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In twin-field quantum key distribution the two communicating parties, Alice and Bob, each send a weak
coherent pulse to a third party stationed between them. The key bits are generated by interference be-
tween these pulses, with the results communicated to Alice and Bob. We consider optimized strategies
for eavesdropping on the communication built upon state discrimination and quantum non-demolition
measurements. We find that the best strategy comprises a two-step process but that even this does not
compromise the security of the protocol. © 2019 Optical Society of America
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1. INTRODUCTION

Quantum key distribution (QKD), the most mature of the
fledgling quantum technologies, has been demonstrated in a
variety of technical settings [1–7]. Practical implementations
include communication using optical fiber [8–11], free-space line
of sight communications [12–14] and, most recently, satellite-
based quantum communication [15, 16]. A strong motivation
for developing satellite QKD is the necessarily limited range
of terrestrial schemes: the use of optical fiber, in particular, is
inevitably constrained by absorption losses that, due to the na-
ture of quantum states, cannot be compensated by amplification.
Attempts to overcome this difficulty have inspired lively activity
in the development of quantum repeaters [17, 18] and quantum
memories [19, 20].

Protocols for QKD follow a variety of patterns. In the earliest
and simplest scheme one party, Alice, sends light pulses along a
quantum channel to a receiving party, Bob. The light will usually
be in the form of weak coherent pulses or heralded photons,
although other schemes are also possible. Another possibility
is to use a third party positioned between Alice and Bob who
either prepares entangled photons for transmission to Alice and
Bob, who receive one each or, as suggested for measurement-
device-independent QKD, receives and measures light sent by
Alice and Bob [21–23]. Networks with multiple communicating
parties are also possible [24, 25].

In twin-field QKD both Alice and Bob prepare and send weak
coherent pulses of light, each with a mean photon number of sig-
nificantly less than one, to a central point operated by a central
server [26]. This character was named ‘Charlie’ in the origi-
nal paper but we prefer ‘Severus’ as Charlie has already been
assigned numerous other roles in QKD protocols. In contrast

to measurement-device-independent schemes, Severus needs
to record just a single photocount and relay the result of this
detection to Alice and Bob. The concept is that Alice and Bob
each sends ‘half a photon’, or rather a corresponding probabil-
ity amplitude, to Severus who combines these and performs a
simple measurement, the result of which he sends to Alice and
Bob. Naturally the scheme will be secure only if Severus and
any other eavesdropper cannot access the shared key generated
by Alice and Bob. To demonstrate this it suffices to consider just
the strategies available to a dishonest S Eve rus, who plays the
role traditionally assigned to the eavesdropper, Eve.

An important advantage of this scheme is that each of Alice
and Bob’s pulses travels only half the distance between them
and hence suffers a significantly smaller loss than it would in a
single-transmission scheme in which Alice sends pulses of light
to Bob [26].

We present, first, an idealized account of a somewhat simpli-
fied twin-field QKD protocol and the principles on which the
security is based. Ultimately, a security proof must allow for a
technologically advanced Severus to perform the best eavesdrop-
ping strategy allowed by quantum theory. Security proofs to
date have been based on information theory and evaluating key
rates [26–28]. We complement these by determining a range of
optimized strategies and evaluate their efficacy. In particular, we
obtain an optimal single-shot measurement, i.e. the best attack
when Severus is not able to make multi-mode, joint measure-
ments. The result sheds new light on the security of the protocol.
It also fits with a growing interest in security analysis under
various restrictions on an eavesdropper [29, 30]. We also give an
upper bound on the information gain when joint measurements
are allowed. The approach given is rather different from security
arguments based on entanglement purification. It is an open

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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question whether there is any connection. We conclude with
some important practical considerations that might affect an
experimental realization of the protocol.

2. TWIN-FIELD PROTOCOL

Let us turn to the basic protocol for twin-field QKD and start
with operation as intended with no eavesdropping and an hon-
est Severus. We neglect also, at this stage, the losses that occur in
transmission and due to the finite efficiency of Severus’s detec-
tors. Alice and Bob, in each time slot for communication, prepare
a weak coherent pulse of light and imprint upon it the phase 0,
π/2, π or 3π/2, chosen at random and with equal probabilities.
They send these pulses to Severus through optical fibers. The
lengths of these fibers need to be carefully controlled both so that
the pulses arrive at Severus at the same time and also so that the
phases acquired by the pulses on propagation are known and
can be adjusted by Severus. This means that Severus receives
from each party and in each time slot a coherent-state pulse for
the form |αeinπ/2〉, with mean photon number |α|2 ≪ 1. We
note that such a scheme has been employed successfully for
quantum fingerprinting [31, 32] and to establish quantum digi-
tal signatures [33]. The use of such states has been considered,
also, for direct (Alice to Bob) QKD [34]. Twin-field QKD as
originally introduced uses global phase randomization between
Alice and Bob [26]; other techniques such as decoy states are
also discussed elsewhere [27, 28]. The simplified version of the
protocol discussed here is sufficient for our purposes.

Severus is required to combine the two weak pulses on a
50:50 beam splitter as depicted in Figure 1. He then records pho-
todetection events either at detector A (agree) or D (disagree).
Owing to the weakness of the pulses, many time slots will pro-
duce no detections, but on those occasions when an event is
recorded, Severus announces A or D to Alice and Bob. Very
occasionally both of Severus’s detectors will register counts but
such events are simply discarded , as they cannot be used to
construct shared bits.

Fig. 1. Severus combines Alice and Bob’s coherent pulses on a
beamsplitter. If Alice and Bob have used the same basis then
one of the outputs will be in the vacuum state, with all of the
light going to the other output.

Alice and Bob generate a random key from the sequence of As
and Ds announced by Severus as follows. Alice and Bob assign

a bit value to their encoding phases: n = 0, 1 and n = 2, 3 corre-
sponding, respectively, to the bit values 0 and 1. Alice and Bob
announce in each time slot for which Severus has announced
A or D, whether the real, |α〉 or | − α〉, or the imaginary, |iα〉 or
| − iα〉, basis was used and they keep only those slots for which
they have both chosen the real or the imaginary basis. Finally, Al-
ice and Bob’s bit values should agree if Severus has announced A
and disagree if Severus announced D. When Severus announces
D one of the communicating parties, Bob, simply flips the corre-
sponding bit value and the two key strings generated by Alice
and Bob should now agree. These possibilities are summarized
in Table 1. The secrecy of the communication between Alice
and Bob is then established, in common with existing protocols,
by checking for errors, followed by a process of privacy ampli-
fication. As in other QKD protocols, the existence of errors is
associated with dishonest or eavesdropping activity.

Table 1. The possible outcomes for ideal operation of the pro-
tocol. Only those cases in which Alice and Bob agree on their
choice of basis are included, the remaining eight possibilities
are simply discarded.

Alice Bob Severus Bit value agreed

|α〉 |α〉 A 0

|α〉 | − α〉 D 0

|iα〉 |iα〉 A 0

|iα〉 | − iα〉 D 0

| − α〉 | − α〉 A 1

| − α〉 |α〉 D 1

| − iα〉 | − iα〉 A 1

| − iα〉 |iα〉 D 1

A crucial question to address is whether a dishonest Severus
can defeat the protocol by sharing the key bits without introduc-
ing errors into his announcements to Alice and Bob of A and
D. To understand the problem facing Severus, let us write the
product states for Alice and Bob’s pulses in the photon number
basis, recalling that the mean photon number is very much less
than one. It suffices to consider only those states in which both
Alice and Bob chose the real basis (n = 0, 2) or the imaginary
basis (n = 1, 3) as only these can contribute to the final key. We
find

|αeinπ/2, αeinπ/2〉 ≈ |0, 0〉+ einπ/2
√

2α|+〉
|αeinπ/2,−αeinπ/2〉 ≈ |0, 0〉+ einπ/2

√
2α|−〉, (1)

where |0, 0〉 is the two-pulse vacuum state and |±〉 are the single-
photon entangled states 2−1/2(|1, 0〉 ± |0, 1〉). To announce cor-
rectly A or D, Severus needs to perform a measurement in the
|±〉 basis, but the required key-bit is contained in the incom-
patible basis given by the superposition of these states with
the two-mode vacuum. It follows, in common with other ap-
proaches to QKD, that a dishonest Severus has to fight against
complementarity.

Furthermore, keeping double click events will not help
Severus. Firstly, these events are very rare. Secondly, these
events are not useful for constructing shared bits. Moreover,
for Severus to try and use the double clicks, he would need to
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risk incorrectly announcing agree or disagree, which would nec-
essarily introduce errors into the announcements to Alice and
Bob.

The argument presented in the preceding paragraph is indica-
tive of security and information-theoretic security proofs exist
in the literature [26, 27]. Nevertheless, an analysis of the attacks
available to Severus can offer some insight into the security and
assumptions of the protocol. We address this point more fully
in the following section, but give here a further indication of
Severus’s difficulties. We might start by conceding that if there
are two or more photons present then this could be used to
Severus’s advantage. The probability for two or more photons
to be present is, for small mean photon number, simply 2|α|4,
which is proportional to square of the mean photon number. We
can make this arbitrarily small by reducing the intensities of
Alice and Bob’s pulses. Privacy amplification will suppress the
small amount of information leaked to Severus in this way. The
remaining task for Severus is to do as well as possible in discrim-
inating between the eight states in Equation (1). We may note
that these are a multiply symmetric set of states [35] and hence
we know that a square-root measurement [7, 36–39] will identify

the state with the minimum probability of error, Perror ≈ 7
8 − |α|

2
which for small |α| is only marginally better than guessing.

There is a far better strategy that is open to a technologically
advanced Severus, one who can perform a first measurement to
decide whether to announce A or D and a second to determine
the bit-value only after Alice and Bob have revealed their basis
choice. The best initial measurement available to Severus is a
three-element POVM (or POM) with the probability operators

π̂A = K|0, 0〉〈0, 0|+ |+〉〈+|
π̂D = K|0, 0〉〈0, 0|+ |−〉〈−|
π̂X = (1 − 2K)|0, 0〉〈0, 0|, (2)

for which Severus announces A, D or nothing respectively. Here
K is a positive number between 0, corresponding to the behavior

of an honest Severus, and 1
2 , for which Severus makes an an-

nouncement for every time slot. Adopting this strategy necessar-
ily introduces errors into the announcements made by Severus,
with each such announcement, of A or D, being incorrect with
probability

PDA error =
K

2(K + |α|2) (3)

and so to avoid detection by Alice and Bob, K needs to be small,
ideally much less than |α|2.

Following Severus’s announcement of A or D Alice and Bob
announce their basis choices and Severus can then use this ad-
ditional information to inform his subsequent measurement of
the bit value. For definiteness let us consider a case in which
Severus has announced (correctly) A and Alice and Bob selected
the real basis. This leaves Severus with the task of discriminating
between the two states

|ψ0〉 =
1

√

K + 2|α|2
(
√

K|0, 0〉+
√

2α|+〉)

|ψ1〉 =
1

√

K + 2|α|2
(
√

K|0, 0〉 −
√

2α|+〉), (4)

as modified from the states given in Equation (1) by Severus’s
measurement. The minimum probability of error in distinguish-
ing between these two states is

Perror =
1

2
−

√
2K|α|

K + 2|α|2 . (5)

This takes the value zero if K = 2|α|2. In this case Severus will
have the potential key bit, but will necessarily reveal his activity
through significant errors in the announcements made to Alice

and Bob: PDA error =
1
3 .

A more complete assessment of the possible strategies avail-
able to Severus requires the introduction of a range of general-
ized measurements, in particular, unambiguous measurement
[7, 38–42], which we consider in the following section.

3. OPTIMIZED MEASUREMENTS AVAILABLE TO

SEVERUS

The security of any QKD protocol must be tested against the best
measurements possible, ideally to a technologically advanced
eavesdropper and establishing this requires the introduction of
generalized measurements [43]. In pursuit of the best strategy it
suffices to treat, simply, the actions open to a dishonest Severus,
as Severus can perfom any action that is also open to an eaves-
dropper. We note that treating Severus as an unreliable agent is
an essential feature of this study, for if Alice and Bob fully trust
Severus then a simpler procedure would be to establish separate
keys between Alice and Severus and between Bob and Severus.
We consider four optimized strategies and for each determine
the way in which Severus’s probability for success scales with
the mean photon number.

A. Minimum error discrimination between the signal states

The simplest strategy, at least conceptually, is for Severus to
attempt to discriminate, with minimum error, between the states
sent by Alice and Bob. He might try simply measuring Alice
and Bob’s pulses separately. We note that a single-shot measure-
ment of such phase-shifted coherent states, albeit a non-optimal
one, has been reported recently [44]. This means discriminating
between the four coherent states, |α〉, |iα〉, | − α〉 and | − iα〉.
These form a symmetric set and it follows that the minimum-
error measurement is the square-root measurement [37], with
the POVM comprising the four elements

πn =
1

4
ρ−1/2|αeinπ/2〉〈αeinπ/2|ρ−1/2

ρ =
1

4

3

∑
n=0

|αeinπ/2〉〈αeinπ/2|. (6)

For this measurement strategy we find that the probability of
correctly determining the state is

Perror = 1 −
3

∑
n=0

1

16
〈αeinπ/2|πn|αeinπ/2〉 ≈ 3

4
− |α|

2
, (7)

to lowest order in |α|. It follows that the probabilty for Severus

to correctly identify both of the pulses is ( 1
4 + |α|

2 )2 ≈ 1
16 + |α|

4 .
Clearly this strategy results in a high probability of error and
will result in numerous occasions on which Severus will send to
Alice and Bob the incorrect assignment, A or D.

A somewhat superior minimum-error strategy would be to
ignore those situations in which Alice and Bob used different
bases for their pulses and to concentrate on the remaing eight
two-pulse signal states that Alice and Bob would seek to use
to establish a secret key. These are the states listed in Table 1.
For this multiply-symmetric set the square-root measurement is
again optimal [35] and we find that the minimum-error proba-
bility is

Perror =
7

8
− |α|

2
, (8)
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as may be found simply by applying the square-root measure-
ment to the eight approximate states given in Equation 1. Equiv-
alently the probability that Severus correctly identifies the state
and so both sends the correct signal to Alice and to Bob and also

learns the bit value is only 1
8 + |α|

2 .

B. Unambiguous discrimination between the signal states

A more subtle approach to the problem is to use unambiguous
state discrimination, which gives only correct answers at the cost
of giving, sometimes, an ambiguous but clearly identified an-
swer [7, 38–42]. The advantage of this approach for a dishonest
Severus is that he can simply send a no detection statement to
Alice and Bob on those occasions when his measurement gives
an inconclusive result. The use of such strategies for quantum
eavesdropping was suggested long ago by Peres [45].

Let us begin, as with the minimum-error strategies above,
with a direct attempt to determine which of the four possible
coherent states were sent by Alice and Bob. The problem, then,
is to determine, without error, which of the four coherent states,
|α〉, |iα〉, | − α〉 and | − iα〉, is present. To construct such a mea-
surement we need to find a state-vector for each of these states
that is orthogonal to each of the others; the measurement opera-
tors (POVM elements) are constructed from these, completed by
a fifth measurement operator corresponding to the ambiguous
or undetermined result. There is a known least upper bound
for the probability, PD, of successfully determining, amongst a
symmetric set, the state without error [46]. For the case at hand
this reduces to

PD ≤ min
r

3

∑
n=0

(−i)nre|α|
2(in−1), (9)

where r = 0, 1, 2, 3. For our case, it suffices to consider the limit
of small |α| for which this expression simplifies to

PD ≤ 2

3
|α|6, (10)

which is proportional to the third power of the mean photon
number and hence is very small. We can trace this dependence
on |α| to the need to construct four orthogonal states, one corre-
sponding to unambiguously identifying each of the four states.
It follows that we need to work with the four-dimensional space
spanned by the first four photon number states and the prob-
ability associated with the last of these, |3〉, is proportional to
|α|6.

Instead of determining, unambiguously, both Alice and Bob’s
signal states, it might be better to restrict the set to the eight
two-pulse states, given in Equation (1), that can contribute to
the key generated by Alice and Bob. The fact that there are
eight states to discriminate between tells us that we we need
measurement operators corresponding to orthogonal states in
an eight-dimensional state space. There is one two-pulse state
with no photons, two states with a single photon, and three
with two photons. To reach the required eight dimensional
space we require, as a minimum, two further states and these
must come from the three-photon states. The latter arise with
probability proportional to |α|6 and it follows that a successful
unambiguous discrimination among these eight states occurs
with a probability proportional to |α|6.

It is clear that measuring Alice and Bob’s pulses separately,
either with minimum error probability or unambiguously, does
not provide an effective eavesdropping strategy.

C. Two-stage measurements

Let us consider a more technologically advanced, but dishonest,
Severus, one who can perform a first non-destructive measure-
ment with which to decide whether to send to Alice and Bob A
or D, then store the light and perform a second measurement, to
determine the key bit only after Alice and Bob have revealed the
basis used.

The first measurement carried out by Severus is to determine
which signal, A or D, to send to Alice and Bob. From the setup
in Figure 1 it is clear that the natural way to achieve this is
by measuring the photon number, for it is detection of light in
output A (D) accompanied by the absence of light in output D
(A) that correctly identifies the signal to be sent to Alice and
Bob. The minimum action required by Severus is to measure, in
each of the outputs from the beamsplitter, the vacuum projector
and its complement. If this measurement is a quantum non-
demolition measurement [47–50] then the light pulse remains
available for further measurement and, indeed, a measurement
performed after Alice and Bob have announced the basis used.

On those occasions when Alice and Bob have used the same
basis the outputs from the beamsplitter, depicted in Figure 1, will

be of the form |
√

2αeinπ/2〉 ⊗ |0〉 if Alice and Bob chose the same
phase for their pulses and |0〉 ⊗ |

√
2αeinπ/2〉 if they chose phases

differing by π. The quantum non-demolition measurement
required by Severus, thus, has four measurement operators:

π0 = |0〉〈0| ⊗ |0〉〈0|
πA = (1 − |0〉〈0|)⊗ |0〉〈0|
πD = |0〉〈0| ⊗ (1 − |0〉〈0|)

πAD = (1 − |0〉〈0|)⊗ (1 − |0〉〈0|). (11)

These correspond, respectively, to the absence of photons, pho-
tons in the agree output but none in the disagree output, photons
in the disagree output but none in the agree output and, finally,
photons in both outputs. For these measurement results, Severus
announces ‘no detections’, A, D or multiple detections, respec-
tively. The measurement on each output is thus a measurement
of the vacuum state or its complement; although this is difficult
to arrange, we note that a reasonable scheme for such a mea-
surement has been proposed in the context of cavity quantum
electrodynamics [51]. It is clear that, ideally realized, this mea-
surement will introduce no errors into Alice and Bob’s shared
bit string and hence will leave no detectable trace of Severus’s
subtle attack.

Once Alice and Bob have announced their agreed basis,
Severus can perform a second measurement on the stored light
pulse. For definiteness, let us consider the case in which Al-
ice and Bob both chose the real basis and sent to Severus the
same state (the analysis for the others possible states follows
the same line of reasoning). This means that Severus will have
announced A and will now have to discriminate between the
states |

√
2α〉 and | −

√
2α〉 or, more precisely, these states with

their vacuum components removed. His remaining task, then,
is to discriminate between the two states

|ψ0〉 =
(

1 − e−2|α|2
)

(1 − |0〉〈0|)|
√

2α〉

|ψ1〉 =
(

1 − e−2|α|2
)

(1 − |0〉〈0|)| −
√

2α〉, (12)

corresponding, respectively, to Alice and Bob assigning the key
bit 0 or 1.

The two states, |ψ0〉 and |ψ1〉 are not orthogonal and so per-
fect discrimination between them is not possible. This means
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that Severus has to choose between maximizing the probability
of getting the bit value and learning some of the bits for certain
but learning nothing about the others. These correspond to the
minimum error and the unambiguous discrimination measure-
ments. It is also possible, of course, to adopt an intermediate
strategy in which we seek to minimize the error for a given
probability of an inconclusive result [52].

The optimal strategies for discriminating between two
equiprobable non-orthogonal pure states, either with minimum
error or via unambiguous state discrimination are well known
[7, 38, 39]. The minimum achievable error is

Perror =
1

2

(

1 −
√

1 − |〈ψ0|ψ1〉|2
)

=
1

2

(

1 −
√

1 − e−4|α|2
)

≈ 1

2
− |α|. (13)

This is a significant improvement on the single-step error proba-
bility but Severus’s information can still be reduced by lowering
the mean photon number. For example if |α|2 = 0.05, corre-
sponding to Alice and Bob together contributing on average 0.1
photons per time slot, then this minimum error probability is
approximately 0.28 so that Severus will have a 28% error rate in
his final key.

An unambiguous measurement will produce either the cor-
rect key bit or an inconclusive result and the minimum achiev-
able probability for the inconclusive result is

P? = |〈ψ0|ψ1〉|
= e−2|α|2 ≈ 1 − 2|α|2. (14)

Equivalently, Severus will know a proportion 2|α|2 for certain
but have to guess the remaining bits. For the example given
above, with |α|2 = 0.05, Severus will know 10% of the bits but
have to guess the remaining key bits.

Fig. 2. A plot of P(E = A|A = B), the probability for Severus
to gain a bit when Alice and Bob agree on the bit, against the
amplitude |α|. The plot shows several different attacks. The
black line, (a), shows the two-stage attack with an final min-
imum error measurement. The blue line, (b), is for the two-
stage measurement with an unambiguous measurement. The
red line, (c) shows a single-stage minimum error attack, which
was described in equation (10).

The results are illustrated in figure 2, were we plot P(E =
A|A = B), the probability for Severus to gain bit conditioned

on Alice and Bob both sharing the bit. The probability P(E =
A|A = B) is plotted against the amplitude |α|, for: (a) the opti-
mal two-stage attack, (b) a two-stage attack with an unambigu-
ous measurement, and (c) the single-stage attack outlined at the
end of section 3A, i.e. in equation (8). We see that for each of the
attacks, Severus’ probability to gain the bit increases with |α|.
Furthermore, the plot illustrates the significant advantage of the
two-stage attack. Nevertheless, we again see that if we make the
amplitude sufficiently small, then we ensure that Severus will
have a large error rate in his final key.

The minimum error measurement is also the measurement
that extracts the maximum information (i.e. the accessible infor-
mation) from an ensemble of two equiprobable non-orthogonal
pure states [53]. In certain cases, however, one can extract more
information by storing the states and making complicated, multi-
mode joint measurement. This approach is optimal for decoding
channels, where one can control the input states [54]. Joint mea-
surements also provide an advantage when we have multiple
copies of the same state [55]. Whether it provides an advantage
in the current situation is an open question. For example, it is
know that joint measurements would not help with the prob-
lems of minimum error and unambiguous state discrimination
[39]1. Nevertheless, we will give an upper bound on the accessi-
ble information, when Severus saves N copies of the output and
then makes a joint measurement.

The Holevo bound gives an upper limit on the accessible
information, although it is not clear that this value is achievable
in our case. For an ensemble of pure states, the Holevo bound
is just the von Neumann entropy of the ensemble. For the case

of the real basis, one makes a joint measurement on ( 1
2 |α〉〈α|+

1
2 | − α〉〈−α|)⊗N . The accessible information per pulse, IS, is
found to be upper bounded by

IS ≤ −x log2(x)− (1 − x) log2(1 − x), (15)

where

x =
1

2
(1 + |〈ψ0|ψ1〉|)

=
1

2
(1 + e−2|α|2 ) ≈ 1 − |α|2. (16)

The results for a joint measurement on the imaginary basis are
identical. In figure 3 we plot this upper bound as a function of
|α| and compare it to the information that one can extract by
making individual, minimum error measurements. By making
|α| small, we again see that one can limit the information that
Severus obtains.

4. PRACTICAL CONSIDERATIONS

The protocol described above is much idealized and takes no
account of experimental practicalities. Some of these will be
specific to a given realization, but others are likely to affect any
experiment and we consider, briefly, just three of these: phase
stability, detector efficiency and fiber losses.

A. Phase stability

The interference between the weak coherent pulses sent by Alice
and Bob lies at the very heart of the protocol and it is essential
that the path lengths between Alice and Severus and between
Bob and Severus are matched, both so that their pulses arrive at

1Joint measurements can help if we have multiple copies of a state. But in this
case we have multiple copies of identical, but independent ensembles.



Research Article Journal of the Optical Society of America B 6

0.05 0.10 0.15 0.20 0.25
ÈΑÈ

0.05

0.10

0.15

0.20

0.25

0.30

Info gain HbitsL

Fig. 3. A plot of the information gain (in bits) or accessible in-
formation plotted against the amplitude |α|. The solid black
line is the upper bound on the accessible information per
pulse, obtained using a joint measurement. The dashed black
line shows the accessible information for a individual measure-
ment made one each combined pulse, from Alice and Bob.

the same time, but also in order for the combined pulses to com-
bine and end up in the correct photodetector, A or D. Clearly
some active stabilization and monitoring will be required. One
possibility is that Alice and Bob punctuate the transmission of
their weak pulses with more intense pulses with which Severus
can make small adjustments to the path lengths as suggested
in [26]. There is no doubt, however, that this will be technically
demanding and adds to the complexity of the scheme. Failure
to control the phases adequately will introduce errors into Alice
and Bob’s shared bit strings and these will have to be detected
and corrected but also, treated as though evidence of eavesdrop-
ping with the consequent reduction in key generation rate. It is
encouraging, however, that high visibility interference has been
demonstrated over 550 km albeit under laboratory conditions
[26].

B. Detector efficiency

No photodetector is 100% efficient. This means that Severus will
report fewer measurement results than would be expected on the
basis of the photon statistics of Alice and Bob’s pulses. Ideally,
the probability that Severus will record a photon count at one of

his detectors given a pulse in the coherent state |
√

2αeinπ/2〉 is,
for low photon number, approximately 2|α|2. For a photodetec-
tor with quantum efficiency η, however, this becomes 2η|α|2.

A technologically advanced Severus could replace the pho-
todetectors provided by Alice and Bob with prefect ones (at
least in principle) with quantum efficiency η = 1 and in doing
so exploit this to obtain additional key data. To see how this
works we can compare the operation of the channel by an hon-
est Severus with detectors of efficiency η with a technologically
advanced Severus, able to carry out the two-stage strategy em-
ploying unambiguous state discrimination, as outlined above.
For an honest Severus, the probability that he will make a de-
tection and send to Alice and Bob either A or D, given that they
have chosen the same basis is simply

Phonest = 2η|α|2. (17)

Let us compare this with the operation of a dishonest and tech-
nologically advanced Severus. In this case, the probability that
Severus’s ideal quantum non-demolition measurement shows

the presence of photons in one the A or D channels is, for
small mean photon number, simply 2|α|2. As we have seen,
an unambiguous state discrimination measurement following
the announcement by Alice and Bob of the bases they used is
PD = 1 − P? = 2|α|2. It follows that the probability Severus
learns the key bit is

Pdishonest = 2|α|2 × 2|α|2 = 4|α|4. (18)

By adopting this approach while pretending to be using the
inefficient detectors, Severus can gain an advantage by simply
announcing an outcome preferentially when his unambiguous
measurement clearly identified the state sent. If η < 2|α|2 then
this procedure will provide Severus with the whole key. Clearly
it is highly desirable to provide Severus with high-efficiency
detectors and essential to use pulse energies such that 2|α|2 ≪ η.

We note that a related security issue arose in connection with
the B92 protocol, built on two non-orthogonal signal states [45,
56] and it is possible that some of the counter measures proposed
to deal with this might be adapted to the protocol proposed here.
In particular, it has been shown that B92 is secure if one has
the ability to perform QND measurements that descriminate
between the vacuum, a single photon or multiple photons [57].
Alternatively, one might use an adapted decoy state approach
as illustrated in [58].

C. Fiber losses

The optical fibers used to transport the pulses from Alice and
Bob to Severus introduce losses associated with absorption. If L
is the distance along these fibers between Alice and Bob and κ is
the absorption coefficient, then the coherent states of the pulses
reaching Severus will be |αeinπ/2e−κL/4〉. If a technologically
advanced Severus can replace some or all of the optical fiber
with a very low-loss channel (ideally lossless) then this would
provide him with more light to work with than either Alice
or Bob assume. The principle of his attack follows that in our
discussion of detector efficiency, with η replaced by ηe−κL/2. If
this has to be taken into account then the average energy in Alice
and Bob’s pulses will have to be further reduced such that

2|α|2 ≪ ηe−κL/2. (19)

For large distances this may lead to unacceptably low key rates.
We should note that the issue of transmission losses is com-

mon to all protocols based on weak coherent pulses. Consider,
for example, the original BB84 protocol [1–7]. In this, Alice sends
to Bob weak coherent pulses with the information encoded on
the polarization of the pulse. Let the coherent amplitude of

the pulse prepared by Alice be
√

2α, so that the mean photon
number is the same as in the two pulses prepared by Alice and
Bob in our scheme. The mean number of photons in each pulse
reaching Bob will be 2|α|2e−κL. If Eve can replace the channel
with a lossless one, then she can extract a photon only from those
pulses prepared by Alice that contain more than one photon and
each time this occurs she can store the photon and measure if af-
ter the preparation basis is revealed. The probability for a pulse
to contain more than one photon is approximately 2|α|4. Thus
security against this mode of attack requires that each pulse has
a mean photon number

2|α|2 ≪ e−κL. (20)

Apart from the detector efficiency, this requirement is exponen-
tially more demanding in the losses than the condition given
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in Equation (19). It is possible that measures developed to deal
with this feature of BB84 may be applicable, also, to the sim-
plified scheme presented here. In particular, the decoy method
[4, 59] could be used in a fashion similar to that described in [26–
28]. However, it is not clear that a standard decoy state protocol
would entirely solve this issue, both for the simplified approach
presented here or for more standard twin-field QKD protocols
[26]. In particular, a recent attack on twin-field QKD has been
proposed that exploits channel losses [60]. The robustness of
the protocol to detector inefficiency and fiber losses thus require
further investigation.

5. CONCLUSION

Quantum key distribution depends on a quantum channel to
connect the communicating parties and the security of the pro-
cess depends on the quantum nature of the light sent into the
channel. Twin-field QKD is based on the interference between
pairs of weak coherent pulses combined and measured by a
central party. It is essential that we consider this central party as
an untrusted intermediary, Severus.

The greatest technical challenge in realizing a practical
scheme is probably the control of the relative phases of the pulses
sent to Severus by Alice and Bob, although we note that the same
difficulty has been overcome over short distances for quantum
fingerprinting and quantum digital signatures [32, 33] and the
results produced in the initial report are certainly encouraging
[26]. The development of measurement-device-independent
QKD, with it use of a central server receiving and measuring
light from both Alice and Bob [21, 22] provides further cause for
optimism.

Exploring the strategies open to Severus requires the use of
generalized measurements and we have seen how both mini-
mum error, and unambiguous state discrimination play a role in
these strategies. A feature that is distinct from eavesdropping
strategies in other QKD protocols is Severus’s explicit role in
the formation of the key. It is this that underlies the optimal
two-step strategies in which he first communicates A or D to
Alice and Bob and attempts to recover the key bit later.

The Royal Society (RP150122).
We thank John Jeffers for helpful advice and suggestions.

REFERENCES

1. R. J. Hughes, D. M. Alde, P. Dyer, G. G. Luther, G. L. Morgan and

M. Schauer, “Quantum cryptography,” Contemp. Phys. 36, 149-163

(1995).

2. S. J. D. Phoenix and P. D. Townsend, “Quantum cryptography: how to

beat the code breakers using quantum mechanics,” Contemp. Phys.

36, 165-195 (1995).

3. N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum cryptography,”

Rev. Mod. Phys. 74, 145-195 (2002).

4. G. Van Assche. “Quantum cryptography and secret-key distillation,”

(Cambridge University Press, 2007).

5. S. Loepp and W. K. Wootters, “Protecting information,” (Cambridge

University Press, 2007).

6. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M, Dušek, N. Lütken-

haus and M. Peev, “The security of practical quantum key distribution,”

rev. Mod. Phys. 81, 1301-1350 (2009).

7. S. M. Barnett, “Quantum Information” (Oxford University Press, 2009).

8. P. D. Townsend, J. G. Rarity and P. R. Tapster, “Single photon interfer-

ence in 10km long optical fibre interferometer,” Elect. Lett. 29, 634-635

(1993).

9. P. D. Townsend, J. G. Rarity and P. R. Tapster, “Enhanced single

photon fringe visibility in a 10km-long prototype quantum cryptography

channel,” Elect. Lett. 29, 1291-1293 (1993).

10. A. Muller, J. Breguet and N. Gisin, “Experimental demonstration of

quantum cryptography using polarized photons in optical fibre over

more than 1km,” Europhys. Lett. 23, 383-388 (1993).

11. C. Marand and P. D. Townsend, “Quantum key distribution over dis-

tances as long as 30km,” Opt. Lett. 20, 1695-1697 (1995).

12. B. C. Jacobs and J. D. Franson, “Quantum cryptography in free space,”

Opt. Lett. 21, 1854-1856 (1996).

13. W. T. Butler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E.

Nordholt and C. G. Peterson, “Daylight quantum key distribution,” Phys.

Rev. Lett. 84, 5652-5655 (2000).

14. R. J. Hughes, W. T. Butler, P. G. Kwiat, S. K. lamoreaux, G. L. Morgan, J.

E. Nordholt and C. G. Peterson, “Free-space quantum key distribution

in daylight,” J. Mod. Opt. 47, 549-562 (2000).

15. J. Yin, Y. Cao, Y.-H. Li, J.-G. Ren, S.-K. Liao, L. Zhang, W.-Q. Cai, W.-Y.

Liu, B. Li, H. Dai, M. Li, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu,

Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z. Peng, J.-Yu, Wang and J.-W. Pan,

“Satellite-to-ground entanglement-based quantum key distribution,"

Phys. rev. Lett. 119, 200501 (2017).

16. S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch,

M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang

Y.-M. Huang, L. Dei, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Kiodl, P.

Wang, Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, C.-Y. Lu,

R. Shu, R. Ursin, T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger and

J.-W. Pan, “Satellite-relayed intercontinental quantum network,” Phys.

Rev. Lett. 120, 030501 (2018).

17. H. J. Kimble,“The quantum internet,” Nature 453, 1023-1030 (2008).

18. N. Sangouard, C. Simon, H. de Riedmatten and N. Gisin, “Quantum

repeaters based on atomic ensembles and linear optics,” Rev. Mod.

Phys. 83, 33-80 (2011).

19. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst,

N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik,

J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld,

R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter,

J. Wrachtrup and R. J. Young, “Quantum memories,” Eur. Phys. J. D

58, 1-22 (2010).

20. D. J. Saunders, J. H. D. Munns, T. F. M. Champion, C. Qiu, K. T.

Kaczmarek, E. Poem, P. M. Ledingham, I. A. Walmsley amd J. Nunn,

“Cavity-enhanced room-temperature brodband Raman memory,” Phys.

Rev. Lett. 116, 090501 (2016).

21. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key

distribution,” Phys. Rev. Lett. 108, 130502 (2012).

22. H.-K. Lo, M. Curty and B. Qi, “Measurement-device-independent quan-

tum key distribution,” Phys. rev. Lett. 108, 130503 (2012).

23. S. Parandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braun-

stein, S. Lloyd, T. Geuring, C. S. Jacobsen and U. L. Andersen, Nature

Photon. 9, 397-402 (2015).

24. P. D. Townsend, S. J. D. Phoenix, K. J. Blow and S. M. Barnett, “Design

of quantum cryptography sysetms for passive optical networks,” Elect.

Lett. 30, 1875-1876 (1994).

25. S. J. D. Phoenix, S. M. Barnett, P. D. Townsend and K. J. Blow, “Multi-

user quantum cryptography on optical networks,” J. Mod. Opt. 42,

1155-1163 (1995).

26. M. Lucamarini, Z. L. Yuan, J. F. Dynes and A. J. Shields, “Overcoming

the rate-distance limit of quantum key distribution without quantum

repeaters," Nature 557, 400-403 (2018).

27. M. Curty, K. Azuma and H.-K. Lo, “Simple security proof of twin-field

type quantum key distribution protocol," arXiv:1807.07667 [quant-ph].

28. C. Cui, Z.-Q. Yin, R. Wang, F.-Y. Lu, W. Chen, S. Wang, G.-C. Guo

and Z.-F. Han, “Twin-field quantum key distribution without phase post-

selection," arXiv:1807.02334 [quant-ph].

29. S. Wehner, C. Schaffner and B. M. Terhal, “Cryptography from Noisy

Storage,” 100, 220502 (2008); R. König, S. Wehner and J. Wullschleger,

“Unconditional Security From Noisy Quantum Storage,”. IEEE Transac-

tions on Information Theory, 58, 1962 (2012); C. Schaffner, “Simple

protocols for oblivious transfer and secure identification in the noisy-

quantum-storage model.”, Phys. Rev. A, 82, 032308 (2010).

30. C. Lupo, and S. Lloyd, “Quantum-Locked Key Distribution at Nearly

the Classical Capacity Rate,” Phys. Rev. Lett. 113, 160502 (2014); S.



Research Article Journal of the Optical Society of America B 8

Pironio, L. Masanes, A. Leverrier, and A. Acin, “Security of Device-

Independent Quantum Key Distribution in the Bounded-Quantum-

Storage Model.” Phys. Rev. X, 3, 031007 (2013); N. Hosseinidehaj, N.

Walk, and T. C. Ralph, “Optimal realistic attacks in continuous-variable

quantum key distribution,” arXiv:1811.05562 (2018).

31. J. M. Arrazola and N. Lütkenhaus, “Quantum fingerprinting with coher-

ent states and a constant mean number of photons," Phys. Rev. A 89,

062305 (2014).

32. F. Xu, J. M. Arrazola, K. Wei, P. Palacios-Avila, C. Feng, S. Sajeed, N.

Lütkenhaus and H.K. Lo, “Experimental quantum fingerprinting with

weak coherent pulses," Nature Comms. 6, 8735 (2015).

33. P. J. Clarke, R. J. Collins, V. Dunjko, E. Andersson and G. S. Buller,

“Experimental demonstration of quantum digital signatures using phase-

encoded coherent states of light,” Nature Comms. 3, 1174 (2012).

34. P. Papanastasiou, C. Lupo, C. Weedbrook and S. Pirandola, “Quan-

tum key distribution with phase-encoded coherent states: asymptotic

security analysis in thermal-loss channels,” Phys. Rev. A 98, 012340

(2018).

35. S. M. Barnett, “Minimum-error discrimination between multiply symmet-

ric states," Phys. Rev. A 64, 030303(R) (2001).

36. P. Hausladen and W. K. Wootters, “A ‘pretty good’ measurement for

distinguishing quantum states,” J. Mod. Opt. 41, 2385-2390 (1994).

37. M. Ban, K. Kurokawa, R. Momose and O. Hirota, “Optimum mea-

surements for discrimination among symmetric quantum states and

parameter estimation," Int. J. Theo. Phys. 36, 1269-1287 (1997).

38. A, Chefles, “Quantum state discrimination,” Contemp. Phys. 41, 201-

424 (2000).

39. S. M. Barnett and S. Croke, “Quantum state discrimination,” Adv. Opt.

Photon. 1, 238-278 (2009).

40. I. D. Ivanovic, “How to differentiate between non-orthogonal states,”

Phys. Lett. A 123, 257-259 (1987).

41. D. Dieks, “Overlap and distinguishability of quantum states,” Phys. Lett.

A 126, 303-306 (1988).

42. A. Peres, “How to differentiate bewteen non-orthogonal states,” Phys.

Lett. A 128, 19-19 (1988).

43. N. Lütkenhaus, “Security against eavesdropping in quantum cryptogra-

phy,” Phys. Rev. A 54, 97-111 (1996).

44. M. DiMario, E. Carrasco, R. A. Jackson and F. E. Becerra, “Implementa-

tion of a single-shot receiver for quaternary phase-shift keyed coherent

states,” J. Opt. Soc. Am. B 35, 568-574 (2018).

45. A. Peres, “Memo on non-destructive eavesdropping,” unpublished

(c.1994).

46. A. Chefles and S. M. Barnett, “Optimum unambiguous discrimination

between linearly independent symmetric states,” Phys. Lett. A 250,

223-229 (1998).

47. N. Imoto, H. A. Haus and Y. Yamamoto, “Quantum nondemolition

measurement of the photon number via the optical Kerr effect,” Phys.

Rev. A 32, 2287-2292 (1985).

48. V. B. Braginsky and F. Ya. Khalili, “Quantum measurement,” (Cambridge

University Press, 1992).

49. P. Grangier, J. A. Levenson and J.-P. Poizat, “Quantum non-demolition

measurements in optics,” Nature 396 537-542 (1998).

50. M. O. Scully and M. S. Zubairy, “Quantum optics,” (Cambridge Univer-

sity Press, 1997).
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