
1596 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

Optimized Block-Based Connected Components
Labeling With Decision Trees

Costantino Grana, Member, IEEE, Daniele Borghesani, and Rita Cucchiara, Member, IEEE

Abstract—In this paper, we define a new paradigm for eight-con-
nection labeling, which employes a general approach to improve
neighborhood exploration and minimizes the number of memory
accesses. First, we exploit and extend the decision table formalism
introducing OR-decision tables, in which multiple alternative
actions are managed. An automatic procedure to synthesize the
optimal decision tree from the decision table is used, providing the
most effective conditions evaluation order. Second, we propose a
new scanning technique that moves on a 2 2 pixel grid over the
image, which is optimized by the automatically generated decision
tree. An extensive comparison with the state of art approaches
is proposed, both on synthetic and real datasets. The synthetic
dataset is composed of different sizes and densities random im-
ages, while the real datasets are an artistic image analysis dataset,
a document analysis dataset for text detection and recognition,
and finally a standard resolution dataset for picture segmentation
tasks. The algorithm provides an impressive speedup over the
state of the art algorithms.

Index Terms—Connected components labeling, decision tables,
decision trees, optimization methods.

I. INTRODUCTION

C
ONNECTED component labeling is a fundamental task
in several image processing and computer vision appli-

cations, e.g., for identifying segmented visual objects or image
regions. Thus a fast and efficient algorithm, able to minimize its
impact on image analysis tasks, is undoubtedly very advanta-
geous. Moreover, many applications where labeling is a neces-
sary processing step often have to deal with high resolution im-
ages with thousands of labels: complex solutions for document
analysis, multimedia retrieval, and biomedical image analysis
would benefit the speedup of labeling considerably.

The research efforts in labeling techniques have a very long
story, full of different strategies, improvements, and results.
Some of these particular strategies were focused on taking
advantage of the specific hardware architectures by that time,
in terms of CPU and memory usage, trying to minimize the
number of comparisons, the necessary sorts, the cost of the
label management. Current computer architectures do not
suffer anymore of many resource limitations and have new
capabilities (in terms of memory capacity, CPU power, storage

Manuscript received July 15, 2009; revised January 23, 2010. First published
March 11, 2010; current version published May 14, 2010. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Ying Wu.

The authors are with the Dipartimento di Ingegneria dell’Informazione, Uni-
versità degli Studi di Modena e Reggio Emilia, Emilia 41125, Italy (e-mail:
daniele.borghesani@unimore.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2010.2044963

access speed): modern approaches can take advantage of the
available resources and must only try to reduce memory access
time, the main bottleneck of current computer systems.

Although the first algorithms for connected components la-
beling were proposed more than 50 years ago, only in the last
years new strategies provided significant performance improve-
ments, in particular with the introduction of the Union-Find ap-
proach for label equivalences resolution, array-based data struc-
tures and smarter neighborhood management.

This work aims at marking a new step forward. We propose
a new methodology to consider a generic near-neighborhood
task, as the connected components labeling, resuming the “old”
condition-action paradigm which can be effectively described
as a single entry decision table. Then we propose to further en-
hance this tool introducing the OR-decision tables, which en-
close the possibility to represent more than one (equivalent) ac-
tion for each set of conditions. An automatic procedure to se-
lect the most convenient alternative is proposed to get back a
single-entry decision table, and finally a boolean optimization
algorithm is adopted to automatically produce the optimal de-
cision tree in terms of number of evaluations, thus access costs.
Since this approach is fully automatic by design, it can be safely
extended to each near-neighborhood task with a similar formal-
ization. So, as matter of course, we approached raster-scan la-
beling in a block-wise (instead of pixel-wise) manner: our para-
digm, applied as-it-is without any modifications, granted us sig-
nificant performance improvements of the neighborhood explo-
ration in terms of memory access times, compared to the state
of the art. Moreover, we proved that our algorithm is able to
outperform the state of the art both in high resolution images
with thousands of labels and in standard resolution images with
fewer labels.

Tests have been carried out on four different large datasets:
a synthetic uniform noise dataset at different resolutions and
densities, a digital library of high resolution replicas of an il-
luminated manuscript containing tenths of thousands of labels,
a selection of digitized book pages publicly available on the
Gutenberg Project website [1], and finally the Otsu binarized
version of the MIRFlickr dataset [2]. Each dataset has a dif-
ferent amount of connected components, with peculiar patterns
and at different resolutions, to test the algorithm in different sit-
uations. The OpenCV-compliant code and the random dataset
are available online [3].

This paper is organized as follows. In Section II, we intro-
duce the basic concepts and notation used throughout the paper.
In Section III, we provide a historical overview of the different
approaches to the problem of labeling, comparing their proper-
ties and performances. Section IV proposes an original view to
the problem of labeling by means of decision tables and deci-
sion trees, focusing on reducing the cost of conditions testing,

1057-7149/$26.00 © 2010 IEEE

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1597

then Section V details our 2 2 block neighborhood analysis.
Finally, Section VI demonstrates the effectiveness of our ap-
proach with experiments on a wide variety of images, in com-
parison with other state of the art methods. Concluding remarks
are given in Section VII.

II. CONNECTED COMPONENTS LABELING

In order to clearly present our solution for the labeling

problem, it is convenient to fix the basic notations and defini-

tions related to the concepts of neighborhood and connectivity.

Let us call an image defined over a 2-D rectangular lattice

, and the value at pixel , with . The

four-neighborhood and the eight-neighborhood of a pixel can

be, respectively, defined as

(1)

(2)

In other words, is the set of points with null or unitary city

block distance (norm), while is the set of points with

null or unitary chessboard distance (norm). Thus, two

pixels and are said to be four-neighbors if , which

also implies , and they are said to be eight-neighbors

if , which also implies . Furthermore, it is

clear that , i.e., if two pixels are four-neighbors,

they are also eight-neighbors. We will write to generically

identify a neighborhood when either definition could be used.

Given a subset of , we define the relation of connectivity

between two pixels as

(3)

that is if it is possible to find a sequence of neighboring points

of starting from and leading to [4]. Thus we say that

is connected to if the relation is satisfied. Connectivity

is an equivalence relation, since the properties of reflexivity,

symmetry, and transitivity hold. A subset of , defined by

a common property obtained from the pixel values, is called a

connected component if , i.e., if any two points

of the subset are connected.

Usually, labeling algorithms deal with binary images, i.e., im-

ages where points can only take binary values. Important or

meaningful regions, such as the result of segmentation algo-

rithms, are called foreground , while the other pixels consti-

tute the background . Conventionally we will assign value 1

to foreground pixels and 0 to background pixels, so

(4)

(5)

Clearly, and . Since the property of in-

terest is normally to be part of the foreground with respect to the

background, the common choice in binary images is to choose

eight-connectivity for the foreground regions, and four-connec-

tivity for background regions. This choice better matches our

usual perception of distinct objects, as in Fig. 1. Accordingly to

the Gestalt Theory of perception, our senses operate the closure

property perceiving objects as a whole even if they are loosely

Fig. 1. (a) Examples of binary image depicting text, (b) its labeling considering
four-connectivity, and finally, (c) eight-connectivity.

Fig. 2. Pixel mask���� used to compute the label of pixel �, and to evaluate
possible equivalences in raster scan techniques.

connected as happens in the eight-connectivity case, so that we

can easily read the letters Fig. 1(c).

Labeling algorithms take care of the assignment of a unique

identifier (an integer value, namely label) to every connected

component of the image, in order to give the possibility to refer

to it in the next processing steps. It is common practice to re-

serve label 0 for background pixels. Analogously to the defi-

nition of image , we also define the function ,

which maps a pixel to a label identifying the connected com-

ponent to which it belongs. Depending on the search order and

the region connectivity, during a labeling algorithm execution

two pixels in the same connected component could be assigned

provisionally different non zero labels: this implies that the two

labels must be considered equivalent. Formally, given

. We can define the equivalence class of a

label as

(6)

It can be observed that if then ,

further implying that and .

The majority of images are stored in raster scan order, so the

most common technique for connected components labeling ap-

plies sequential local operations in that order, as first introduced

in [4]. This is classically performed in the following three steps:

1) first image scan (provisional labels assignment and collec-

tion of label equivalences);

2) equivalences resolution (equivalence classes creation);

3) second image scan (final label assignment).

During the first step, . Instead, for each

pixel is evaluated by only looking at the labels

of its already processed neighbors. When using eight-connec-

tivity, these pixels belong to the scanning mask ,

shown in Fig. 2. More in detail, given the pixel with coordi-

nates in the lattice identified as , we can define

.

As mentioned before, during the scanning procedure, the same

connected component can be assigned different (provisional) la-

bels, so all algorithms adopt some mechanism to keep track of

the possible equivalences.

In the second step, all the provisional labels must be segre-

gated into disjoint sets, or disjoint equivalence classes. As soon

1598 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

Fig. 3. Timeline showing the evolution of the labeling algorithms. Algorithms are referenced by first author name.

as an unprocessed equivalence is considered, a “merging” be-

tween classes is needed, that is some operation which allows to

mark as equivalent all labels involved. Most of the recent opti-

mizations introduced in modern connected components labeling

techniques aim at increase the efficiency of this step.

Once the equivalences have been eventually solved, in the

third step a second pass over the image is performed in order

to assign to each foreground pixel the representative label of its

equivalence class. Usually, the class representative is unique and

is set to be the minimum label value in the class.

The disjoint set union problem (step 2) has been widely

studied during the past decades [5]. The problem consists of

maintaining a collection of disjoint sets under the operation of

union. More precisely, the problem is to perform a sequence of

operations of the following two kinds on disjoint sets.

Union : Combine the two sets and into a new

set named .

Find : Return the name of the unique set containing the

element .

The introduction of efficient Union-Find algorithms allows

the inclusion of the equivalences resolution step directly into the

first image scan, removing the need of collecting equivalences.

This constitutes the basic structure of all modern labeling algo-

rithms, which perform online equivalences resolution.

III. EVOLUTION OF LABELING ALGORITHMS: A REVIEW

In this section, we provide a historical view of the different

literature works, discussing how they contributed to the current

state of the art, and how much they are still suitable for modern

architectures. This review does not aim to be comprehensive of

all the proposals, but mainly aims at providing an overview of

the more relevant research trends.

Two wide classes of labeling algorithms will not be covered

by our analysis. The first one is the class of parallel algorithms

which has been extensively studied up to the first half of the

1990’s (see for instance [6]). These algorithms mainly address

the massive data parallelism of 1980’s architectures and do not

readily apply to current common workstations parallelism, such

as instruction level, thread level and so on. The second class

comprehends algorithms defined for hierarchical image repre-

sentations (for example quadtrees [7]) initially studied for ac-

cessing large images stored in secondary memory. We excluded

them because the vast majority of images is currently stored in

sequential fashion, since the large availability of main memory

in modern computer architecture do not limit their full storage

anymore.

In order to summarize this historical review, Fig. 3 proposes

a temporal positioning of the presented algorithms, classified

based on the methodology adopted for the scan over the image.

In the first row we list the approaches based on iterated multiple

scans of the image. The middle row lists the approaches that,

starting from the pioneering work of Rosenfeld [4], exploit two

scans only, while in the third row we list some of the algorithms

that are based on contour tracing techniques, so exploiting a

single scan over the image.

The first work proposed for image labeling dates back to

Rosenfeld et al. in 1966 [4]. This algorithm can be consid-

ered the most classical approach to labeling, and it is based on

a raster scan of the image. It produces an output image con-

taining the labeling result, and it stores the “redundancies” (i.e.,

equivalences) of the labels in an equivalences table with all the

neighborhood references. The redundancies are then solved pro-

cessing the table by repeatedly using an unspecified sorting al-

gorithm and removing redundant entries. Finally the resulting

labels are updated to the output image with a further pass, ex-

ploiting the solved equivalences table. This method requires an

adequate memory allocation for the final image and the equiv-

alence table, and a high computational cost due to the repeated

use of sorting algorithms.

To tackle these limitations, in particular the memory require-

ments, an improvement was proposed by Haralick et al. [8].

This algorithm does not use any equivalences table and no extra

space, by iteratively performing forward and backward raster

scan passes over the output image to solve the equivalences, ex-

ploiting only local neighborhood information. This technique,

although requiring very little memory, clearly turns out to be

computationally very expensive when the size of the binary

image to analyze increases.

Lumia et al. [9] observed that both previous algorithms per-

form poorly on 1983 virtual memory computers because of page

faults, so they proposed a mix of the two approaches trying

to keep the equivalences table as small as possible and saving

memory usage. In this algorithm a forward and a backward scan

are sufficient to complete the labeling, but at the end of each row

the collected equivalences are solved and another pass immedi-

ately updates that row labels. Therefore four passes over the data

are indeed used by this algorithm. The technique to solve label

equivalences was left unspecified.

Schwartz et al. [10] further explored this approach, in order

to avoid the storage of the output image, which would have re-

quired too much memory. Thus they use a sort of run length-

based approach (without naming it as such), which produces a

compact representation of the label equivalences. In this way,

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1599

after a forward and a backward scan, they can output an auxil-

iary structure which can be used to infer a pixel label.

Samet et al. [11] were the first researchers who clearly named

the equivalence resolution problem as the disjoint-set union

problem, about 20 years ago. This is an important achievement,

since a quasi linear solution for this problem is available: the

so-called Union-Find algorithm, from the name of the basic

operations involved. Also this algorithm is executed in two

passes. The first pass creates an intermediate file consisting

of image elements and equivalence classes while the second

pass processes this file in reverse order, and assigns final labels

to each image element. The proposal in [11] was definitely

complex, since it also targeted quad-tree-based image repre-

sentations and it was aimed at not keeping the equivalences in

memory. Then in [12] a general definition of this algorithm for

arbitrary image representations has been proposed in detail.

The Union-Find algorithm is the basis of most of the modern

approaches for label resolution. As a new pixel is computed,

the equivalence label is resolved: while the previous approaches

generally performed first a collection of labels and at the end

the resolution and the Union of equivalence classes, this new

approach guarantees that at each pixel the structure is up to date.

A relevant paper in this evolution is [13] where Di Stefano

et al. proposed an online label resolution algorithm with an

array-based structure to store the label equivalences. The array-

based data structure has the advantage to reduce the memory

required and to speed up the retrieval of elements without the

use of pointer dereferencing. They do not explicitly name their

equivalences resolution algorithm as Union-Find, and their so-

lution requires multiple searches over the array at every Union

operation.

In 2003, Suzuki et al. [14] resumed Haralick’s approach of

the multiscan strategy over the image, but with the inclusion

of a small equivalence array: they provided a linear-time algo-

rithm that in most cases requires four passes. The label reso-

lution is performed exploiting array-based data structures, and

each foreground pixel takes the minimum class of the neigh-

boring foreground pixels classes. An important addition to this

proposal is provided in an appendix in the form of a lookup table

(LUT) of all possible neighborhoods, which allows to reduce

computational times and costs by avoiding unnecessary Union

operations.

In 2005, Wu et al. in [15] defined an interesting optimization

to reduce the number of labels, in order to increase the perfor-

mance of Suzuki’s approach. They exploited a decision tree to

minimize the number of neighboring pixels to be visited in order

to evaluate the label of the current pixel. In a eight-connected

components neighborhood, among all the neighboring pixels,

often only one of them is sufficient to determine the label of

the current pixel. This work in particular inspired our proposal

to define a systematic way to minimize the comparisons, thus

the necessary Union and Find operations. In the same paper, the

authors proposed another strategy to improve the Union-Find

algorithm of Fiorio et al. [16] exploiting an array-based data

structure. For each equivalence array a path compression is per-

formed to compute the root, in order to directly keep the min-

imum equivalent label within each equivalence array, without

requiring an additional stage as in Fiorio’s technique.

In 2007, He (in collaboration with Suzuki) proposed another

fast approach in the form of a two scan algorithm [17]. The data

structure used to manage the label resolution is implemented

using three arrays in order to link the sets of equivalent classes

without the use of pointers. Adopting this data structure, two

algorithms have then been proposed: in [18] a run-based first

scan is employed, while in [19] a decision tree (similarly to [15])

optimizes the neighborhood exploration to apply merging only

when needed.

Another group of researchers has taken a radically different

approach to this problem, starting from Clemens [20], which in

his Ph.D. thesis was one of the first to provide a link between the

concept of connected components labeling and contour tracing.

He described an hexagon tracing routine (implemented in hard-

ware) able to extract the outer contours of a character, remove

the interior with a mathematical morphology approach, and fur-

ther tracing the inner edges. Strictly speaking, his proposal is

not a labeling algorithm, but provides the basis later employed

for this task.

In 1976, Morrin [21] developed a binary image compression

technique, which is composed by raster scanning and contour

following technique. As soon as the raster scan encounters a

boundary the algorithm starts to follow it, peeling off one layer

of pixels after another until the object is exhausted. Raster scan

is then resumed. Only the first boundary trace is stored as a con-

tour. While effective and requiring a minimum amount of aux-

iliary memory, the multiple contour following steps are rather

time consuming.

Cederberg [22] in 1979 proposed a raster scan approach,

which is able to produce a set of partial contours, max points,

and min points. These local information allow to later re-

construct the complete contour. In his work a solution for

producing an ordered tree of contour inclusions is also pro-

vided, and this could be employed to assign different labels to

the various connected components, but no detail is given on the

computational complexity for this specific task.

In 1980, Kruse [23] proposed a fast stack-based algorithm

for segmentation of connected components in binary images.

In his terminology, segmentation is a sort of superset of la-

beling, in which not only every foreground connected compo-

nent is given a different label, but also every background con-

nected component is distinguished. Segmentation may be ob-

viously used to obtain labeling if needed. His approach again

uses a raster scan plus contour following routine. After encoun-

tering the first object pixel, the algorithm starts following the

contour, and during this stage it tags the pixels having a back-

ground pixel on the right, then the raster scan is resumed. When

a labeled pixel is encountered, its label is pushed on a stack (we

are “entering” a connected component). Later, when we meet

a tagged pixel, we know that we are “exiting” that component

and we can pop the stack. The combined use of stack informa-

tion and tagging allows to completely reconstruct the original

image components.

Danielsson [24] in 1981 further improved this approach

avoiding the need of both the stack and the tagging, by substi-

tuting the tag with a special temporary “0” label assigned to the

first background pixel, immediately to the right of a contour

point, which would have been tagged by Kruse’s algorithm.

1600 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

Both these algorithms have been extended to the nonbinary

case [25], [26].

Later the most relevant work on this branch of research is

given by Chang et al. [27] in 2003. Their approach strongly

resembles Danielsson’s and it is based on a single pass over

the image exploiting contour tracing. Their technique clock-

wise tags all pixels in both the contour and the immediately

external background in a single operation. When during the

raster scan an untagged boundary is found, a counter clockwise

contour tracing is performed for internal contours. This tech-

nique proved to be very fast, also because the filling of the con-

nected components (label propagation after contour following)

is cache-friendly for images stored in a raster scan order. More-

over the algorithm can naturally output the connected compo-

nents contours, if needed.

As far as we write, the algorithm presented in 2008 by He et

al. [19] represents the state of the art for connected components

analysis. This proposal is based on a raster scan over the image

and it embraces the Union-Find approach for equivalences reso-

lution, performed online as soon as the equivalences are found.

There are two key novelties in this algorithm.

The first novelty is the fast technique implemented to perform

the Union-Find, described in [17]. It is based on a set of three

arrays in order to link the sets of equivalent classes without the

use of pointers. An rl table array contains information about the

representative label of each class, a array contains the

index of the next equivalent label, thus providing a linked list

structure, finally a array contains the index of the last

label of the list. This array-based structure turns out to be very

effective, combining the performances of arrays with the bene-

fits of a list-like structure in order to solve equivalences without

scanning an entire array of equivalences. The second novelty is

the optimization performed for the neighborhood computation.

Accessing in a clever way the labels of the neighboring pixels,

the number of resolve operations (the name used in [19] for the

union operation) to perform are minimized, avoiding to solve

equivalences already solved by previous steps of the algorithm.

In this way, authors significantly improved performance, since

these actions are the most time consuming computations within

the algorithm. In this paper, we adopted the same efficient data

structure for label resolution, but we mainly focus on the neigh-

borhood computation proposing a whole new way to speed up

the process.

IV. DECISION TABLES AND DECISION TREES

The procedure of collecting labels and solving equivalences

may be described by a command execution metaphor: the cur-

rent and neighboring pixels provide a binary command word,

interpreting foreground pixels as 1s and background pixels as

0s. A different action must be taken based on the command

received.

We may identify four different types of actions: no action is

performed if the current pixel does not belong to the foreground,

a new label is created when the neighborhood is only composed

of background pixels, an assign action gives the current pixel

the label of a neighbor when no conflict occurs (either only one

pixel is foreground or all pixels share the same label), and fi-

Fig. 4. Decision table example, showing a hypothetical troubleshooting check-
list for solving printing failures. Note that we use a vertical layout, which is more
suitable when dealing with a large number of conditions.

nally a merge action is performed to solve an equivalence be-

tween two or more classes and a representative is assigned to

the current pixel. The relation between the commands and the

corresponding actions may be conveniently described by means

of a decision table [28].

A decision table is a tabular form that presents a set of condi-

tions and their corresponding actions. A decision table is divided

into four quadrants: an example is provided in Fig. 4. The state-

ment section reports a set of conditions which must be tested

and a list of actions to perform. Each combination of condition

entries (condition outcomes) is paired to an action entry. In the

action entries, a column is marked, for example with a “1”, to

specify whether the corresponding action is to be performed. If

the conditions outcomes may only be true or false, the table is

called limited entry decision table [29]. These will be the tables

type used throughout this manuscript.

More formally, we call the list of conditions. If

we call the system status (the lights on a printer, the service

quality, the current pixel neighborhood, etc.,), a condition is

a function of which returns a boolean value. The list of actions

is identified by , where an action is a procedure or

operation which can be executed. Every row in the entry section

is called a rule , which is a pair of Boolean vectors of

condition outcomes and action entries , denoting with the

rules index, with the conditions index, and with the actions

index. A decision table may thus be described as

(7)

The straightforward interpretation of a decision table is that

the actions corresponding to true entries should be per-

formed if the outcome is obtained when testing the condi-

tions. Formally, given the status , we write

(8)

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1601

Fig. 5. Initial decision table providing a different action for every pixel config-
uration. To produce a more compact visualization, we reduce redundant logic
by means of the indifference condition “�,” whose values do not affect the de-
cision and always result in the same action. In the condition section the pixel
letter means that we have to test if that pixel belongs to the foreground. In the
action section, the “+” operator is used to indicate a merge between the labels of
pixels indicated, while the “=” means that pixel � is assigned any of the labels
of the right operands.

so

(9)

The execute operation applied to a set of actions , as

in (9), classically requires the execution of all the actions in the

set, that is all actions marked with 1s in the action entries vector:

we call this behavior an AND-decision table. For our problem

we define a different meaning for this operation. We define an

OR-decision table, in which any of the actions in the set may be

performed in order to satisfy the corresponding condition.

Note that this situation does not imply that the actions are re-

dundant, in the sense that two or more actions are always equiv-

alent. In fact, the result of doing any action in the execution set

is the same only when a particular condition is verified.

A. Modeling Raster Scan Labeling With Decision Tables

In order to describe the behavior of a labeling algorithm with

a decision table, we need to define the conditions to be checked

and the corresponding actions to take. For this problem, as we

already mentioned, the conditions are given by the fact that the

current pixel and the four neighboring ones in mask

belong to the foreground. The conditions outcomes are given by

all possible combinations of five Boolean variables, leading to a

decision table with 32 rules. The actions belong to four classes:

no action, new label, assign, and merge. Fig. 5 shows a basic

decision table with these conditions and actions.

The action entries are obtained applying the following

considerations:

1) no action if ;

2) new label if ;

3) if ;

4) otherwise.

Using these considerations the equivalences are solved and

a representative (provisional) label is associated to the current

pixel . The process then moves ahead to the next pixel and the

next neighborhood accordingly.

Fig. 6. Resulting OR-decision table for labeling. Bold 1’s are selected with the
procedure described in Section IV-C.

First, merge operations have a higher computational cost

with respect to an assign, so we should reduce at the min-

imum the number of these operations in order to improve

the performance of labeling. Similarly a merge between two

labels is computationally cheaper than a merge between three

labels. Thus, exploiting the OR-decision table formalism, we

can substitute whenever is possible all merge operations with

equivalent assign operations. In the matter of facts, merging

an equivalence class with itself returns the same class again:

for example when and , the merge

operation has no effect and assigning a representative label

from the merge outcome or any of or has the same

result. So in these cases all the action entries of ,

of and of should

be set to 1.

The problem with this reasoning is of course that we would

need to add a condition for checking if , compli-

cating enormously the decision process, since every condition

doubles the number of rules. But, is this condition really nec-

essary? No, because we can further notice that if we exploit an

algorithm with online equivalences resolution, and cannot

have different labels. Since they are eight-connected, if both of

them are foreground, during the analysis of a label equivalent

to would have been assigned to . This allows us to al-

ways remove merge operations between eight-connected pixels,

substituting them with assignments of the involved pixels labels.

Extending the same considerations throughout the whole rule

set, we obtain an effective “compression” of the table, as shown

in Fig. 6. To obtain the table, when an operation could be sub-

stituted with a cheaper one, the more costly was removed from

the table. Most of the merge operations are avoided, obtaining

an OR-decision table with multiple alternatives between assign

operations, and only in a single case between merge operations.

Moreover the reduction leads also to the exclusion of many un-

necessary actions (for example, the merge between and

without affecting the algorithm outcome.

Summarizing, connected components labeling based on

OR-decision tables means to retrieve the condition outcome

given the current status and select one action

1602 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

among the alternatives corresponding to , with

. More details regarding the heuristic adopted to

select the final single action will be discussed in Section IV-C.

B. Reducing the Cost of Conditions Testing: Decision Trees

The definition of decision tables requires all conditions

to be tested in order to select the corresponding

action to be executed. Testing the conditions of the decision

table has a cost which is related to the number of conditions

and to the computational cost of each test. If we assume that

each test has the same cost, which is true in our application,

the only parameter which can be optimized is the number of

conditions to be tested.

There are a number of cases in which not all conditions must

be tested in order to perform the corresponding action. For ex-

ample in the first row of the decision table of Fig. 6, if

all the other conditions are useless, since the outcome will al-

ways be no action. This straightforward observation suggests

that the order with which the conditions are verified impacts on

the number of tests required, thus on the total cost of testing.

What we are now looking for is the optimal ordering of con-

ditions tests, which effectively produces a sequence of tests, de-

pending on the outcome of previous tests. This is well repre-

sented by an optimal decision tree: the sequence requiring the

minimum number of tests corresponds to the decision tree with

the minimum number of nodes. The transformation of the deci-

sion table in an optimal decision tree has been deeply studied in

the past and we use the dynamic programming technique pro-

posed by Schumacher [30], which guarantees to obtain an op-

timal solution.

One of the basic concepts involved in the creation of a sim-

plified tree from a decision table is that if two branches lead to

the same action the condition from which they originate may be

removed. With a binary notation, if both the condition outcomes

10110 and 11110 require the execution of action 4, we can write

that 1–110 requires the execution of action 4, thus removing the

need of testing condition 2, with the use of a dash implies that

both 0 or 1 may be substituted in that condition, representing

the concept of indifference. The saving given by the removal of

a test condition is called gain in the algorithm, and we conven-

tionally set it to 1.

The conversion of a decision table (with conditions) to a

decision tree can be interpreted as the partitioning of an -di-

mensional hypercube (-cube in short) where the vertexes cor-

respond to the possible rules. Including the concept of in-

differences, a -cube corresponds to a set of rules and can be

specified as an -vector of dashes and 0’s and 1’s.

For example, 01-0- is the 2-cube consisting of the four rules

. In summary, Schumacher’s al-

gorithm proceeds in steps as follows.

• Step 0: All 0-cubes, that is all rules, are associated to a

single corresponding action and a starting gain of 0; this

means that if we need to evaluate the complete set of con-

ditions, we do not get any computational saving.

• Step : All -cubes are enumerated. Every -cube may be

produced by the merge of two -cubes in different

ways (for example 01-0- may be produced by the merge

of or of . For each

of these ways of producing the -cube (denoted as in the

following formulas) we compute the corresponding gain

as

(10)

where and are the gains of the two -cubes

in configuration , and and are the corresponding

actions to be executed. is the Kronecker function that

provides a unitary gain if the two actions are the same or

no gain otherwise, modeling the fact that if the actions are

the same we “gain” the opportunity to save a test. The gain

assigned to the -cubes is the maximum of all , which

means that we choose to test the condition allowing the

maximum saving.

Analogously we have to assign an action to the -cube. This

may be a real action if all rules of the -cube are associated

to the same action, otherwise it is 0, a conventional way of

expressing the fact that we need to branch to choose which

action to perform. In formulas

(11)

where may be chosen arbitrarily, since the result is always

the same.

The algorithm continues to execute Step until , which

effectively produces a single vector of dashes. The tree may be

constructed by recursively tracing back through the merges at

each -cube. A leaf is reached if a -cube has an action .

C. Action Selection in OR-Decision Tables

To produce an optimal tree, the described algorithm [30] re-

quires a decision table where every rule leads to a single action,

that we will call single action decision table. This requirement

forces us to convert the previously described decision tables into

this representation. Starting from an AND-decision table, a single

action decision table is straightforward to obtain: for every dis-

tinct row of action entries we can define a complex action in

the form of the set of actions . The

execution of requires the execution of all actions in . Now

we can associate to every condition outcome an integer index,

which points to the corresponding complex action.

Algorithm 1 Greedy selection of the actions to perform in

OR-decision tables

1: Define actions indexes set

2: while do

3: Find most frequent

action

4: for Remove equivalent actions

5: if then

6:

7: end if

8: end for

9: This action has been done

10: end while

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1603

Instead in OR-decision tables only one of the different alterna-

tives provided in must be selected. While an arbitrary selec-

tion does not change the result of the algorithm, the optimal

tree derived from a decision table implementing these arbitrary

choices may be different. How do we select the best combina-

tion of actions, in order to minimize the final decision tree? Ex-

haustive search quickly becomes infeasible when the number

of conditions increases, thus we propose an heuristic greedy

procedure.

In accordance with the issues of boolean optimization in com-

binatorial logic, the rationale behind our approach is that the

more rules require the execution of the same action, the more

likely it will be to find large -cubes covering that action. We

propose a greedy approach: the number of occurrences of each

action entry is counted; iteratively the most common one is se-

lected, and for each rule where this entry is present all the other

entries are removed, until no more changes are required. In case

two actions have the same number of entries, we arbitrarily

chose the one with lower index. The resulting table after ap-

plying this process is shown in Fig. 6, with bold faces 1’s. The

following Algorithm 1 formalizes the procedure.

The described approach does not always lead to an optimal se-

lection, but the result is often optimal or nearly optimal, based

on many different experiments. This is particularly true when

the distribution of the actions frequencies is strongly non uni-

form. For example, from the original OR-decision table in Fig. 6,

it is possible to derive 3456 different decision tables, by se-

lecting all permutations of equivalent actions. Using Algorithm

1 only two actions are chosen arbitrarily, leading to four possible

equivalent decision trees. All of these have the same number of

nodes and are optimal (in this case we were able to test all of

the 3456 possibilities). One of these trees is the one described

by He et al. in [19].

In his proposal, He et al. summarize the alternatives in a truth

table, then employ a Karnaugh map to provide a synthesis of

the logic function under which the resolve operation may be

avoided. This logic function requires all nearby pixels, so his

approach is to manually derive an optimal ordering on the con-

ditions to be checked, giving a short circuit exit in some cases.

In conclusion, we provided an algorithmic solution to the op-

timal neighborhood exploration problem, which is equivalent

to the state of the art. Nevertheless, with respect to previous

approaches, our solution has an important added value: it can

be naturally extended to larger problems, without requiring any

empirical workaround. In the following, we introduce a novel

approach to neighborhood exploration, which takes advantage

of the described technique.

V. 2 2 BLOCK NEIGHBORHOOD ANALYSIS

The availability of the previously described technique allows

us to enlarge our neighborhood exploration window, with the

aim to further speed up the connected components labeling

process. As previously reported in [31], the key idea of our

proposal starts from two very straightforward observations: 1)

when using eight-connection, the pixels of a 2 2 square are

all connected to each other and 2) a 2 2 square is the largest

set of pixels in which this property holds. This implies that all

foreground pixels in a the block will share the same label at

Fig. 7. Mask used for 2� 2 block-based labeling is shown. (a) Gives the iden-
tifiers of the single pixels employed in the algorithm (a, f, l, and q are not used),
while (b) provides the blocks identifiers.

the end of the computation. For this reason, we propose to scan

the image moving on a 2 2 pixel grid applying, instead of

the classical neighborhood of Fig. 2, an extended mask of five

2 2 blocks, as shown in Fig. 7.

Scanning the image with this larger grain has the advantage

to allow the labeling of four pixels at the same time. The number

of provisional labels created during the first scan is roughly re-

duced by a factor of four, and we need to apply much less unions,

since labels equivalence is implicitly solved within the blocks.

Moreover a single label is stored for the whole block.

On the other hand, the neighborhood to consider now is

much larger. The standard procedure (that is to consider all the

pixels in the neighborhood) greatly increases computational

time due to the number of memory accesses and merge oper-

ations required. Likewise a manual approach for an effective

neighborhood exploration is unfeasible since we must deal with

much more than five pixels for each labeling operation, and

the amount of combinations to explore is enormous. But the

general procedure described in the previous section is designed

to provide an effective way to face the optimization in this

situation.

The new scanning procedure may require also the same pixel

to be checked multiple times, but the impact of this problem is

greatly reduced by our optimized pixel access scheme. Finally, a

second scan requires to access again the original image to check

which pixels in the block require their label to be set. Overall

the advantages will be shown to largely overcome the additional

work required in the following stage.

Employing all pixels in the new mask of Fig. 7, we would

need to work with 20 pixels: for this reason, the decision table

would have conditions, and possible configu-

rations of condition outcomes. However, we can notice that not

all those pixels are necessary to compute labeling information.

In particular pixels do not provide eight-connection be-

tween blocks of the mask and can be ignored. We thus need to

deal with pixels (thus conditions), for a total amount of

possible combinations.

Since manually specifying the action entries for all 65 536

combinations is impractical, we choose not to directly deal with

the condition outcomes but abstracting the relations between

blocks. For this reason, given two blocks and , we introduce

the concept of block connectivity , defined as

(12)

Block connectivities provide sufficient information to perform

labeling: the connectivity between two blocks implies that all

1604 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

foreground pixels of the two blocks share the same label. For the

sake of clarity, we will call pixel based decision table (PBDT)

the decision table defined over the 16 pixels conditions, and

block based decision table (BBDT) the one defined over the

block neighborhoods.

Similarly to the scanning mask in Fig. 2, we call each block

with the corresponding uppercase letter:

, as shown in Fig. 7. Block corresponds to

the current block under analysis. Specifically, we define the

following conditions:

: ;

: ;

: ;

: .

Further analysis evidences that blocks have some interde-

pendencies: to completely describe the pixels connectivities,

we must consider not only the connectivity relation between

the current block and each individual neighboring block,

but also all the connectivity relation between the blocks. In

this new perspective we define the following four additional

conditions:

: ;

: ;

: ;

: .

A last condition which needs to be considered is whether block

contains any foreground pixel:

: .

We have eventually defined nine Boolean conditions, with a

total amount of 512 combinations, which allow us to convey the

same knowledge of the PBDT, with an affordable action entries

definition.

For each condition outcome in the BBDT, we can count the

amount of its occurrences in the pixel-based one.

denotes a condition outcome that turns out to be impossible

in practice, so we can remove the corresponding rule from the

BBDT. Only 192 condition outcomes are effectively possible.

To construct the BBDT we start considering that whenever

condition is not satisfied no action should be performed,

and when , and a new

label should be created. When instead only one of

, or is verified, we must perform

an assign operation. What is important here is that this does not

imply exactly the assignment of the neighboring block label

to : we can assign the label of any block directly

or indirectly connected to , i.e., the neighbor or any of its

neighbors. For example, in Fig. 17, the condition outcomes

, that is the case in which and

but , we can arbitrarily choose to perform the action

or , which translates to the

action entry shown.

The same approach may be applied to all other combinations,

explicitly solving the connected component problem between

the blocks. The labels of the connected components are then

merged if any of the composing blocks is a neighbor of . As

Fig. 8. Example of a complex merging situation: (a) the binary image and
(b) the two sets of neighboring blocks with a common label.

before, the labels to be assigned or merged may be arbitrarily

chosen from the any block of every connected component.

An example will clarify the concept. Fig. 8(a) depicts a pos-

sible pixel configuration in which two disjoint sets of labels

are connected to . In particular and and

. Moreover and . The corresponding

condition outcomes in Fig. 17 is , which leads to

four possible choices for the merging

These choices are obtained selecting one block from the com-

ponent with label in Fig. 8(b) and the other from the compo-

nent with label . The output of merge will be different, but the

equivalence class will be the same.

By applying these considerations to all 192 condition out-

comes, the OR-decision table in Fig. 17 is obtained. In order

to convert this table to a decision tree we need to produce a

single entry decision table by selecting a single nonzero ac-

tion entry for every rule. Since is the probability to observe

in the PBDT a pixel configuration corresponding to the condi-

tion outcome , we slightly modify the greedy technique of

Section IV-C in order to directly apply it to the BBDT. The line

3 of Algorithm 1 thus becomes

(13)

In this way, a greater importance is assigned to the actions that

have a higher impact in the decision table, and are likely to pro-

vide a more effective grouping of 1s.

After the application of Algorithm 1 to the BBDT, we can

produce the 65 536 rules PBDT, which contains a single action

to perform given any possible pixel configuration. The Schu-

macher’s algorithm is finally applied to this decision table, pro-

ducing an optimal tree containing 210 nodes, with 211 leaves

sparse over 14 levels. The code implementing the sequence of

these conditions was automatically generated and an OpenCV

compliant version is available online [3].

VI. RESULTS

Connected components labeling is a well-defined problem

that always yields to the same result: whatever algorithm has

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1605

Fig. 9. Performance of the algorithms scaling the size of the image to label,
expressed in milliseconds. The reported value is the average time obtained con-
sidering all images at all densities with that size.

to outcome the same number of labeled connected components;

differences over the corresponding label values can be standard-

ized in a second time with a common enumeration procedure.

The way in which the image is scanned and the neighborhood

is evaluated, and the type of data structures exploited for equiv-

alences resolution produce a number of approaches that distin-

guish themselves only in terms of computational time required.

In this work, we state that our proposal (block-based decision

tree labeling, BBDT in short), provides the most efficient way to

scan the images and evaluate the connectivities, and in this sec-

tion we are going to show several results in different application

fields.

In order to propose a valuable comparison with the state of

the art, we used several large and very dissimilar datasets. We

will examine the more important and effective representative of

each general approach for labeling analyzed in the historical

overview proposed in Section III. In particular, we suggest a

comparison between the following approaches.

• Suzuki et al. [14] as more recent representative of the Har-

alick’s multiscan approach, in particular with the LUT op-

timization proposed to speedup the process.

• Di Stefano et al. [13] as a straightforward Union-Find-

based approach with no particular optimizations included

except for the array-based data structures.

• Chang et al. [27] as more recent and faster representative

of the contour tracing-based techniques.

• He et al. [19] as the more recent thus effective representa-

tive of the classical two scans approach, which has been

proposed in 2008 as the fastest labeling algorithm pre-

sented so far in literature.

Fig. 10. Performance of the algorithms varying the label densities, expressed
in milliseconds. The resolution used for this chart was 4096� 4096.

Fig. 11. Sample collection of random images, in this case shown at 64� 64
resolution, to which a variation on the threshold is performed in order to produce
different densities of labels.

For each of these algorithms, the minimum time over five runs

is kept in order to remove possible outliers due to other task

performed by the operating system. All algorithms of course

produced the same number of labels and the same labeling on all

images. The tests have been performed on a Intel Core 2 Duo

E6420 processor, using a single core for the processing. The

code is written in C++ and compiled on Windows using Visual

Studio 2008.

A. Synthetic Dataset

Analogously to many recent works [19], [18], we produced

a dataset of black and white random noise square images with

nine different foreground densities, from a low resolution of

32 32 pixels to a maximum resolution of 4096 4096 pixels.

Unlike past works on this subject, we also generated high resolu-

tion images to prove the scalability and the effectiveness of our

approach when the number of labels gets really high. For every

combination of size and density, 10 images were produced for

a total of 720 images. The dataset is available at [3].

The resulting dataset gives us the possibility to evaluate the

performances of our approach and the other selected algorithms,

both in terms of scalability on the number of pixels and in terms

of scalability on the number of labels (density). An example of

density variation is provided in Fig. 11.

1606 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

Fig. 12. Connected components labeling results on the Bible, the Gutenberg Project and MIRFlickr datasets, expressed in milliseconds.

Fig. 13. Sample collection of Otsu binarized version of the three real dataset.

Fig. 9 shows how the different algorithms behave with images

with increasing sizes. The reported value is the average time

obtained considering all images at all densities with that size. A

linear dependency of time with respect to the number of pixels is

highlighted for all algorithms except for Di Stefano’s approach

which is fast only when the number of pixels is relatively low.

Our approach proved to be scalable and able to outperform all

the others in each experiment with the increasing image size.

The second experiment proposed in Fig. 10 highlights the be-

havior of the algorithms varying the label densities. In this repre-

sentation, the worst case is reached around the middle densities,

because the number of labels and merges between equivalence

classes is higher. Lower densities present more sparse labels and

consequently less merges, while higher densities present highly

connected components with simpler merges. Our approach evi-

dences the best performance among all the densities. Note that

Di Stefano’s algorithms produces as expected the worst perfor-

mance in the middle densities.

B. Real Datasets

To test the effective performance of the algorithms, we

also used three datasets composed of real world images, corre-

sponding to three possible applications of labeling (see Fig. 13).

1) Borso d’Este Holy Bible: This bible is one of the most im-

portant illuminated manuscript of the Italian Renaissance. We

are involved in a project of text detection and image segmen-

tation aimed at detecting the most valuable pictures within the

bible pages, and the connected components labeling is one of the

processing steps. In particular, the dataset exploited in this work

Fig. 14. Pattern specifically designed to stress all the algorithms based on con-
tour tracing technique.

is composed by the Otsu-binarized1 versions of 615 images of

high resolution (3840 2886) pages, with Gothic text, pictures,

and floral decorations. This dataset gives us the possibility to

test the connected components labeling capabilities with very

complex patterns at different sizes, with an average resolution

of 10.4 megapixels and 35 359 labels, providing a challenging

dataset which heavily stresses the algorithms.

2) Gutenberg Project: This dataset is composed by 6105

high resolution scans of books taken from the Gutenberg Project

[1], with an average amount of 1.3 millions of pixels to analyze

and 2568 components to label. This is a typical application of

document analysis and character recognition where labeling is

the necessary starting step. The connected components identi-

fies words, sub-words or characters.

3) MIRflickr: This dataset is composed by the Otsu-binarized

version of the MIRflickr dataset [2], publicly available under a

Creative Commons License, containing 25 000 standard resolu-

tion images taken by Flickr. These images are smaller (the av-

erage resolution is 0.17 megapixels), there are fewer connected

components (495 on average) and generally less complex, so the

labeling is easier to accomplish.

1The Otsu thresholding has been chosen only as an automatic and consistent
way to produce a binarized version the image.

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1607

Fig. 15. Direct comparison between the two He’s approaches (He07 and DT in the charts) and the two main evolutions of our approach, first with only block-based
optimization (BB), then with also the decision tree optimization (BBDT).

Performance tests in terms of the average time required to

label an image are shown in Fig. 12. As mentioned before, we

executed five runs keeping the minimum time sampled, then we

compute the average of the minimum times for all images within

each dataset. These tests show how our approach can outperform

all the other proposals on every dataset, starting from high reso-

lution images with thousands of labels down to standard images

with few labels. The speed-up with respect to the second best al-

gorithm is between 23% and 29%. It is also interesting to notice

that, in presence of a limited number of labels, He’s approach is

not always the second best.

The contour tracing algorithm proposed by Chang rises up as

a good competitor on each dataset. Anyway the performances

of this approach can be seriously compromised with particu-

larly elaborate patterns, whose contours are difficult to follow.

An example is provided in Fig. 14. This pattern, connected in

this manner, creates a very complex single connected compo-

nent that forces the contour tracing to follow the entire image

in the most time consuming way. We build two artificial images

using this pattern, with a challenging resolution of 7000 5000;

in particular, while the first image contains a pattern size suit-

able for the typical mask of two-scans labeling approaches, the

second image used a larger one. The results show that our ap-

proach still outperforms all the others, employing respectively

233.75 and 294.55 ms to complete the labeling. Overall, in the

first image our algorithm is 38.9% faster than He’s algorithm

and 73.6% faster than Chang’s, while in the second image we

perform 40.5% faster than best than He’s and 71% faster than

Chang’s.

C. Incremental Contributions

In order to provide a deeper understanding of the relative con-

tributions (in terms of performance improvements) of the two

main novelties of this work, we also include a comparison of

our final algorithm (BBDT in the charts) against the following

approaches.

• The first He’s approach (He07), which highlights the ben-

efits of the Union-Find algorithm for labels resolution im-

plemented with the set of three arrays as referred in [17].

• He’s state-of-the-art approach as proposed in [18], that is

the previous one with the addition of the decision tree op-

timization (DT).

Fig. 16. Analysis of memory accesses required by the connected components
computation. The numbers are given in millions of accesses.

• The block-based approach as proposed in [31] (BB), with

the aforementioned algorithm for label resolution.

As reported in Fig. 15, we can highlight how the use of the

block-based technique, applied side-by-side to the labels reso-

lution technique in [17], guarantees competitive performances

in comparison with the first He’s approach itself (performance

gain of 24.2% with the challenging Bible dataset). Later intro-

ducing the decision tree optimization, both He’s and our ap-

proaches get a significant performance improvement. It is nev-

ertheless interesting to notice that while the state-of-the-art ap-

proach in [18] gets a 28.4% performance boost using decision

trees (DT versus He07), our approach (despite being far more

complex in terms of tree structure) gets an higher performance

boost (34.7%) over previous algorithm without decision trees

(BBDT versus BB).

D. Memory Access Requirements

To understand the reason of the good performance of our pro-

posal, we analyzed the memory accesses of each algorithm. In

particular, we focused on a comparison with the two more repre-

sentative algorithms in terms of memory access and thus speed,

that is He’s and Chang’s approaches.

We performed these tests on the Bible dataset, and computed

the average number of accesses to the label image (i.e., the

image containing the provisional and then the final labels for

the connected components), the average number of accesses to

the binary image to be labeled and finally the sum of the two

contributions. As shown in Fig. 16, the reason of the great per-

formances of our approach is mainly due to a significantly lower

number of accesses to memory. In particular, due to the opti-

mization in the neighborhood computation and the 2 2 scan-

ning approach, we can access much less frequently to the label

image in order to extract the label of a particular block (thus

group of pixels), maintaining quite as much as He’s accesses

1608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 6, JUNE 2010

Fig. 17. Complete BBDT obtained using block connectivities. It is possible to note that we produced an OR-decision table which cannot be optimized by brute
force.

to the original binary image. Globally, we can save 22% of ac-

cesses with respect to He’s approach and the 27% of accesses

with respect to Chang’s approach.

VII. CONCLUSION

In this paper, we presented a novel approach to connected
components analysis able to improve the performance of all ex-

GRANA et al.: OPTIMIZED BLOCK-BASED CONNECTED COMPONENTS LABELING WITH DECISION TREES 1609

isting approaches between 23% and 29% on average. Firstly,
an effective modeling of the problem by means of decision ta-
bles is proposed, with the introduction of the OR-decision table
to formalize the situation in which multiple alternative actions
could be performed. A greedy procedure to reduce this table
into a single entry decision table is proposed, and finally an au-
tomatic decision tree synthesis is implemented to obtain the op-
timal arrangement of conditions to verify. In order to speed up
the neighborhood computation, a neighborhood scanning opti-
mization is performed enlarging the scanning mask of pixels to
2 2 blocks. The proposed modeling methodology is particu-
larly effective even in this case where the number of combina-
tion is very high. The experimental results evidence how our ap-
proach is faster than all other techniques proposed in literature.

REFERENCES

[1] Project Gutenberg Literary Archive Foundation, Salt Lake City, UT,
“Project Gutenberg,” 2010. [Online]. Available: http://www.guten-
berg.org

[2] M. J. Huiskes and M. S. Lew, “The MIR flickr retrieval evaluation,”
presented at the ACM Int. Conf. Multimedia Inf. Retrieval (MIR), New
York, 2008 [Online]. Available: http://press.liacs.nl/mirflickr/

[3] University of Modena and Reggio Emilia, Modena, Italy, “Labeling
Image Lab: an impressively fast labeling routine for Open,” 2010. [On-
line]. Available: http://imagelab.ing.unimore.it/imagelab/labeling.asp

[4] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture
processing,” J. ACM, vol. 13, no. 4, pp. 471–494, 1966.

[5] Z. Galil and G. F. Italiano, “Data structures and algorithms for dis-
joint set union problems,” ACM Comput. Surveys, vol. 23, no. 3, pp.
319–344, 1991.

[6] Y. Han and R. A. Wagner, “An efficient and fast parallel-connected
component algorithm,” J. ACM, vol. 37, no. 3, pp. 626–642, 1990.

[7] H. Samet, “Connected component labeling using quadtrees,” J. ACM,
vol. 28, no. 3, pp. 487–501, 1981.

[8] R. Haralick, “Some neighborhood operations,” in Real Time Parallel

Computing: Image Analysis. New York: Plenum Press, 1981, pp.
11–35.

[9] R. Lumia, L. G. Shapiro, and O. A. Zuniga, “A new connected com-
ponents algorithm for virtual memory computers,” Comput. Vision,

Graph., Image Process., vol. 22, no. 2, pp. 287–300, 1983.
[10] J. Schwartz, M. Sharjr, and A. Siegel, “An efficient algorithm for

finding connected components in a binary image,” New York Univ.,
Robotics Research Tech. Rep. 38, 1985.

[11] H. Samet and M. Tamminen, “An improved approach to connected
component labeling of images,” in Proc. Int. Conf. Comput. Vision Pat-

tern Recog., 1986, pp. 312–318.
[12] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach

to connected-component labeling for arbitrary image representations,”
J. ACM, vol. 39, no. 2, pp. 253–280, 1992.

[13] L. Di Stefano and A. Bulgarelli, “A simple and efficient connected
components labeling algorithm,” in Proc. Int. Conf. Image Anal.

Process., 1999, pp. 322–327.
[14] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component

labeling based on sequential local operations,” Comput. Vision Image

Understand., vol. 89, pp. 1–23, 2003.
[15] K. Wu, E. Otoo, and A. Shoshani, “Optimizing connected component

labeling algorithms,” in Proc. SPIE Conf. Med. Imag., 2005, vol. 5747,
pp. 1965–1976.

[16] C. Fiorio and J. Gustedt, “Two linear time union-find strategies for
image processing,” Theoretical Comput. Sci., vol. 154, pp. 165–181,
1996.

[17] L. He, Y. Chao, and K. Suzuki, “A linear-time two-scan labeling algo-
rithm,” in Proc. Int. Conf. Image Process., 2007, vol. 5, pp. 241–244.

[18] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling algo-
rithm,” IEEE Trans. Image Process., vol. 17, no. 5, pp. 749–756, May
2008.

[19] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recog., vol. 42, no. 9, pp. 1977–1987, Sep. 2008.

[20] J. K. Clemens, “Optical character recognition for reading machine
applications,” Ph.D. dissertation, Massachusetts Inst. Technol., Cam-
bridge, Sep. 1965.

[21] T. H. Morrin, “Chain-link compression of arbitrary black-white im-
ages,” Comput. Graph. Image Process., vol. 5, no. 2, pp. 172–189,
1976.

[22] R. L. T. Cederberg, “Chain-link coding and segmentation for raster
scan devices,” Comput. Graph. Image Process., vol. 10, no. 3, pp.
224–234, 1979.

[23] B. Kruse, “A fast algorithm for segmentation of connected components
in binary images,” in Proc. 1st Scandinavian Conf. Image Anal., Lund,
Sweden, Jan. 1980.

[24] P.-E. Danielsson, “An improvement of Kruse’s segmentation algo-
rithm,” Comput. Graph. Image Process., vol. 17, no. 4, pp. 394–396,
1981.

[25] B. Kruse, “A fast stack-based algorithm for region extraction in binary
and nonbinary images,” in Signal Process.; Theories Appl., M. Kunt
and F. de Coulon, Eds. Amsterdam, The Netherlands: North-Hol-
land, Jan. 1980, pp. 169–173.

[26] P.-E. Danielsson, “An improved segmentation and coding algorithm
for binary and nonbinary images,” IBM J. Res. Developm., vol. 26, no.
6, pp. 698–707, 1982.

[27] F. Chang and C. Chen, “A component-labeling algorithm using contour
tracing technique,” in Proc. Int. Conf. Document Anal. Recog., 2003,
pp. 741–745.

[28] L. J. Schutte, “Survey of decision tables as a problem statement tech-
nique,” Comput. Sci. Dept., Purdue Univ., CSD-TR 80, 1973.

[29] L. T. Reinwald and R. M. Soland, “Conversion of limited-entry de-
cision tables to optimal computer programs i: Minimum average pro-
cessing time,” J. ACM, vol. 13, no. 3, pp. 339–358, 1966.

[30] H. Schumacher and K. C. Sevcik, “The synthetic approach to decision
table conversion,” Commun. ACM, vol. 19, no. 6, pp. 343–351, 1976.

[31] C. Grana, D. Borghesani, and R. Cucchiara, “Fast block based con-
nected components labeling,” in Proc. IEEE Int. Conf. Image Process.,
Cairo, Egypt, Nov. 2009.

Costantino Grana (M’07) received the Ph.D. degree
in information engineering from the University of
Modena and Reggio Emilia, Italy, in 2004.

He is currently an Assistant Professor with the Uni-
versity of Modena. His research interests comprise
multimedia information analysis, focusing on image
and video concept detection, and historical document
analysis.

Daniele Borghesani received the M.S. degree in
computer science from the University of Modena
and Reggio Emilia, Italy, in 2006, where he is
currently pursuing the Ph.D. degree in information
engineering.

His current research regards document analysis
and content-based image retrieval, focused on
Renaissance illuminated manuscripts.

Rita Cucchiara (M’98) received the Laurea degree
in electronic engineering and the Ph.D. degree
in computer engineering from the University of
Bologna, Italy, in 1989 and 1993, respectively.

She is a Full Professor with the University of
Modena and Reggio Emilia, Emilia, Italy, where
she heads the ImageLab Laboratory. Her current
research interests include pattern recognition and
computer vision for video surveillance and multi-
media.

