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Optimized collusion prevention for online exams during social
distancing
Mengzhou Li1, Lei Luo2, Sujoy Sikdar3, Navid Ibtehaj Nizam 1, Shan Gao1, Hongming Shan 1, Melanie Kruger4, Uwe Kruger 1,
Hisham Mohamed1, Lirong Xia2 and Ge Wang 1✉

Online education is important in the COVID-19 pandemic, but online exam at individual homes invites students to cheat in various
ways, especially collusion. While physical proctoring is impossible during social distancing, online proctoring is costly, compromises
privacy, and can lead to prevailing collusion. Here we develop an optimization-based anti-collusion approach for distanced online
testing (DOT) by minimizing the collusion gain, which can be coupled with other techniques for cheating prevention. With prior
knowledge of student competences, our DOT technology optimizes sequences of questions and assigns them to students in
synchronized time slots, reducing the collusion gain by 2–3 orders of magnitude relative to the conventional exam in which
students receive their common questions simultaneously. Our DOT theory allows control of the collusion gain to a sufficiently low
level. Our recent final exam in the DOT format has been successful, as evidenced by statistical tests and a post-exam survey.
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INTRODUCTION
Testing is essential for measuring and improving educational
outcomes1, but a major concern is that many students tend to
cheat2,3. As suggested in a study between 2002 and 2015 by Dr.
McCabe and the International Center for Academic Integrity4,
cheating among students was found astonishingly prevailing, e.g.,
43%, 68%, and 95% of graduate students, undergraduate
students, and high school students, respectively, admitted to
cheating in assignments or exams.
Recently, the cheating problem has become much worse. In

response to the COVID-19 pandemic, online learning has become
necessary and exclusive in most educational systems5,6. The hard
landing from the conventional education environment to the
“emergency” online learning mode7 creates various challenges,
such as limited access to resources8, lack of experience/skills9,10,
concerns over the quality and efficacy of education6,11, as well as
exacerbation of educational inequality12. As far as the assessment
of learning outcomes is concerned, social distancing works
directly against proctoring13 since online testing performed at
individual homes simply creates more chances to cheat14 and
increases temptation to do so15–17. Traditionally, physical invigila-
tion is routinely used to suppress cheating. How to proctor online
exams presents a new challenge during social distancing6, as
conventional approaches do not take the pandemic into
account14. Rigorous online proctoring methods with cameras
and associated technologies have been designed and used to
prevent cheating18 during the pandemic to effectively improve
learning outcomes19,20. Professional services exist for online
proctoring, such as TOP HAT21 (used by over 400 institutions),
Examity22 and ProctortrackTM23 (proctored over two million
exams). They monitor students through webcams and screen
videos, enforce a full screen mode, and disable any content
sharing. Some proctoring companies sign contracts with schools,
while others charge students instead; as examples, ProctorU
charges students $15 per test, while Proctorio charges a $100

lifetime fee. In addition to the costs associated with the use of
third-party proctoring software, there are concerns over privacy24–26.
What aggravates the problem of cheating is the “digital arms
race”, i.e., “finding new ways of cheating requires new ways to
prevent it”27.
Despite the benefit of rigorous proctoring, there is also a valid

concern that using “such draconian measures” bluntly signals to
our students the lack of our trust in their honesty14. Hence, in
contrast to control the remote assessment environment, the
OpenProctor system has been developed recently which extracts
the writing style from learner-generated data and utilizes it as a
behavioral biometrics to validate the authorship of students with
machine learning28. This method demonstrated a mean accuracy
of 93% significantly higher than the human performance baseline
of 12%29. Unfortunately, the utility of this type of method is
limited to text plagiarism and does not apply to multiple-choice
and calculation questions, which are necessary and essential in
majority science and engineering courses15. As mentioned in
ref. 30, due to the highly objective nature of “math or fact-based”
courses, it is more challenging and frequently questionable to
maintain academic integrity without proctoring compared to the
subjective “writing-based” courses. In addition, this writing-style
recognition method mainly focuses on the post-exam stage,
which may not be enough since it does not reduce the practicality
of cheating and is not optimal as questioned by Fuller et al.14. (“Is
Faculty’s role to merely catch and punish cheating students or is it
to support students through their studies so that ultimately, they
can be confident that by working hard they will be successful
without having to resort to deception?”)
Besides such fancy techniques, traditional online learning

experience also offers tips and recommendations without the
use of cameras, which can be integrated to form a practical
solution; e.g., sequencing questions randomly, presenting ques-
tions in limited time slots31, and drawing assessment questions
from a large pool26,32.

1Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA. 2Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA.
3Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA. 4Department of Mechanical Aerospace and Nuclear Engineering,
Rensselaer Polytechnic Institute, Troy, NY, USA. ✉email: Wangg6@rpi.edu

www.nature.com/npjscilearn

Published in partnership with The University of Queensland

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-020-00083-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-020-00083-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-020-00083-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-020-00083-3&domain=pdf
http://orcid.org/0000-0002-8266-5254
http://orcid.org/0000-0002-8266-5254
http://orcid.org/0000-0002-8266-5254
http://orcid.org/0000-0002-8266-5254
http://orcid.org/0000-0002-8266-5254
http://orcid.org/0000-0002-0604-3197
http://orcid.org/0000-0002-0604-3197
http://orcid.org/0000-0002-0604-3197
http://orcid.org/0000-0002-0604-3197
http://orcid.org/0000-0002-0604-3197
http://orcid.org/0000-0001-5664-9499
http://orcid.org/0000-0001-5664-9499
http://orcid.org/0000-0001-5664-9499
http://orcid.org/0000-0001-5664-9499
http://orcid.org/0000-0001-5664-9499
http://orcid.org/0000-0002-2656-7705
http://orcid.org/0000-0002-2656-7705
http://orcid.org/0000-0002-2656-7705
http://orcid.org/0000-0002-2656-7705
http://orcid.org/0000-0002-2656-7705
https://doi.org/10.1038/s41539-020-00083-3
mailto:Wangg6@rpi.edu
www.nature.com/npjscilearn


However, the transition from an emergency ad hoc remote
assessment7 to a valid conventional online assessment requires
extensive efforts from educators; e.g., creating a large question
pool. The pool size often needs to be huge to make the overlap of
questions negligible between tests, e.g., a 300-question pool is
needed for 30-question tests to control the average number of
questions in common for two students below 3 (square of the
number of questions in a test divided by the pool size)15,26. Such a
pool is so large that is impractical to be updated frequently, which
makes it vulnerable to cheating as evidenced by the rapid growth
of exam questions being posted online during the pandemic.
Here we address the above limitations by providing an

optimization-based cost-effective and privacy-conserving solution
to help educators perform a valid remote assessment with
minimal efforts. Specifically, the following three features of our
approach are underlined: First, our method is optimization-based
for simultaneously minimizing the productivity and practicality of
cheating. The two models of the decision-making process behind
cheating are well known: ref. 33 proposed a model involving the
two competing processes of rational cost–benefit and effects on
“self-concept", and ref. 34 developed a model based on the fraud
triangle of incentive/pressure, rationalization, and opportunity.
Our approach substantially increases the cost–benefit ratio and
decreases the opportunity, and hence directly guides students to
realize that it is more productive to finish the exam independently
than to cheat. This curb on collusion is independent of proctoring,
and respectful to privacy. Second, our method minimizes the
question pool size; e.g., a pool of size 1.5 times the number of
questions in a test is found to be sufficient to suppress collusion
gain to an insignificant level with our method. The substantially
smaller required pool size allows educators to devise their own
questions relatively easily that require intellectual efforts than
factual recalls that can be simply done via Google search14, and
update the questions frequently31 rather than directly rely on
published question banks without paraphrasing32 which has a
high risk of inviting academic dishonest35–37. Clearly, our frame-
work encourages better compliance with best practices because
of smaller question banks. Third, our method mainly focuses on
thwarting collusion, which is believed to be significantly more
popular than other types of cheating behaviors in online exams as
found in a survey study based on self-reports17 and validated
later by direct measurements38, showing that about 80% cheating
events belonged to collusion, 42% showed copying from Internet
website, and 21% fell into both categories. Other types of
misconduct, such as accessing unauthorized sources and
contract cheating, may also exist which can be addressed by
incorporating readily available techniques; e.g., design open books
questions39–41, profile based authentication42, challenging ques-
tions43,44, and Web video conference proctoring.
In the following, we will focus on the key elements of our

approach although the aforementioned complementary strategies
are also important to complement our approach into an
integrated practical solution to the anti-cheating problem. Our
method is mainly designed for “math or fact-based” courses and
compatible with most types of questions, and here is illustrated
with a multiple-choice question (MCQ)-based model, since MCQs
are popular, reliable, valid, and cost-effective45,46. Our main results
are a theorem giving an upper bound of the collusion gain for our
exam design, scheduling algorithms for anti-collusion in our
distanced online testing (DOT) platform, and our DOT exam
results. Using our DOT technology, the collusion gain can be
practically and theoretically made insignificant, especially by
incorporating prior knowledge of the students’ competences.
The collusion gain refers to the percentage score increased by a
student through collusion, and competence represents the
student’s individual probability by which he/she can correctly
answer questions in an exam. Our main idea is to optimally deliver
questions to students as individual-specific sequences in a

synchronized fashion so that even if students freely cheat among
themselves they still cannot significantly improve their scores
(Fig. 1).

RESULTS
Theorem bounding the collusion gain
As a first order of approximation, our analysis is focused on an
idealized DOT scenario, but our analysis can be extended to more
general settings without theoretical or technical difficulties. In our
initial DOT setting, M1 MCQs from a pool of M2 MCQs (for example,
with equal difficulty and credits for convenience, which can be
readily relaxed for a more accurate analysis) are provided to a class
of N students, and there are Q choices per question with one
being correct. All N students are presented with their own set of
M1 questions displayed one by one in generally different
sequences, and are asked to take the exam simultaneously. Each
student must answer each question in a predetermined time slot,
and cannot revisit previous questions. This mode of delivering
questions is exemplified in Fig. 1a.
Under practical assumptions on students’ collusion behaviors

(“Methods”), we propose a grouping-based anti-collusion scheme
(GAS) to control the collusion gain below any desired level with
prior knowledge on students’ competences. The competence of a
student can be easily estimated based on his/her grade point
average (GPA) (rough surrogates), from earlier quizzes (better
indicators), and/or with a first portion of the exam (achievable via
dynamic programming). Generally speaking, our grouping-based
approach consists of the following three elements: (1) Grouping:
Students with similar competences are grouped together to
receive the same sequence of questions in an exam; (2)
Optimization: The number of questions that can be copied
between groups is aggressively reduced (even to zero coupled
with the next element); (3) Augmentation: The pool of questions
can be enlarged to have the number of questions greater than M1.
The anti-collusion exam design can efficiently reduce the

collusion gain mainly due to following reasons (Fig. 1b–d): (1)
The maximum question leakage from top to down of C
consecutive cyclic sequences can be reduced to zero if M2−
M1+ 1 ≥ C (Supplementary Fig. 1); (2) by grouping, the equiva-
lent number of students (the number of groups) can be
significantly reduced to just use the C sequences; (3) students
with similar competences have small probabilities to cheat
within their group due to the fact that they can only obtain tiny
collusion gains, although the intra-group collusion is facilitated
because of the same sequence shared. With this procedure, by
making C=M2−M1+ 1 sufficiently large we can control the
maximum individual collusion gain as well as the average
collusion gain below any desired level.
Mathematically, we present the following theorem that shows

the upper bound of the collusion gain associated with our GAS
(Supplementary Note 1).

Theorem 1. Given sequences of M1 questions from the bank of M2

MCQs with one and only one correct choice out of Q choices for each
question, the maximum individual collusion gain can be controlled
to be no larger than (1− 1/Q)/(M2−M1+ 1) using the GAS.

This theorem is practically powerful; e.g., according to this
upper bound, the maximum individual collusion gain can be
theoretically controlled below 3.6% for any large-size class with a
reasonable test setting of M2= 60,M1= 40,Q= 4.

Metrics characterizing the final exam design
Our aforementioned theorem provides an upper bound for
collusion control, but it is usually not optimal since it does not
fully take advantage of the knowledge of students’ competences.

M. Li et al.

2

npj Science of Learning (2021)     5 Published in partnership with The University of Queensland

1
2
3
4
5
6
7
8
9
0
()
:,;



Based on the results of GAS, discrete optimization algorithms
(“Methods”) can be used to further reduce the collusion gain for
the best DOT anti-collusion performance. For this purpose, the
objective function needs to be defined as follows.
Let us introduce the competence profile of students Y= {yi∈ [1/

Q, 1]∣ i= 1, 2,…, N} in a non-increasing order, and a colluding
matrix P ¼ ðpj;iÞi;j2½N�, where pj,i represents the probability of

student i colluding from student j if i ≠ j, and pi,i the probability
that student i does not cheat in the exam. P is upper triangular.
Given an assignment A= (ai,…, aN) which is a vector whose
elements are sequences of questions (SQs), where ai is the SQ
assigned to student i, the average collusion gain g is the total
collusion gain normalized with respect to the class size and the
number of questions in an exam, and defined as

gðAÞ ¼ sum fZðAÞ � P � Dg
NM1

¼
XN
i¼1

Xi�1

j¼1

zj;iðAÞ
NM1

pj;iðyj � yiÞ (1)

where sum{⋅} stands for the operation of summing up all
elements, ∘ denotes the Hadamard (element-wise) multiplication,
the competence difference matrix D is defined as ðdj;iÞi;j2½N� where
dj;i ¼ maxðyj � yi ; 0Þ, and the positional matrixZ ¼ ðzj;iÞi;j2½N� is

determined by A where zj,i represents the number of questions
that student i can cheat from student j if j ≠ i, and the special
case zi,i is defined as M1. If all students use the same SQ as in the
conventional exam scenario without collusion prevention, the

average collusion gain becomes

g0 ¼
sum fP � Dg

N
¼ 1

N

XN
i¼1

Xi�1

j¼1

pj;iðyj � yiÞ: (2)

We developed our DOT platform (Supplementary Note 6)
incorporating the anti-collusion techniques as well as other
complementary techniques for online exams, and applied this
platform for the final exam of an undergraduate imaging course
on 28 April 2020. Totally, 78 out of 85 undergraduate students
took the exam from two separately taught classes. The exam
consisted of M1= 40 questions that were assigned to each
student and scheduled from a pool of M2= 60 questions by
applying our greedy algorithms with a heuristically constructed
colluding matrix P, detailed in the “Methods” section and
Supplementary Note 4. During the exam, the students were
asked to join a WebEx session for the instructors to address any
questions or technical difficulties (in principle, our DOT technology
can be combined with sounds online proctoring for an enhanced
performance at an additional cost). The competency information
of the students was estimated based on their performance in the
midterm exam conducted before the class was taught online.
The optimized assignments led to orders of magnitude reduction

in the collusion gain. Quantitatively, the average collusion gain was
reduced to 0.0073% from 19.23% (a reduction by three orders of
magnitude from the conventional scenario), with the worst-case
collusion gain (gW, the average collusion gain when every student
manages to achieve his/her maximum possible collusion gain; see
“Methods”) and the maximum individual collusion gain (gMI, the
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Fig. 1 Anti-collusion mechanisms with and without prior knowledge of students’ competencies. Assume that collusion happens between
two students and one can get answers from the other on questions that the other has already answered or is working on (see “Methods”).
a The circulation-based scheme is illustrated with a simple example, in which six students take an exam consisting of six questions (M1=M2=
6) provided to each student one by one, and each question must be finished within the allocated time slot shown as the vertical box. If there
is no information of students' competences, this scheme helps reduce potential bidirectional cheating among students to ~50% of question;
b the collusion chance can be made even less if cheating students are fed with more new questions (M1= 4,M2= 6); c if prior information on
students' competences is available, the naive assignment in b still yields significant collusion gains; but d, using our grouping-based anti-
collusion scheme, the maximum and average collusion gains can be sharply reduced to ~10% and ~3%, respectively. The scheme first divides
the competence range into M2−M1+ 1 intervals, then groups the students into these intervals properly, finally assigns these groups of
students with the corresponding number of consecutive cyclic sequences, respectively. The maximum collusion gain with this scheme is
bounded by our Theorem 1.
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maximum of the maximum possible collusion gains over all
students; see “Methods”) being 0.91% and 6.88%, respectively.
Specifically, we performed numerical simulation to estimate the
average collusion gain with optimized assignments under the
following conditions: (1) accurate Y and random P, the estimated Y
was assumed to be faithful and the colluding probabilities pk,i (k < i, i
− 1 in total) assumed to follow the (i− 1)-variate Dirichlet
distribution with a concentration parameter of α= 10; (2) noisy Y
and random P, the estimated Y was assumed to contain a Gaussian
noise (μ= 0, σ= 0.05). We calculated the average collusion gains g
as well as the worst-case metrics gW and gMI with the same
assignments (the conventional scenario) and with our optimized
assignments over 500 instances for each condition. The resultant
means and standard deviations demonstrate the accuracy and
robustness of our DOT technology (Table 1a).
To further illustrate the performance of our DOT technology, in

the setting of the above practical case we performed numerical
simulations assuming random Gaussian-distributed competence
profiles with μ0= (1+ 1/Q)/2 and σ0= (1− 1/Q)/6, truncated to be
meaningful [1/Q, 1] and heuristically constructed P from Y. We
calculated the collusion gains without collusion prevention g0 and
with optimized prevention g over 500 instances for each
configuration. Our results are summarized in Table 1b. It can be
observed in this case that the mean of the average collusion gain
can be reduced by three orders of magnitude with tiny standard
deviations, suggesting that our DOT designs are not only effective
but also stable in controlling the collusion gain. We further
changed the number of students to those of four typical class sizes
from N= 20 to N= 500 as shown in Table 1c, and the mean of the
average collusion gain remains at a very small level which implies
the practical applicability of our method in dealing with a wide
range of class sizes.

Analyses on the final exam
We first look at the final exam results, which are summarized in
several histograms. The normalized distribution (zero mean, unit
std.) of the 78 students’ scores out of 40 questions is, as expected,

an approximate “bell-shaped curve” of a normal distribution
(Fig. 2a). As a first comparison by eye, we contrast the distribution
of the final exam results with that of the midterm exam, which
serves as a control group here. For a more quantitative analysis, we
applied standard tests to the results of the midterm and final exams
to ascertain whether there are any anomalies embedded within the
two sets. First, we found that both sample sets were drawn from
normal distributions by applying the Anderson–Darling test47 (p=
0.1570 and p= 0.3004 for the midterm and final samples,
respectively). Next, we confirmed that both sample sets were
drawn from the same normal distribution using the two-sample
Kolmogorov–Smirnov test48 (p= 0.1574). As an additional test, we
applied the two-sample t-test for equal variance49 and confirmed
that the two distributions have the same mean (p= 0.7997). In
summary, the evidence does not support the claim that there are
differences in the distributions of the midterm and the final exam,
demonstrating consistent evaluative results of the same population
between the conventional physical proctoring method (the
midterm) and our DOT format (the final).
Quantitatively, the maximum gain of the students through

collusion is theoretically controlled by design to be below 7%
(Fig. 2b). This compares favorably to a maximum gain of 75%
without the use of our optimized anti-collusion technique. It is
important to note that over 90% of students may have a
maximum collusion gain of below 2%, which underpins the
effectiveness of our technique. One feature of this technique is
that not all student shared the same question sets, which helped
to reduce the colluding chances between students. In terms of the
number of recipients of each MCQ, only 19 questions were
assigned to all students, and 20 questions were assigned to fewer
than 40 students each (Fig. 2c).
Following from the preceding discussion, utilizing our anti-

collusion exam design the controlled collusion gain was made
very small but is still not zero. It is therefore imperative to test
whether significant collusion did occur. To do so, we examined the
following two aspects: (i) what is the frequency with which pairs of
students gave the same incorrect answer and (ii) is the average
number of correct answers to the first 20 questions comparable to

Table 1. Collusion gain estimation and optimization in the case of N= 85, M2= 60, M1= 40, and Q= 4.

Condition Anti-collusion Mean (standard seviation)

g gW gMI

(a) Collusion gain estimation of the optimized assignment (500 instances)a

Accurate Y, random P None 0.14497 (0.00139) 0.30901 (–) 0.75000 (–)

Optimized 0.00044 (0.00005) 0.00908 (–) 0.06878 (–)

Noisy Y, random P None 0.14884 (0.00450) 0.30837 (0.00708) 0.73524 (0.02107)

Optimized 0.00190 (0.00052) 0.06275 (0.00775) 0.20404 (0.02941)

(b) Optimized performance over 500 random Y profilesb

Random Y, heuristic P None 0.16278 (0.01499) 0.30384 (0.04153) 0.60838 (0.06344)

Optimized 0.00007 (0.00002) 0.00903 (0.00158) 0.04970 (0.01650)

(c) Optimizations of different class sizes over 500 random Y profiles with heuristic Pc

N= 20, M2= 30, M1= 20 Optimized 0.00013 (0.00007) 0.00657 (0.00223) 0.03704 (0.01812)

N= 40, M2= 60, M1= 40 Optimized 0.00003 (0.00002) 0.00433 (0.00130) 0.02686 (0.01356)

N= 100, M2= 60, M1= 40 Optimized 0.00008 (0.00002) 0.00936 (0.00139) 0.04847 (0.01777)

N= 500, M2= 60, M1= 40 Optimized 0.00011 (0.00001) 0.01400 (0.00086) 0.07886 (0.01629)

aRobustness of the optimized assignments: The collusion gain of assignments optimized with the heuristic P in which the colluding probability is proportional
to the competence difference between two students (see “Methods”) is reproduced in two kinds of perturbations: noisy Y (Gaussian noise (μ= 0, σ= 0.05) on
accurate Y) and P variations (random colluding probabilities following the Dirichlet distribution). bStability of the optimized performance: The optimization
results over 500 random Y profiles, each of which was randomly generated according to a Gaussian distribution (μ0= (1+ 1/Q)/2 and σ0= (1− 1/Q)/6 on the
support [1/Q, 1]). cOptimization performances on small-size classes (N= 20, M2= 30, M1= 20, and Q= 4), middle-small-size classes (N= 40, M2= 60, M1= 40,
and Q= 4), middle-size classes (N= 100, M2= 60, M1= 40, and Q= 4), and large-size classes (N= 500, M2= 60, M1= 40, and Q= 4). Bold indicates the better
result.
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that of the last 20 questions. The rationale for aspect (i) is that the
events of student pairs giving the same incorrect answers are
random and independent if no collusion occurred. The basic
premise of our test is the probability that two students gave the
same answer for an MCQ with Q= 4 choices is 1/4, assuming that
students’ answers are independent. Conversely, this probability
would be significantly higher if significant collusion occurred. The
rationale for aspect (ii) is that the difference between the
probabilities of correctly giving answers to the first and last 20
questions should also be random and on average zero if there was
no collusion. On the other hand, given that collusion is more likely
to occur during the latter half of the exam, we would expect an
increase in the number of correct answers for the last 20
questions.
For aspect (i), we formulated and tested the hypothesis that

significant collusion occurred using a set of paired tests50. The
results of the hypothesis for testing aspect (i) confirm that the
corresponding values for each false discovery rate is below t
he significance of 0.05 (Fig. 2d). Therefore, the empirical evidence
does not support that there was an abnormal number of student
pairs who consistently gave identical incorrect answers (Supple-
mentary Note 5). To address aspect (ii), we formulated and tested
the hypothesis that the difference in means of correctly giving
answers to the first and the last 20 questions is zero. Based on the
78 students’ answers to their questions in the exam, we utilized
the non-parametric Wilcoxon signed-rank test for paired observa-
tions49, which yielded a p value of 0.3133. Based on the evidence,
we cannot reject the hypothesis that the average numbers of
correct answers to the first and the last 20 questions are identical.
In other words, the difference is not statistically significant
between the average numbers of correct answers to the first 20
questions and the last 20 ones.

Feedback from the post-exam survey
The post-exam survey indicates that the online exam using the
DOT platform was well received by a majority of students (Fig. 3).
More precisely, 76.9% of students (Fig. 3a) rated the duration for
answering questions to be 3 or above out of a 5 point scale
ranging from Very Insufficient (1) to Very Sufficient (5), and 80.8%
students (Fig. 3b) rated the convenience of using the platform’s
interface to be 3 or above on a 5 point scale ranging from Very
Inconvenient (1) to Very Convenient (5). The survey also secured
feedback concerning the degree of difficulty for the exam
questions. Close to 70% of students voted “reasonable”, which is
the third choice (Fig. 3c). When excluding the extremes “easy”, or
choice number 1, and “difficult”, or choice number 5, 96.1% of
students found the questions within the acceptable range
(between 2 and 4). The survey finally inquired how similar the
final online exam for the students was compared to other online
exams they took. The students’ opinions on how familiar the other
online exams were with the look-and-feel of our online exam,
showing that around 59% of students answered 3 or above out of
a 5 point scale ranging from Very Different (1) to No Different (5)
(Fig. 3d). The remaining 41% of students indicated that the format
of the final exam is different to other exam settings by selecting
options (1) and (2).

DISCUSSIONS
Although our method is only illustrated with MCQs, our method is
actually compatible with most types of questions (except the easy-
writing-type tests) since it is the optimized SQs that inhibit the
collusion gain. Not to mention that many other types of questions
can be easily adapted to the MCQ form. It is also worth noting that
our method is compatible with other advanced techniques such
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as “learning analytics”29, which can be integrated into our method
for text plagiarism detection in writing-based constructed-
response questions.
In the aforementioned post-exam survey, we have received

constructive comments from students on how to improve our DOT-
format exam design. Specifically, we plan to make the DOT platform
more flexible so that questions can have different weights/credits/
time-lengths, and both the number of choices and the number of
correct choices can be adjusted. Another potential adjustment is to
use a soft moving window approach instead of presenting students
with one question at a time. Within the soft moving window, a
student can work on a small number of questions and amend the
answers as needed within the moving time window. It is important
to note that such extensions can be similarly analyzed in the
discrete optimization framework and do not present any technical
difficulty. When prior knowledge of students’ competences is
unavailable, an initial phase of an online exam can be devoted to
estimate the students’ competence levels. This is then followed by
scheduling SQs for the remainder of the exam based on the
estimated competence. Finally, the block chain technology51 is
highly relevant for keeping the database of questions confidential
(accessible to faculty only) and managing students’ individual
educational credits systematically. These and other improvements
can be readily implemented in our optimization framework.
In a recent study52, it was shown that COVID-19 could be

persistent for years, since thousands of mutations have happened
(for example, a SARS-CoV-2 protein had 56% of its genes mutated),
explaining many false-negative tests. Over the past several days, the
United States experienced a reemerging first or second wave of
newly diagnosed cases producing a significantly larger number of
infections. Hence, social distancing and equivalent policies due to
COVID-19 may remain in place in the near future or even over a
longer period of time53. A positive response to the pandemic is to
let online learning and testing practice enter the mainstream of
educational activities or at least it can be assumed to play a
significant role while it is being continuously improved. Thanks to
the internet and computing technologies, high-quality DOT systems
are now feasible solutions in offering comparable exam outcomes
that are cost-effective and do not invade students’ privacy.

In conclusion, we have proposed a new type of anti-collusion
approach for online exams, which relies on discrete optimization
in the permutation space and prior knowledge on students’
competences to suppress collusion behaviors among students.
Together with other complementary methods, the general
cheating prevention purpose can be achieved. Also, we have
reported our DOT platform and its successful application. It has
been theoretically, numerically, and experimentally demonstrated
that using the DOT technology allows reducing the cheating
benefit cost-effectively so that accurate and reliable exams are
feasible during social distancing and beyond.

METHODS
Assumptions on collusion behaviors
The assumptions on collusion behaviors are as follows:

1. Cheating is unidirectional. If two students A and B collaborate on
collusion, and A has better competence than B, then only B will copy
answers from A which is termed as B cheating from A and A
helping B.

2. B can get the answer from A if A has already answered the question
before B or they are working on the problem at the same time. Thus,
different relative SQs (we denote ‘sequence of questions’ as SQ for
short) for A and B will influence the number of questions that B can
copy from A.

3. Each student can only cheat from no more than one student (“A
helping B” model); Given the limited duration of the time slot for
each question and stress involved during an exam, B is expected to
rely on typically only one helper A. Put differently, as B requires
assistance, he/she is not good at judging which answer is correct
when different inputs come from multiple helpers (unless B uses a
voting strategy which may or may not make a significant difference
to his/her final score). Hence, we consider the “A helping B” model
as reasonable in this context.

4. B can help C while cheating from A.
5. B cheating from A does not influence D cheating from A; in other

words, one student can help multiple students.
6. An answer based on cheating is not disseminated further to help

other students. This assumption can be justified by the argument
that given the limited time of an exam and involved stresses, B is
unlikely to remember what he/she copied from A and to have the
time to provide C with the answer.
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Fig. 3 Post-exam online survey results. Bar graph summary in terms of a sufficiency of time slot length, b convenience of platform interface,
c easiness of exam questions, and d similarity to other online exams respectively (performed on 28 April 2020 for the undergraduate medical
imaging course offered at Rensselaer Polytechnic Institute, Troy, New York, USA).
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Estimation of students’ competences
The students’ competences are estimated based on their performance in
the midterm exam before implementing social distancing. The two classes
were taught by different instructors, and have different midterm exams,
but they will take the same final at the same time. Thus, their relative
performances in the class were treated as their competence score rather
than their real scores. The grade distributions of the two classes were first
normalized to the distribution with zero mean and unit variance, and then
combined together. It is worth mentioning that students who did not
participated in the midterm exam were excluded from the normalization
procedure, and then put back to the combined profile with 0 (assigning an
average performance to estimate their performance). Finally, combined
normalized grades were then linearly transformed to the range [0.25, 1] to
form the prior knowledge of the competence profile Y of the combined set
of the students. Note that the range [0.25, 1] is empirically selected. Based
on our experience, all questions were covered in the class and a few
students got nearly perfect scores while a few totally unprepared students
were also seen every semester. In addition, the heuristic colluding matrix P
relies on the competence differences rather than the competence values,
hence, the linear transformation of the competence range will only impose
a constant scaling factor on the average collusion gain g base on equation
(1), which will not influence the optimization result of the SQ assignments.

Construction of the colluding matrix
To perform the optimization, we heuristically construct a colluding matrix P
depicting the probability of every student cheating from another student.
Following the notation in the main text, reasonable assumptions about
colluding mechanisms are made as follows: (1) The probability of student i
actively cheating is related to his/her competence yi; Student 1 tends not
to cheat since he/she could obtain no gain (risk greater than benefit), while
student N will try all means to cheat since he/she will always gain (benefit
greater than risk). (2) The probability of collusion happens between two
students A and B is related to the difference of yA and yB. Student i will
have the strongest willingness to cheat from student 1, but the least
willingness to cheat from student j if yi= yj since he/she cannot trust j
more than himself/herself, and he/she will never cheat from j if yi > yj.
Based on the assumptions above, the colluding matrix P is heuristically

constructed as follows:

pj;i ¼
0; yj � yi

yj�yiPnf ðiÞ
k¼1

ðyk�yiÞ
ð1� pi;iÞ; yj > yi

8<
: (3)

pi;i ¼ 1�
Pnf ðiÞ

k¼1 ðyk � yiÞPN
k¼1ðyk � yNÞ

" #η

(4)

where nf(i) is defined as the number of elements in Y that are greater than
yi, and η is a non-negative constant which can be used to adjust students’
willingness to cheat. Larger η will increase the colluding probability, and
students are supposed to always commit active cheating if η=∞ (all
optimizations were conducted with this setting). Equations (3) and (4)
define the probabilities of the cheating and non-cheating states of student
i respectively, and in the cheating state, the possibility of student i will
cheat from student j is proportional to their competence difference yj− yi
normalized by the sum of competence differences in all possible cases.
Without loss of generality, we further assume that students have

different competences (y1 > y2 >⋯ > yN), due to the fact that adding tiny
differences to two equal y has a negligible effect on the result of g and
simplify the expression of nf(i) to be of the form

nf ðiÞ ¼ i � 1 (5)

Hence, pj,i can be written more explicitly as follows:

pj;i ¼
0; j<i

ð1� pi;iÞðyj � yiÞ=ð
Pi

k¼1 yk � iyiÞ; j>i

1�Pi
k¼1ðyk � yiÞ=

PN
k¼1ðyk � yNÞ

h iη
; j ¼ i

8>><
>>: (6)

Note that the heuristic colluding matrix P represents a practically
reasonable start for optimization. We construct P to place a larger weight
on the collusion between students with a larger competence difference
than that with a small competence difference, which helps limit the
collusion gain in the worst-case scenario. Since mismatches exist very likely
between the model and the practice, any optimization result needs to be
subjected to a worst-case analysis.

Analysis of worst-case metrics
Similar to the average case analysis and worst-case analysis in computer
science, we may want to revisit our optimized results in a worst-case study
since mismatch is very likely to exist between the model and the practice.
Hence, another two important metrics are introduced to assess the
optimization results from the risk control angle, i.e., the worst-case average
collusion gain gW defined as the average collusion gain in the situation
where all students manage to achieve their maximum possible collusion
gain (the maximum possible collusion gain of the student i is achieved by
setting the probability of i cheats with the student j to 1, from whom i will
obtain the maximum gain among other choices of i),

gWðAÞ ¼
1

NM1
sum fmax

j2½N�
fZðAÞ � Dgg (7)

and the maximum individual collusion gain gMI which is the maximum of
the maximum possible collusion gains over all students,

gMIðAÞ ¼
1
M1

max
i;j2½N�

fZðAÞ � Dg: (8)

gW can be used to assess the performance of the optimized results under
the worst situation and can be treated as a reliable upper limit estimation
of the collusion gain under the given competence profile Y since the
calculation of gW does not involve the colluding matrix. gMI is a metric can
be used to estimate the fairness of the exam from the aspect of the
maximum collusion gain any student can achieve. If the collusion gain
calculated in the worst situation for the output assignment is not
acceptable, the result should be used with caution or just change the
initialization and generate more solutions. Overall notations and metrics of
the model are summarized in Supplementary Tables 1 and 2.

Cyclic greedy searching
In principle the optimal assignment to achieve the minimized collusion
gain should be searched from the set of all possible assignments whose
size is nN and n is the size of the pool of SQs PSQ. Practically, an optimal
solution will be computationally infeasible (seemingly NP-hard) if there are
many students and/or many questions in the exam, hence we propose the
following efficient algorithm. We first narrow the searching pool of SQs to
the sequences generated by circular shifting (let us denote the set as PCS)
from PSQ following the heuristic that PCS is a good representative subspace
of PSQ. PCS contains all possible z values achieved by any two sequences
from PSQ, and if we randomly choose two sequences from the two space,
the expected z value of two sequences from PCS is even smaller than that
from PSQ (see Supplementary Note 7 for the proof). Then, we choose to use
a greedy-searching algorithm from a randomly initialized assignment or
the assignment generated with the result of GAS, and repeat the searching
process for multiple times until the loss does not decrease. Through this
greedy searching, satisfactory results can be easily obtained in
polynomial time.
Specifically, we can perform Greedy Searching from a Cyclic pool (Cyclic

Greedy Searching, CGS). The concept behind CGS is to iterate with respect
to each and every student, and replace his/her current sequence of
questions with one from PCS if the updated assignment achieves a smaller
average collusion gain. Several cycles of greedy-searching are needed to
fulfill a complete search, and the output assignment from the last cycle will
be treated as the initialization for the next cycle during the iteration. We
use the result from GAS as our preferred initialization, and other
initialization is also suggested to be adopted and find the best one
among the results to improve the solution (see Algorithm 2 in
Supplementary Note 2 for pseudocodes and implementation details).

Min–max greedy matching
Instead of searching in the cyclic pool PCS, we can search from the entire
permutation pool PSQ to minimize the collusion gain. Due to hardness of
searching in a huge permutation space when the problem scale is large,
we adapted the min–max greedy matching algorithm (MMM) to work in
polynomial time. A natural approach is to start with an initial random
assignment and improve it greedily by picking up one student at a time
according to a certain order, and refining his/her SQ so that the total gain
is minimized from the set of all possible M1-permutations of M2. We
propose MMM to greedily improve an assignment, and show that
computing a sequence to replace a single student’s sequence in an
assignment that minimizes the total gain can be done in polynomial time
by performing a minimum weight maximum matching (see Algorithm 3 in
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Supplementary Note 7 for implementation details). For convenience, we
first introduce some notations. Given any s∈ PSQ:

1. For each j∈ [M2], we define s(j)= l if j appears in the lth position in s,
and s(j)= 0 otherwise.

2. For each j∈ [M2], α(s, j)= 1 if s(j) ≥ 1, and α(s, j)= 0 otherwise, to
indicate whether question j is on sequence s.

3. For each j∈ [M2], each l≤M1, β(s, j, l)= 1 if s(j) ≥ 1, s(j) ≤ l, and β(s, j, l)
= 0 otherwise, to indicate whether question j appears at or before
position l on sequence s.

4. For each j∈ [M2], each l≤M1, γ(s, j, l)= 1 if s(j) ≥ l, and γ(s, j, l)= 0
otherwise, to indicate whether question j appears at or after position
l on sequence s.

5. For any s; s0 2 PSQ , and any j∈ [M2], δðs; s0; jÞ ¼ 1 if s(j) > 1, s0ðjÞ>1, and
s0ðjÞ � sðjÞ, and δðs; s0; jÞ ¼ 0 otherwise to indicate whether a student
assigned s can cheat on question j from a student assigned s0 .

Given an instance ([N], [M2], [M1], Y), MMM is initialized with an
assignment A, and proceeds to greedily improve A in N rounds, one
student at a time, as follows: In each round i ≤ N, student i is selected, and
ai is greedily replaced by the sequence s* that minimizes total gain, or
simply restated, provides the largest drop in the average gain from A.
Formally,

s� ¼ arg min
s2PSQ

gððs; a�iÞÞ (9)

¼ arg min
s2PSQ

gððs; a�iÞÞ � gðAÞ (10)

where (s, a−i) denotes the assignment where student i’s sequence ai is
replaced with s. Note that for any s∈ PSQ, the difference in the average
gain between (s, a−i) and A is the sum of the differences in the gain from
each question j that appears in the sequence s, as shown in Eq. (11).

gððs; a�iÞÞ � gðAÞ ¼ 1
N

P
j2s

P
k� i

pk;i ½ykβðak ; j; sðjÞÞ þ yið1� βðak ; j; sðjÞÞÞ� � ½ykδðai ; ak ; jÞ þ yið1� δðai; ak ; jÞÞ�
"

þP
h > i

pi;h½yiγðai ; j; sðjÞÞ þ yhð1� γðai ; j; sðjÞÞÞ�½yiδðah; ai; jÞ þ yhð1� δðah; ai ; jÞÞ�
�

(11)

We compute s� ¼ arg min
s2PSQ

gððs; a�iÞÞ by solving the following mini-
mum weight maximum matching problem to match questions to
positions in a sequence. We define a weighted, complete, bipartite graph
G= ([M1] ∪ [M2], E) with a node for each of M1 positions, and a node for
each of M2 questions. For each pair of a position l ∈ [M1] and question
j ∈ [M2], we set the weight of the edge to be the difference in the gain
from question j when it appears in position l and the gain from question j
as it appears in ai, w.r.t. the sequences a−i of all of the other students. It
is easy to see that solving this minimum weight maximum matching
problem assigns student i with a desired sequence of M1 questions
s� ¼ arg min

s2PSQ
gððs; a�iÞÞ � gðAÞ ¼ arg min

s2PSQ
gððs; a�iÞÞ.

Then, we extended MMM into the MMM-CGS algorithm as a natural
extension of MMM and CGS by setting the initial assignment to the output
of CGS (modifying line 2 in Algorithm 3 in the Supplementary Note 2) and
improving it greedily in the same manner as MMM. This ensures that we will
only improve solutions from the CGS (at least no harm), which implies a
room for potential improvement of our heuristic optimization method CGS.

Integer linear programming (ILP)
For the optimal performance, we adapted this setting into an integer linear
programming problem to find an optimal assignment in the permutation
space but at an exponential computational cost, as shown in Algorithm 4
in Supplementary Note 2.
We begin by showing correctness of Algorithm 4, and that it computes a

valid solution. Consider an arbitrary instance I= ([N], M2, M1, Y), and let A
be the assignment returned by Algorithm 4 when applied on this instance
I. It is easy to see that for any student i∈ [N], (ii) for any question j∈ [M2],
there is at most one value of l∈ [M1], such that si,j= l, otherwise the
constraint

P
j2½M1 �mi;j;l ¼ 1 is violated, and (ii) for any position l∈ [M1],

there is exactly one question j∈ [M2] such that si,j= l, otherwise, together
with (i), the constraint

P
j2½M1 �si;j ¼

P
l2½M2 �l is violated. It is easy to see by

the construction of Algorithm 4, that every student is assigned M1

questions in A in a valid sequence.
It is easy to verify that the objective of the ILP formulation in Algorithm 4

is the score of the assignment indicated by the variables si,j, by checking
that for each pair of students i, k∈ [N], and for each question j∈ [M2], the

variables ci,k,j correctly indicate whether i can copy from k on question j
under the assignment indicated by the variables si,j and sk,j.
To prove completeness, it is sufficient to verify that every possible

assignment is a feasible solution to the ILP in Algorithm 4. It is easy to
check that for every valid assignment A, there is a way to assign values first
to variables si,j corresponding to the sequences in A, and subsequently to
the rest of the variables in the ILP formulation in a manner that does not
violate any of the constraints.

Practical guideline
The GAS itself is usually not optimal, but using its result as the initialization
of the greedy algorithms can guarantee the theoretical bound of the
average collusion gain of the searching results. In our simulation, the
performance of our fast heuristic search algorithm CGS was close to the
results optimized using the two sophisticated algorithms MMM and ILP
(Supplementary Note 3). Note that our CGS method does not guarantee
convergence on the optimum, and is theoretically different from the
competitive sophisticated algorithms. Especially, the ILP algorithm finds the
global optimum but requires exponentially more computational resources.
To design online exams of small scales, we generally prefer using ILP as
appropriate. For online exams of large scales, we generally prefer using the
MMM algorithm that is of polynomial complexity to find at least a local
minimum, initialized by the output of our GAS and CGS methods.

Data collection and ethics oversight
We developed a DOT platform (a web application, all MCQs, detailed in
Supplementary Note 4 and 6) to perform the online test. The post-exam survey
was performed through SurveyMonkey. We have complied with all relevant
ethical regulations. The RPI Institutional Review Board approved the study
protocol. The informed consent was obtained from all participants in the study.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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