal with three different kinds of events,
namely updated, are and newcall. This can make the priority mechanism for
the queue rather complicated. Looking at the actions performed for each one
of these events and the optimizations presented below, it can be seen that the
effect of both updated and newcall can be reduced to that of the are events.
Additionally, newcall performs an initial guess of the answer pat tern. However,
we will always use _L as the trivial initial guess for newcall events. Therefore, the
event queue only needs to deal with are events. Whenever the generic analysis
algorithm would add to the queue an updated or newcall event, the optimized
algorithm will directly add to the queue the required are events.

In what follows, the current event queue will be denoted as Q and will be
a set of triples (are, q(arc),type), where type can be either newcall or updated
and indicates whether such are was introduced due to a newcall or an updated
answer pat tern, and q will be a function called queuing strategy tha t will assign
a priority (a natural number) to each are event. T(Q) is a function that returns
(and deletes) from a non-empty queue Q an element with highest priority. A
strongly connected component (SCC) in a directed graph is a set of nodes S such
that Vrii, r»2 G S there is a path from ni to n%-

Only O n e Pr ior i ty per R u l e a n d Cal l ing P a t t e r n : The generic algorithm
makes an intensive use of the event queue. Without loss of generality, we will
assign priorities to ares at a somewhat coarser level. Instead of assigning a (pos-
sibly) different priority to each are event, we will always assign the same priority
to all the ares for the same rule and calling pat tern.

N e v e r S w i t c h i n g from an Are t o A n o t h e r w i t h t h e S a m e Pr ior i ty :
Once computat ion for an are has finished (no other are with a higher priority
can be in the queue), the generic algorithm would add the rest of the are (if
any) to the queue and retrieve one of the ares with highest priority. Instead, as
there cannot be any other are with higher priority, it is always safe to continué
with the are just added to the queue. Rather than adding the rest of the are
and retrieving it immediately, it is more efficient to process it directly. This
optimization allows using the queue only once for each rule and calling pat tern.

I n d e x i n g t h e D e p e n d e n c y Are Table: Whenever a pat tern is updated, all
the ares that used the oíd (incorrect) pat tern must be found in order to genérate
are events for them. This is done in procedure add_dependent_rules by checking
all the entries in the dependency are table against the pat tern that has been
updated. This process has linear complexity in the size of the analysis graph.
The proposed optimization implies keeping a table that for each calling pat tern
contains the set of ares that have used this information. In such a way, the set
of ares that depend on a given calling pat tern can be found in constant t ime.

4.2 R e s t r i c t i n g t h e Set of Q u e u e i n g S tra teg i e s

D e f i n i t i o n 3 D y n a m i c Cali G r a p h . The dynamic cali graph of a program P,
denoted as D(P) is the graph obtained from the answer table and the dependency
are table generated for P by the generic analysis algorithm as follows: for each
entry A : CP t-t APQ in the answer table créate the node A : CP and for each
entry H : CPQ =>• [CPi] Bk¡i '• CP2 in the dependency are table créate a are from
node H : CPQ to node B : CPB, where B : CPB is the unique calling pat tern
for which there exists a renaming a s.t. B : CPB = (Bk¡i : CP2)a'.

D e f i n i t i o n 4 R e d u c e d Cali G r a p h . The reduced cali graph of a program P,
represented as DR(P) is the directed aeyelie graph obtained by replacing each
SCC in D(P) by a single node in DR(P) labeled with the set of nodes in the
SCC, and eliminating all ares which are internal to the SCC.

D e f i n i t i o n 5 S C C - p r e s e r v i n g . A queuing strategy q is SCC-preservmg if
V program P \/(Ai,q(Ai),typeí), (A2, q(A2),type2) £ Q, where Ai = arc(Hk :
CPo => [CP!] Bkii : CP2) and A2 = arc{Hk, : CP0< => [CPy] Bk,y : CP¿) :
if there is a path in DR(P) from Hk : CPo to Hkt : CPo> then q{A\) < q(A2).

T h e o r e m C For any program P and any queumg strategy q there is a queumg
strategy q' which is SCC-preservmg and Ca{P, q') < Ca(P, q)

This theorem implies that if Cq(P, q') is low enough, the set of queuing strate
gies considered can be restricted to those which are SCC-preserving. Definition 5
(SCC-preserving) is not operational because DR(P) cannot be computed until
analysis has finished. It is thus an "a posteriori" condition. Next we give sufñcient
"a priori" conditions that ensure that a queuing strategy is SCC-preserving.

D e f i n i t i o n 7 N e w c a l l Se l ec t ing . Let Q ^ 0 be a queue with (A, q(A),type)
= T(Q) where A = arc(Hk : CP0 => [CPi] Bkti : CP2). Let A1}..., An be the
set of are events which the event newcall(Bk¡i : CP2) will insert in the queue. A
queuing strategy q is newcall selecting iff V(yl/, q(A'),type') £ Q Mi = 1 . . ., n :
q(Ai) > q(A').

The intuition behind a newcall selecting strategy is that analysis processes
calling pat terns in a depth-first fashion. Note also tha t if no recursive predicate
appears in the program, the least fixpoint would be obtained in one iteration. If
the queuing strategy is not newcall selecting, several iterations may be needed
even for non-recursive programs.

D e f i n i t i o n 8 U p d a t e Se l ec t ing . Let Q ^ 0 be a queue with (A, q(A),type)
= T (Q) . Suppose that after processing the last literal in A, an updated(H : CP)
event is generated. Let A-_,...,An be the set of are events which the event
updated(H : CP) will insert in the queue and let (Ai¡,q(Ai¡), newcall) G Q be
such that V(A',q(A'), newcall) £ Q : q(Af¡) > </(^4')- A queuing strategy q is
«pcíaíe selecting iff V ^ ' , g(A'), ¿t/pe') E (J ¥ i = l . . . , n : (g(-4fc) > ?(-4')) "^
(g (A, -)>g(A ')) .

Le., the are events generated by an updated event must have higher priority
than any existing are in the queue except for the ares of updated type that were
introduced after the last newcall.

When update selecting strategies are used together with delayed dependen-
cies introduced below, the analysis algorithm iterates whenever an answer pat-
tern may not be final rather than using this possibly incorrect information in
parts of the analysis graph outside the SCC the answer pat tern belongs to .

D e l a y i n g Entr ies in t h e D e p e n d e n c y Are Table: This modification to the
generic algorithm consists in executing aAPo := get_answer(5fe¿ : CP2)" before
the conditional "if {Bk,% is not a constraint) add (. . .) to dependency_arc_table"
in the procedure process_arc in the generic algorithm. The aim is not no intro
duce any dependency until an answer pat tern is actually used.

Notice than in this case we are not restricting the set of considered queuing
strategies but rather we are modifying the generic algorithm itself.

T h e o r e m 9 D e l a y i n g D e p e n d e n c i e s . If the quemng strategy is newcall and
update selecting then the algorithm obtained from the generic one by delaying
dependencies produces the same analysis results as the generic algorithm.

T h e o r e m 10. / / dependencies are delayed and the queuing strategy is newcall
and update selecting then all the are events generated by an updated(A : CP)
event belong to the same SCC as A : CP.

Suppose that when processing the event arc(Hk '• CPQ =>• [CPi] Bkt% '• CP2),
the answer pat tern for Bkti '• CPi is updated m t imes. In the worst case, the
continuation of arc(Hi¡ : CPQ => [CPi] Bkti '• CP2) would be computed m t imes.
Additionally, this computat ion may genérate an updated(Hk '• CPQ) event which
may in turn genérate update events for any calling pat tern in the analysis graph.
This theorem ensures that unless Bk¿ '• CPi and Hk '• CPQ are in the same SCC,
the continuation of the are will only be computed once due to updated valúes
of Bkti '• CP2, independently of the number of times the answer pat tern for
Bk,i '• CP'i is updated and the number of iterations needed to compute it.

T h e o r e m 11 S C C - p r e s e r v i n g . If dependencies are delayed then if a queuing
strategy q is newcall selecting and update selecting then q is SCC-preserving.

This is a sufficient "a priori" condition to obtain SCC-preserving strategies.

4.3 U n d e f i n e d Func t ions

Order ing Ares from N e w c a l l E v e n t s t h e N e w c a l l S tra tegy: Although
SCC-preserving strategies are efficient in general, for any given program P differ-
ent SCC-preserving strategies may have different valúes for Ca{P, q) and Cq(P, q).
There are still several degrees of freedom associated with the event handling

analyze(S)
foreach A : CP £ S

new_calling_pattern(yl: CP)

process_updat e(Updates)
if Updates = Ai :: As

UAs : = process_arc(Ai)
NAs : =
global_updating_strategy(As,í/As)
process_update(iVAs)

insert_answer_inf o(H : CP H> AP)
APo := lookup_answer(_ff : CP)
APt := A\ub(AP,AP0)
A:={}
if (APo O APi)

add (H : CP H> APi) to answer_table
foreach are of the form

Hk : CPo =>• [CP!] Bk:1 : CP2

in dependency_arc_table
where there exists renaming a
s.t. H :CP=(Bkl : CP2)a
A:=A{J

{Hk : CPo =* [CP,.] Bkli : CP2}
return:=local_updating_strategy(yl)

lookup_answer(yl : CP)
if (there exists a renaming a s.t.

a(A : CP) H> AP in answer_table)
r e t u r n a~l (AP)

else
return <r~l(

ne¥_calling4>attern((r(yl : CP)))
where a is a renaming s.t.
a(A) is in base form

new_calling-pattern(yl : CP)
add A : CP H> _l_ to answer_table
A0 := {}
foreach rule Ak <- Bk,i ,•••, Bk:Uk

CPi := Aproject(CP,Bi;!i)
A0 := A0 U
{Ak :CP=>[CP]Bkll : C P i }

Ares := newcall_strategy(ylo)
process_newcall (Ares)
Let a be a renaming s.t.

tr(A : CP) H> AP in answer_table
r e t u r n cr~1(AP)

process_ne¥call(NewCalls)
if NewCalls = At :: As

UAres := process-arc(yli)
process_update (U Ares)
process_newcall(yls)

CP2)
:CP2

Vrocess^rc(Hk :CP0 => [CPi] Bk,t :CP2

if (Bk¡¡ is not a constraint)
APo := lookup-answer(Bft ¿
add Hk : CPo =>• [CPi] Bk,
to dependency_arc_table

else
APo := Aadd(BM , CP2)

CP3 := Acombine(CPi, AP0)
if (CP3 O ± and i O nfc)

CP4 := Aproject(CP3,BM+i)
U := process_arc(

Hk : CPo => [CP3] Bk¡1+1 : CP*
elseif (CP3 O -L)

APi := Aproject(CP3,/ífc)
Í7 := insert_answer_inf o(

H : CPo i-> APi)
return Í7

Fig. 2. Optimized SCC-preserving analysis algorithm

strategy. The hrst one, which we will cali the neweall strategy refers to the pri-
orities among the different ares generated by a single neweall (there will be one
are event per clause defining the called predicate). We know that all of them
should have a higher priority than the existing ares, but nothing has been said
up to now about their relative priorities.

Order ing Ares f rom U p d a t e d E v e n t s t h e U p d a t i n g S tra tegy: The
neweall selecting condition is in a sense stronger than the updat ing strategy
condition. The neweall selecting condition requires the new ares to be assigned
priorities which are higher than any other existing one. Therefore, there is even
more freedom to assign priorities to ares generated by updated events. The
approach taken will be to split the updat ing strategy into two components. One
is the relative order of the are events introduced by a single updated event
(local updating strategy). The other one is the order of these new are events with
respect to the already existing updated type are events in the queue that were

incremental-addition(.fi)
A0 = {}
foreach rule Ak <- Bk,i,..., Bk,nk € R

foreach entry A : CP H> AP
in the answer_table
CPi := Aproject(CP, B M)
Ao=Ao{J

{Ak:CP=>[CP]Bkll : C P i }
A : = inc_updating_strategy(ylo)
process_inc_update(yl)

process_inc_update(í7p<iates)
ifUpdates = Ai :: As

U : = process_arc(yli)
NAs : =

inc_updating_strategy(yls,í7)
process_inc_update(iVyls)

Fig. 3 . Incremental Addition Algorithm

introduced in the queue later than any newcall type are event (global updatmg
strategy).

5 An Optimized Analysis Algorithm

Figure 2 presents an optimized analysis algorithm in which dependencies are
delayed. It also ensures that the newcall selecting and updat ing selecting condi-
tions will hold, thus always providing SCC-preserving strategies (Theorem 11).
It is parametric with respect to the newcall strategy and local and global updat
ing strategies introduced above. Different choices of these strategies will provide
different SCC-preserving instances of the algorithm with possibly different effi-
cieney.

The two different types of are events are treated separately by procedures
process_newcal l and process_update. Also, rather than having an external
da ta structure for the queue, we will use explicit parameters to store the are
events that have to be processed. The run-time stack of procedure and func-
tion calis will isolate and store the ares. Assuming the the pseudo-code used
to describe the algorithm is sequential, the newcall selecting condition is satis-
fied because if no entry is stored for a calling pat tern in the answer table, the
procedure look_up_answer will have to wait for new_cal l ing_pattern to fin-
ish before returning control to the calling process^arc procedure. The update
selecting condition is also satisfied because in the procedure process_newcal l ,
process_update is called after processing each are and before executing the re-
cursive cali to process_newcal l for the remaining ares from the same newcall.
Therefore, as dependencies are delayed, according to Theorem 11, the algorithm
is SCC preserving for any newcall and local and global updat ing strategies.

5.1 A u g m e n t i n g t h e A l g o r i t h m for I n c r e m e n t a l A d d i t i o n

In order to cope with incremental addition, i.e., a set of rules R is added to a
program, analysis should process each rule in R with all the existing calling pat-
terns in the answer table for the predicate the rule belongs to. This is done by
procedure incremental^addit ion in Figure 3. Note that a specialized versión of
procedure process_update which is called process_inc_update is used to start
incremental analysis of the new ares. However, in this case delaying dependencies
is not possible because before incrementally analyzing the new clauses, a fixpoint
will have been reached and all dependencies will have been introduced. There
fore, for any node A : CP which existed in the analysis graph before incremental
analysis started the are events generated by an event updated(A : CP) will not

necessarily belong to the same SCC as A : CP and analysis may no longer be
SCC-preserving. Thus, it makes sense to use a more involved updat ing strategy
for this case than for the non-incremental one in order to avoid unneeded re-
computat ions. This strategy will be called the mc-updatingstrategy. Incremental
addition will be SCC-preserving or not depending on this strategy. However, for
any new calling pat tern in the analysis graph it is possible to delay dependencies
and thus the algorithm in Figure 2 will be SCC-preserving for them. Thus, for
such calling pat terns it is profitable to use p roce s s_upda t e whenever possible
rather than p roces s_ inc_upda t e .

6 Experimental Results

A series of experiments has been performed for both the incremental and non-
incremental case. The fixpoint algorithms we experiment with have been imple-
mented as extensions to the PLAI generic abstract interpretation system. We
argüe that this makes comparisons between the new fixpoint algorithms and
that of PLAI meaningful, since on the one hand PLAI is an efficient, highly op-
timized, state-of-the-art analysis system, and on the other hand the algorithms
have been implemented using the same technology, with many da ta structures
in common. They also share the domain dependent functions, which is shar-
mg+freeness [MH91] in all the experiments.

Three analysis algorithms, as well as PLAI. 1 have been considered. D D is
the algorithm for incremental analysis used in [HMPS95] (Inc r or I in the ex
perimental results). Both D I and D I 5 are instances of the algorithm presented
in Figure 2, with the extensions for incremental addition presented in Figure 3.
The difference between D I and D I 5 is the newcall strategy used. D I 5 uses the
more elaborated strategy of computing the SCC of the static graph in order to
give higher priority to non-recursive clauses. D I simply uses the lexical order
of clauses to assign them different priorities. Both use the same updat ing strat
egy: the local strategy is to process ares in the order they were introduced in
the dependency are table, and the global strategy is to use a LIFO stack and
eliminate subsumed ares , i.e., other ares in the queue exist which ensure that
their computat ion is redundant. Due to lack of space, subsumed ares are not
studied here [PH96]. The incremental updat ing strategy is to use a FIFO queue
and eliminate subsumed ares. D D uses depth-dependent and both D I and D I 5
depth-independent propagations ([PH96]).

6.1 A n a l y s i s T i m e s for t h e N o n - i n c r e m e n t a l C a s e

Table 1 shows the analysis times for a series of benchmark programs using the
algorithms mentioned above. Times are in milliseconds on a Sparc 10 (SICStus
2.1, fasteode). A relatively wide range of programs has been used as benchmarks.
They can be obtained from h t t p : / / w w w . c l i p . d i a . f i . u p m . e s . However, the
number of clauses is included in the table (column Cl) for reference. D D . S U ,
DI,s_SU and D I _ S U are the speed-ups obtained in analysis t ime by each fix
point algorithm with respect to PLAI. As already observed in [HMPS95], the
performance of D D is almost identical to tha t of PLAI (it introduces no relevant

The algorithm used for PLAI is the one in the standard distribution which has been
augmented to keep track of detailed dependencies that are later used in múltiple
specialization [PH95]. This introduces a small overhead over the original algorithm.

http://www.clip.dia.fi.upm.es

B e n c h .
aiakl
ann
bid
boyer
browse
deriv
fib
grammar
hanoiapp
mmatr ix
occur
peephole
progeom
qplan
qsortapp
query
rdtok
read
serialize
tak
warplan
witt
zebra

Cl
12

170
50

133
29
10
3

15
4
6
8

134
18

148
7

52
54
88
12
2

101
160

18

P L A I
3526
6572

783
2352

329
420

29
132
579
309
296

5855
199

1513
346
108

2528
44362

629
98

3439
1902
3376

D D
3532
6593

779
2346

339
436

36
128
565
306
299

5919
199

1499
332
116

2509
44259

629
99

3352
1902
3356

Dís

2563
6615

769
2339

343
421

29
129
619
312
316

4870
199

1422
323
109

1316
14123

663
102

2789
1762
3362

D I
2483
6906

789
2475

393
406

33
119
539
326
273

5090
219

1383
402

89
1209

11765
616
103

2803
1738
3259

Overal l

D D . S U
1.00
1.00
1.01
1.00
0.97
0.96
0.81
1.03
1.02
1.01
0.99
0.99
1.00
1.01
1.04
0.93
1.01
1.00
1.00
0.99
1.03
1.00
1.01

(1.00) 1.00

D I S _ S U
1.38
0.99
1.02
1.01
0.96
1.00
1.00
1.02
0.94
0.99
0.94
1.20
1.00
1.06
1.07
0.99
1.92
3.14
0.95
0.96
1.23
1.08
1.00

(1.13) 1.75

DL.SU
1.42
0.95
0.99
0.95
0.84
1.03
0.88
1.11
1.07
0.95
1.08
1.15
0.91
1.09
0.86
1.21
2.09
3.77
1.02
0.95
1.23
1.09
1.04

(1.12) 1.84

Table 1. Analysis Times for the Non-Incremental Case

overhead) but has the advantage of being able to deal with incremental addition.
On the other hand, both D I and DI^ show significant advantage with respect to
D D (and PLAI). D I is the most efficient of the three, but the margin over DI5 is
small. Two overall speed-ups appear in the table for each algorithm. The one in
brackets represents the overall speed-up after eliminating the read benchmark,
because of the atypical results. The relative advantage of D I and DI5 is inverted
in this case. The peculiarity in read stems from the fact that the dynamic cali
graph has many cycles with lengths that are as high as 13. However, even when
taking read out D I and DI5 are both still somewhat better that D D and PLAI.

6.2 A n a l y s i s T i m e s for t h e I n c r e m e n t a l Case

Among the different types of incremental change identified in [HMPS95] the
one which is really relevant for experimentation is incremental addition. The
performance of the fixpoint algorithms in the other types of changes will be
directly related to the efñciency of the algorithms in the non-incremental case,
as no incremental update propagation is needed. Table 2 shows the analysis times
for the same benchmarks but adding the clauses one by one. Le., the analysis
was first run for the first clause only. Then the next clause was added and the
resulting program (re-)analyzed. This process was repeated until the last clause
of the program. The total t ime involved in this process is given by D D , DI5 ,
and DI . Columns SU/ ; / ; , S U ^ j S I and SU/ ; / contain the speed-up obtained
with respect to analyzing with the same algorithm the program clause by clause
but erasing the analysis graph between analyses. Thus, it is a measure of the
incrementality of each algorithm. An important speed-up is observed in SU/ ; / ;

Bench.
aiakl
ann
bid
boyer
browse
deriv
fib
grammar
hanoiapp
mmatrix
occur
peephole
progeom
qplan
qsortapp
query
rdtok
read
serialize
tak
warplan
witt
zebra
Overall

DD
3860

41680
4220

20029
1110
3083

57
510
990
709
456

59899
389

39890
623

2296
24176

176779
1496

139
41999
19336
8580
6.64

Dís

3527
25686

2240
9039

652
1570

49
300
779
360
396

15333
360

11303
506
919

3822
35760

1290
120

9436
18606
2716
2.13

DI
3237
8120
1433
3870

556
1126

49
209
816
343
322

8533
283

2342
466
277

2363
22160

973
113

5479
2523
2480

1

s u ^
1.52

12.66
3.82

13.00
5.61
0.54
1.68
2.41
1.37
1.37
1.32
8.66
2.63
3.69
1.81
2.23
1.66
5.57
2.23
1.31
2.69
3.08
4.87

6.15

SUDJS

1.38
22.82

6.54
29.21

3.91
1.63
1.96
4.17
1.86
2.67
3.73

28.19
2.87

12.42
2.17
7.14
6.96
8.16
2.63
1.75

10.71
3.37

15.32
13.74

s u w
1.29

72.83
9.80

69.35
4.82
2.07
1.84
5.34
1.46
3.12
3.97

52.05
3.44

56.94
2.73

20.32
10.06
11.28
3.25
1.77

17.32
17.57
16.44
28.36

SÜDD
1.09
6.32
5.42
8.54
3.27
7.07
1.58
3.98
1.75
2.32
1.53

10.12
1.95

26.61
1.88

19.79
9.64
3.99
2.38
1.40

12.53
10.17
2.56
5.69

SY>DJS

1.38
3.88
2.91
3.86
1.90
3.73
1.69
2.33
1.26
1.15
1.25
3.15
1.81
7.95
1.57
8.43
2.90
2.53
1.95
1.18
3.38

10.56
0.81

3.18

SDm

1.30
1.18
1.82
1.56
1.41
2.77
1.48
1.76
1.51
1.05
1.18
1.68
1.29
1.69
1.16
3.11
1.95
1.88
1.58
1.10
1.95
1.45
0.76

1.57

T a b l e 2. Incremental Addition Times

(as already noted in [HMPS95]), but the incrementality of D I 5 is twice as high,
and that for D I in turn twice as high as that of D I 5 .

The last three columns in the table contain the slow-downs for clause by
clause incremental analysis with respect to the time taken by the same algorithm
when analyzing the file all at once. If we use the D D algorithm in an incremental
way, the overhead resulting from analyzing clause by clause is greatly reduced
with respect to the non-incremental case. However, the t ime required if we use
D I incrementally is only about 3/2 of the time required to analyze the program
all at once. There is even one case (the z e b r a benchmark) in which using the
D I algorithm clause by clause is somewhat faster than analyzing the program
all at once. However, we believe this is related to working set size and cache
memory effects, as the number of are events processed in both cases (presented
in Table 3) is almost the same. In the O v e r a l l row we give the average analysis
times for each algorithm, taking as unit the t ime for analysis clause by clause
using the D I algorithm. At least for the benchmark programs D I is more than
twice as fast as D I 5 and more than 6 times faster than D D ([HMPS95]).

6.3 M e a s u r i n g Ca(P, q): N u m b e r of A r e E v e n t s

Table 3 shows the number of are events needed to analyze each benchmark pro
gram in both the non-incremental and incremental case using the D I algorithm.
This is equivalent to counting the number of times the function p r o c e s s ^ a r c
in the algorithm in Figure 2 is called (including any recursive calis) from (N)
p roces s_newca l l , (U) p r o c e s s _ u p d a t e , and (UI) p roces s_ inc_upda te . T is
the total number of are events processed. j is used for the incremental case. The

B e n c h .
aiakl
ann
bid
boyer
browse
deriv
fib
grammar
hanoiapp
mmatr ix
occur
peephole
progeom
qplan
qsortapp
query
rdtok
read
serialize
tak
warplan
witt
zebra
O v e r a l l

N

50
570
191
248

41
24
14
24
21
10
15

255
41

384
44
59

332
840

43
27

330
389

51
4003

U

19
179

14
70
19

1
3
0

15
9

14
170

9
41
15

0
33

155
15

5
38
39

2
865

T

69
749
205
318

60
25
17
24
36
19
29

425
50

425
59
59

365
995

58
32

368
428

53
4868

U / T

0.28
0.24
0.07
0.22
0.32
0.04
0.18

0
0.42
0.47
0.48
0.40
0.18
0.10
0.25

0
0.09
0.16
0.26
0.16
0.10
0.09
0.04
0.18

Ny
52

496
144

82
21

0
6
2

18
2

12
180

38
205

23
0

145
720

16
17

169
352

28
2728

Uy
8

203
10
34

3
0
3
0

11
3

12
23

9
31

4
0

24
22

1
5

13
36

2
457

Uly

76
101
165
330

78
52

8
28
26
14
4

440
3

235
41
62

328
1398

102
10

362
44
24

3931

T j
136
800
319
446
102

52
17
30
55
19
28

643
50

471
68
62

497
2140

119
32

544
432

54
7116

U I j / T j

0.56
0.13
0.52
0.74
0.76
1.00
0.47
0.93
0.47
0.74
0.14
0.68
0.06
0.50
0.60
1.00
0.66
0.65
0.86
0.31
0.67
0.10
0.44
0.45

T a b l e 3 . Number of are Events Processed

last row in the table shows the number of are events of each type needed to
analyze all the benchmarks. The remaining two columns (U / T and U l y / T y)
give respectively the ratio of the total are events that were due to update events
in the non-incremental case and those due to the newly introduced clauses in
the incremental case. U / T gives an idea of how much analysis effort is due to
fixpoint computat ion for recursive calis. These figures show that using a good
analysis algorithm, less than 20% of the effort is due to iterations. U l y / T y gives
the ratio of the computat ion performed by p roces s_ inc_upda te (which may use
a more complex updat ing strategy). The ratio between the total number of ares
computed in the incremental and non-incremental case explains the slow-down
associated to the analysis clause by clause. It is 7116-^4868 =1.46 in number of
are events processed and 1.57 in analysis times for the D I algorithm. The table
also seems to imply tha t , for the strategies used, counting are events is a good
(and architecture independent) indicator of analysis t ime.

References

[BGH94] F. Bueno, M. García de la Banda, and M. Hermenegildo. Effectiveness of
Global Analysis in Strict Independence-Based Automatic Program Paral-
lelization. In International Symposium on Logic Programmíng, pages 320-
336. MIT Press, November 1994.

[Bru91] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs. Journal of Logic Programmíng, 10:91-124, 1991.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model
for Static Analysis of Programs by Constraction or Approximation of Fix-
points. In Fourth ACM Symposium on Principies of Programmíng Lan-
guages, pages 238-252, 1977.

[CH94] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a
Generic Abstract Interpretation Algorithm for Prolog. ACM Transactíons
on Programmíng Languages and Systems, 16(1):35-101, 1994.

[Deb92] S. Debray, editor. Journal of Logic Programmíng, Specíal Issue: Abstract
Interpretation, volume 13(1-2). North-Holland, July 1992.

[HMPS95] M. Hermenegildo, K. Marriott, G. Puebla, and P. Stuckey. Incremental
Analysis of Logic Programs. In International Conference on Logic Pro
grammíng. MIT Press, June 1995.

[HWD92] M. Hermenegildo, R. Warren, and S. Debray. Global Flow Analysis as a
Practical Compilation Tool. Journal of Logic Programmíng, 13(4):349-367,
August 1992.

[Jor94] N. Jorgensen. Finding Fixpoints in Finite Function Spaces Using Need-
edness Analysis and Chaotic Iteration. In International Static Analysis
Symposium. Springer-Verlag, 1994.

[KB95] A. Krall and T. Berger. Incrementa! global compilation of prolog with the
vienna abstract machine. In International Conference on Logic Program
míng. MIT Press, June 1995.

[LDMH93] B. Le Charlier, O. Degimbe, L. Michel, and P. Van Henteryck. Optimiza-
tion Techniques for General Purpose Fixpoint Algorithms: Practical Effi-
ciency for the Abstract Interpretation of Prolog. In International Workshop
on Static Analysis. Springer-Verlag, 1993.

[MH90] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation
Algorithm for Top-down Abstract Interpretation of Logic Programs. Tech-
nical Report ACT-DC-153-90, Microelectronics and Computer Technology
Corporation (MCC), Austin, TX 78759, April 1990.

[MH91] K. Muthukumar and M. Hermenegildo, Combined Determination of Shar-
ing and Freeness of Program Variables Through Abstract Interpretation. In
International Conference on Logic Programmíng, MIT Press, June 1991.

[MH92] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Vari
able Dependency Using Abstract Interpretation. Journal of Logic Program
míng, 13(2 and 3):315-347, July 1992.

[PH95] G. Puebla and M. Hermenegildo. Implementation of Múltiple Specializa-
tion in Logic Programs. In Proc. ACM SIGPLAN Symposium on Partíal
Evaluation and Semantícs Based Program Manípulatíon. ACM, June 1995.

[PH96] G. Puebla and M. Hermenegildo. Optimized Algorithms for Incremental
Analysis of Logic Programs. Technical Report CLIP3/96.0, Facultad de
Informática, UPM, 1996.

[RD92] P. Van Roy and A.M. Despain. High-Performace Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54-68,
January 1992.

[SCWY91] V. Santos-Costa, D.H.D. Warren, and R. Yang. The Andorra-I Preproces-
sor: Supporting Full Prolog on the Basic Andorra Model. In 1991 Interna
tional Conference on Logic Programming. MIT Press, June 1991.

[VWL94] B. Vergauwen, J. Wauman, and J. Levi. Efficient Fixpoint Computation.
In International Static Analysis Symposium. Springer-Verlag, 1994.

