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Optimized communication strategies with binary coherent

states over phase noise channels
M. T. DiMario1, L. Kunz 2,3, K. Banaszek 2,3 and F. E. Becerra 1

The achievable rate of information transfer in optical communications is determined by the physical properties of the
communication channel, such as the intrinsic channel noise. Bosonic phase noise channels, a class of non-Gaussian channels, have
emerged as a relevant noise model in quantum information and optical communication. However, while the fundamental limits for
communication over Gaussian channels have been extensively studied, the properties of communication over Bosonic phase noise
channels are not well understood. Here we propose and demonstrate experimentally the concept of optimized communication
strategies for communication over phase noise channels to enhance information transfer beyond what is possible with
conventional methods of modulation and detection. Two key ingredients are generalized constellations of coherent states that
interpolate between standard on-off keying and binary phase-shift keying formats, and non-Gaussian measurements based on
photon number resolving detection of the coherently displaced signal. For a given power constraint and channel noise strength,
these novel strategies rely on joint optimization of the input alphabet and the measurement to provide enhanced communication
capability over a non-Gaussian channel characterized in terms of the error rate as well as mutual information.
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INTRODUCTION

The amount of information that can be transmitted through a
physical channel depends on the fundamental properties of the
channel1,2 and the physical states used as information carriers.
Recent work has shown that coherent states of light, routinely
produced by lasers, can achieve the ultimate limits of information
transfer, classical capacity, in communication channels with loss,3

and phase-insensitive Gaussian noise.4,5 These results provide
strong support for using coherent states as the centerpiece for
current and future developments of optical communication
networks.6–8 Moreover, beyond the realm of classical communica-
tions, coherent states have shown to be of great practical use for
quantum communications,9,10 including quantum key distribu-
tion,11–20 quantum digital signatures,21 and quantum fingerprint-
ing.22,23 However, despite the theoretical breakthroughs in
identifying the capacities for phase-insensitive Gaussian channels,
finding the ultimate information rates for other channels, such as
noisy channels with a specific non-Gaussian noise that may be
encountered in different situations, is still an open problem.
Moreover, even in channels for which capacity is known, reaching
this ultimate rate for reliable communications requires finding the
optimal encoding schemes and optimal measurements over the
physical information carriers.24,25 Furthermore, finding optimal
encodings and measurements to maximize information transfer in
a specific channel with fundamental noise, in addition to technical
noise in real devices, would represent a large advance in our
understanding of the limits in realistic optical communications.
Quantum mechanics in principle allows for constructing

measurements for coherent states surpassing the classical limits
of sensitivity and information transfer.2,26 Discrimination strategies

for coherent states based on optimized measurements with
photon counting have been proposed18,27–34 and demon-
strated35–44 to surpass the conventional limits of detection, the
quantum noise limit (QNL), and approach the ultimate quantum
limit, the Helstrom bound.26 These nonconventional measure-
ments can enhance information transfer in optical communica-
tions43,45 and surpass the classical limits of information transfer
using joint measurements over sequences of coherent states.24

Furthermore, photon-counting measurements can be optimized
to provide inherent robustness against noise and imperfections of
realistic systems in communications.42,46 While these optimized
measurements can enhance sensitivities and information transfer
with coherent states, the fundamental noise intrinsic in the
channel can severely degrade the information encoded in these
states. This in turn compromises the potential benefits of these
optimized measurements for optical communications.47,48

In this work, we investigate a new approach for optimizing
communications in a channel with specific intrinsic noise in
addition to unavoidable technical noise, with the goal of
maximizing sensitivities and information transfer based on non-
Gaussian measurements and coherent states. The central concept
of this approach consists of finding optimized communication
strategies where measurements and coherent state encodings are
jointly optimized to become more robust to the specific noise in
the channel, and ultimately maximize sensitivities and information
transfer over the noisy channel. As a proof-of-concept demonstra-
tion, we investigate optimized communication strategies for
communications over a noisy channel with phase diffusion,49–51

based on optimized single-shot photon-counting measurements
and binary coherent state encodings. Phase diffusion is the most
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detrimental noise for states of light carrying information in the
phase, since it destroys the coherence of the quantum states.52–54

We show that an optimized strategy that simultaneously
optimizes the non-Gaussian measurement and the binary state
alphabet allows for surpassing the limits in performance of an
ideal conventional measurement (CM) in terms of probability of
error and information transfer per channel use over the non-
Gaussian channel.

RESULTS

Optimized strategy for a phase diffusion channel

Phase diffusion noise has been extensively investigated in
quantum metrology, measurements and communications for
phase estimation,49 interferometry,50 state discrimination, and
information transfer in communication.55–57 This noise is most
damaging when information is contained in the coherent
properties of the states used as information carriers. In particular,
Gaussian phase diffusion makes the task of extracting information
more difficult,47–54,58 degrading measurement sensitivities and
lowering the achievable information transfer in coherent commu-
nications. As a first step for constructing an optimized commu-
nication strategy with binary encoding over a channel with phase
diffusion, we consider the optimization of the input alphabet to
provide robustness to phase diffusion and to other sources of
noise and imperfections. This optimization consists of finding the
optimal energy distribution in the alphabet to minimize the
detrimental effects of phase diffusion, while allowing for
measurements to provide high sensitivity.
Figure 1 shows the effect of phase diffusion on three different

binary alphabets with coherent states with the same average
energy hni ¼ n: (a) binary phase-shift keying (BPSK) {|−α〉, |+α〉},
with α real and positive; (b) on-off keyed (OOK) alphabet
j0i; j

ffiffiffi

2
p

αi
� �

; and (c) a general binary coherent state alphabet
{|α1〉, |α2〉}. We observe that phase diffusion affects equally the
states {|−α〉, |+α〉} in the BPSK alphabet, and dramatically reduces
their distinguishability, which causes discrimination errors to
become very high. On the other hand, when considering the OOK
alphabet j0i; j

ffiffiffi

2
p

αi
� �

, phase diffusion impacts only the state
j

ffiffiffi

2
p

αi, and leaves the vacuum state |0〉 unaffected. In this case,
their distinguishability weakly depends on the phase noise,
highlighting the robustness of this alphabet to phase diffusion
noise. Therefore, while BPSK has a smaller overlap and better
distinguishability than OOK encoding in the absence of phase
noise, OOK states have an overlap that is independent of the level
of phase diffusion. The optimized alphabet {|α1〉, |α2〉} in Fig. 1c
represents a smooth transition and a tradeoff between BPSK with
a high degree of distinguishability for low levels of noise, and OOK
which is immune to phase diffusion. Figure 1c shows an example
of an optimized alphabet {|α1〉, |α2〉}, which is optimized under the
average energy constraint n ¼ 1

2 ðjα1j
2 þ jα2j2Þ for a given level of

the phase noise. The result of this optimization is an alphabet that
combines the robustness of OOK with the distinguishability of
BPSK.
Optimized non-Gaussian measurements based on photon

number resolution (PNR)46 provide robustness against technical
noise and imperfections for the discrimination of BPSK states
surpassing the QNL. Optimized communication strategies in a
non-Gaussian channel with phase diffusion can combine these
measurements with an optimized input alphabet in order to
minimize the probability of error in the channel. This strategy then
optimizes simultaneously the measurement and the alphabet,
resulting in a high degree of robustness to phase diffusion while
maintaining the benefits of non-Gaussian measurements for
surpassing the limits of CMs.
Figure 2a shows the concept of an optimized communication

strategy for a binary channel with phase diffusion. The sender

(Alice) prepares an input state from a coherent state alphabet
{|α1〉, |α2〉}, and sends it to the receiver (Bob) through a non-
Gaussian noisy channel. Phase diffusion causes the input states
{|αj〉} (j= 1, 2) to become phase-diffused mixed states:54

ρ̂jðσÞ ¼
Z
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where the strength of the phase diffusion noise is quantified by
the width σ of the Gaussian phase distribution.
At the channel output, the receiver implements an optimized

single-shot measurement based on photon counting to discrimi-
nate these states with high sensitivity.46 In this strategy, the input

state ρ̂j is displaced in phase space to D̂ðβÞρ̂jðσÞD̂yðβÞ, where the

displacement operation, D̂ðβÞ ¼ eβâ
y�β� â with â (ây) as the

lowering (raising) operator, is implemented by interference
of the input state with a displacement field β in a high
transmittance beam splitter.59 Subsequently, the photons in the
displaced state are detected by a PNR detector with number
resolution m (PNR(m)). Here, m represents the maximum number
of photons that a detector can resolve before becoming a
threshold detector.46 This measurement strategy uses a maximum
a posteriori (MAP) decision rule to infer the input state based on
the photon detection outcome k given the mean photon number
n, displacement field |β|, and PNR(m), for a level of phase noise σ.
The MAP strategy assumes that the correct state is the one with

the highest conditional posterior probability Pðρ̂jðσÞjβ; k;mÞ
obtained through Bayes’ rule:

Pðρ̂jðσÞjβ; k;mÞ ¼
Pðkjρ̂jðσÞ; β;mÞPðρ̂jðσÞÞ

PðkjmÞ : (2)

Here, P(k|m) is the total probability of detecting k photons given
a PNR(m) strategy, and Pðkjρ̂jðσÞ; β;mÞ is the conditional
probability of detecting k photons given |β| and m. We consider
equiprobable input states, so that the prior probabilities become
Pðρ̂jðσÞÞ ¼ 0:5. The probability of error in the discrimination of the
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Fig. 1 Phase diffusion for binary alphabets. a Binary phase-shift
keyed (BPSK) states, each with mean photon number hni ¼ n,
undergo phase diffusion, which equally affects both states as shown
in the phase space diagrams. The overlap, and therefore the
measurement error, increases with higher noise levels. b On-off
keyed (OOK) states with total average mean photon number n. For
no noise, the overlap for OOK is greater than BPSK, but it remains
constant as phase noise increases. c An optimized alphabet such
that the total average mean photon number is n ¼ 1

2 ðjα1j
2 þ jα2j2Þ.

Under phase diffusion, one state is affected more than the other.
Optimization over the alphabet allows the communication strategy
to combine the high sensitivity of BPSK with the robustness to
phase noise of an OOK alphabet
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input states for a strategy with PNR(m) is:

PEðn; fρ̂jðσÞg; β;mÞ ¼ 1� 1

2

X

m

k¼0

max
j
ðfPðkjρ̂jðσÞ; β;mÞgÞ: (3)

Here, Pðkjρ̂jðσÞ; β; σ;mÞ is the conditional probability of
detecting k photons for the input state given the displacement
|β|, noise level σ, and PNR(m). The error probability PE in Eq. (3)
depends on the input alphabet, the intrinsic properties of the
channel, and the measurement performed by the receiver. This
provides a way to find optimized strategies that simultaneously
optimize the alphabet and the measurement to minimize the
detrimental effects of the channel noise. The optimized strategies
use an optimal displacement D̂ðβÞ and an optimal input alphabet
{|α1〉, |α2〉} for a given input power n, PNR(m), and channel noise
level σ to minimize the probability of error PE.
Figure 2b shows the performance of an optimized communica-

tion strategy for a channel with phase diffusion optimized for state
discrimination for a strategy with PNR(1) for n ¼ 0:5, with ideal
detection efficiency η= 1.0, an interference visibility ξ= 0.998,
which quantifies the technical noise and imperfections in the
receiver,42,46 and zero dark count rate ν= 0. To evaluate the
performance of this strategy, we compare it with an ideal CM
consisting of either homodyne or direct detection to minimize the
discrimination error, with its own optimized alphabet (solid gray
line). We note that the optimized alphabet for the CM results in
either BPSK or OOK for this binary coherent state channel, and
that it changes abruptly from BPSK to OOK when the conventional
measurement switches from homodyne to direct detection.

As shown in Fig. 2b, while a PNR(1) strategy with BPSK (dashed
red) can only outperform the ideal CM for small-phase noise σ,54

optimizing the input alphabet to interpolate between BPSK and
OOK, shown in Fig. 2c, allows the strategy to outperform the ideal
CM for all levels of noise. Moreover, for high levels of noise, the
optimized communication strategy approaches the Helstrom
measurement with its own optimized alphabet, showing that this
optimized communication strategy is asymptotically the optimal
quantum measurement.
Optimized communication strategies can also be used to

increase information transfer over a noisy channel. These
strategies simultaneously optimize the measurement and the
input alphabet to maximize mutual information, instead of
minimizing probability of error, for a channel with intrinsic noise
and technical noise from the devices. Optimized strategies for
information transfer for a phase-diffusion channel with binary
state encoding are in general different from strategies designed
for minimum error, as discussed in Section “Mutual information
under phase diffusion”.

Experimental demonstration

The optimized communication strategies described above can be
implemented with current technologies. We demonstrate these
strategies in a proof-of-principle experiment for enhancing
sensitivities and information transfer for the phase diffusion
channel with a binary coherent state encoding with a PNR non-
Gaussian measurement, which provides robustness to technical
noise and system imperfections.46 The experimental realization
uses an interferometric setup to implement the optimized
strategies. Coherent state pulses at 633 nm are displaced by
interference on a highly transmissive beam splitter, and we use an
avalanche photodiode (APD) as a photon number resolving
detector. See ref. 46 for a detailed description. To investigate the
optimized communication strategies, a controlled level of the
phase diffusion noise is applied to the input state (see
Supplementary Section 1). Our experiment achieves an overall
detection efficiency η= 0.72, an interference visibility ξ= 0.998,
and a dark count rate ν= 3.6 × 10−3. Technical noise in the
experiment such as reduced visibility and dark counts affects the
performance of the optimized strategy (see Supplementary
Section 2). However, the levels of noise in our experiment only
have a small effect on the strategy’s performance.
We systematically investigate the optimized communication

strategies for a channel with phase diffusion by first studying the
performance of optimized PNR measurements with a BPSK
alphabet46 for this channel. Next, we investigate the optimized
communication strategies with an optimized measurement-
alphabet method for enhancing measurement sensitivity. Finally,
we investigate optimized communication strategies for maximiz-
ing the mutual information for a phase-diffusion channel.

Discrimination with a BPSK alphabet under phase diffusion

Figure 3 shows the experimental error probabilities for the
discrimination of states from a BPSK alphabet with an optimized
PNR measurement46 with PNR(m) of m= 1, 2, 3, for three mean
photon numbers: (a) n ¼ 0:5, (b) n ¼ 1, and (c) n ¼ 2. We observe
in all cases that while PNR(1) (red dots) outperforms an adjusted
homodyne measurement up to a certain level of noise, as
discussed in ref.,54 increasing PNR to PNR(2) (green dots) and
PNR(3) (blue dots) extends the level of noise σ where this
optimized measurement46 outperforms a homodyne measure-
ment. The increase in robustness with PNR against phase diffusion
becomes larger as the mean photon number increases. Figure 3b,
c shows that PNR(3) extends the level of noise σ for which this
measurement surpasses the homodyne limit by about 1.5 times
for n ¼ 1 and about four times for n ¼ 2 compared to an on/off
PNR(1) strategy.

Fig. 2 Optimized communication strategy. a Optimized commu-
nication strategy for a channel with phase diffusion with binary
coherent state encoding. The receiver uses a single-shot measure-
ment based on optimized photon number resolving (PNR) detection
with finite photon number resolution m (PNR(m)). For a given level
of phase diffusion σ, the strategy simultaneously optimizes the
transmitter’s alphabet {|α1〉, |α2〉} and the receiver’s discrimination
measurement to enhance sensitivities and information transfer
through the noisy phase diffusion channel. b Optimized strategy for
state discrimination to minimize the probability of error (PE) with
PNR(1) for an input alphabet with average power n ¼ 0:5.
Probability of error for the optimized strategy (solid blue); for a
strategy without input alphabet optimization using binary phase-
shift keying (BPSK) (dashed red); a conventional measurement (CM)
with its own optimized alphabet (solid gray); and for the Helstrom
measurement with an optimal input alphabet (solid black). c
Optimized alphabet (solid blue) and displacement field (dashed
green) for the optimized communication strategy. Note that the
optimized alphabet interpolates from BPSK to on-off keyed (OOK) as
the level of phase diffusion σ increases. Parameters for the plots:
ideal detection efficiency, no dark counts, and an interference
visibility of ξ= 0.998
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Discrimination with an optimized alphabet under phase diffusion

Phase diffusion severely affects measurements for state discrimi-
nation in a BPSK alphabet. To reduce the effects of phase diffusion
in the channel, a communication strategy can implement an
encoding alphabet, which is optimized for a particular level of
phase noise. In conventional coherent communication with
Gaussian measurements, constellation optimization has been
used to mitigate some effects of phase noise.55–57 However, in a
more general optimized communication strategy using a non-
Gaussian measurement, this alphabet can be optimized simulta-
neously with the displaced photon-counting measurement to
reduce errors and enhance information transfer.
Figure 4 shows the performance of the optimized strategy for

the discrimination of states from an optimized alphabet with an
optimized PNR measurement,46 with PNR(1) and PNR(3) for mean
photon numbers: (a) n ¼ 0:5, (b) n ¼ 1:0, and (c) n ¼ 2:0.
Experimental data is shown with red (green) dots for PNR(1)
(PNR(3)), and expected performance is shown in dotted lines. Error
bars represent 1 SD over five experimental runs of over 105

independent experiments. While a strategy with PNR(3) and a
BPSK alphabet (solid green) can only outperform a CM for a
limited range of noise levels σ, optimized strategies with optimal
alphabets and measurements allow for outperforming the CM
over larger ranges of noise σ. Moreover, optimized strategies with
PNR(1) surpass the CM for all levels of noise for n ¼ 0:5 and
n ¼ 1:0. For higher n, increasing number resolution m is expected
to enable discrimination below the CM at any noise level, as can
be inferred from the trend in Fig. 4c.
Figure 4d–f show the optimal alphabet for n ¼ 0:5; 1:0; and 2:0,

respectively. Discrete jumps in the optimized alphabets for
different PNR strategies are the results of optimization of Eq. (3),
which requires a global optimization over multiple minima46 of PE.
This optimization searches for the values of |α1| and |β|, resulting in
the global minimum of PE for a given noise level σ for a PNR(m)
strategy. There are levels of noise at which a small increase in σ

causes the former global minimum of PE as a function of |α1| and
|β| to become a local minimum, and a former local minimum to
become the new global minimum (see Supplementary Section 3).
These abrupt changes in the global minimum result in the sudden
jumps of the optimal alphabet shown in Fig. 4e at σ ≈ 0.36 and σ ≈

0.38, and in Fig. 4f at σ ≈ 0.20 and σ ≈ 0.42. We note that the
optimized alphabets correspond to interpolations between BPSK
and OOK alphabets for all n, and result in large improvements over
BPSK. This shows that strategies with optimized alphabets are
essential for surpassing the sensitivity limits of conventional
measurements in the channels with phase noise.

Mutual information under phase diffusion

Optimized communication strategies can also be designed to
maximize information transfer over a non-Gaussian noisy channel,
for which optimal encoding and decoding are unknown. An
optimized communication strategy, which minimizes probability
of error, will provide some advantage for increasing mutual
information. However, in a noisy channel, the measurement and
the alphabet can be optimized in order to maximize mutual
information I(X:Y) and will yield a different strategy than for
minimum error. Mutual information quantifies the total amount of
information between transmitter and receiver, and depends on
the encoding alphabet and decoding measurement. For a
displaced photon-counting measurement, I(X:Y) can be expressed
according to a “soft” decision rule where the number of photons
detected is used to infer the input symbol rather than the binary
output from a binary decision rule.60 The mutual information for a
channel with phase diffusion with a binary coherent state
encoding can be expressed as:

Iðn; fρ̂jðσÞg; β;mÞ ¼
X

m

k¼0

X

2

j¼1

Pðkjfρ̂jðσÞg; β;mÞPðfρ̂jðσÞgÞ log2
Pðkjfρ̂jðσÞg; β;mÞ

PðkjmÞ

� 	

;

(4)

where Pðkjfρ̂iðσÞg; β;mÞ is the conditional probability of detecting
k photons. In an optimized communication strategy over a noisy
channel, the input alphabet and measurement with PNR(m) are
simultaneously optimized to maximize mutual information
Iðn; fρ̂iðσÞg; β;mÞ under the average energy constraint for a noise
level σ.
Figure 5a, b shows the experimental results for the mutual

information with optimized strategies for mean photon numbers:
(a) n ¼ 1:0 and (b) n ¼ 2:0, and PNR(m) of m= 1, 3, 5 in red,
green, and blue dots, respectively. The theoretical predictions are
shown with dashed colored lines. The mutual information for a
conventional measurement (dashed gray) and for BPSK are shown
adjusted for our total detection efficiency η= 0.72. Optimized
communication strategies surpass the limit in mutual information
for a CM at high levels of phase-diffusion noise (σ ≥ 0.7), and for
low noise (σ ≤ 0.1). Moreover, optimized strategies with higher
PNR detection resolution m provide higher mutual information for
all levels of noise. Note that optimized communication strategies
with optimized alphabets drastically outperform BPSK for all
PNR(m) in terms of mutual information. Figure 5c, d shows the
optimized alphabets for (c) n ¼ 1:0, and (d) n ¼ 2:0, respectively.
We observe that the optimal alphabet interpolates from BPSK to
OOK similar to error probability. However this interpolation is
continuous, because the mutual information is a convex function
of σ for all PNR(m). In the intermediate level of noise (σ ≈ 0.5),
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there is a gap between the optimized strategies and the CM. This
gap decreases as the PNR(m) of the optimized strategies increases.
This suggests that optimized communication strategies with high-
enough PNR(m) should provide levels of mutual information at
least as high as those that can be achieved with ideal conventional
measurements for all levels of phase diffusion noise.
Figure 5e shows the maximum percent difference R(m) between

an optimized strategy with PNR(m) and a CM for n from 0 to 2.0 for
different PNR(m) from m= 1 to m= 20. This corresponds to the

percent difference at the level of noise for which a PNR(m)
strategy has the worst performance relative to a conventional
measurement. R(m) is defined as:

RðmÞ ¼ max
σ

ICMðσÞ � IPNRðmÞðσÞ
ICMðσÞ


 �

; (5)

where IPNR(m)(σ) is the mutual information for an optimized
communication strategy with PNR(m), and ICM(σ) is the mutual
information for the conventional measurement. We observe that
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as the number resolution increases, the percent difference
asymptotically approaches zero for all mean photon numbers.
The blue regions to the right of the white line correspond to R(m)
< 1%, that is, when a PNR(m) strategy is within 1% of the
conventional measurement. Figure 5f shows R(m) on a log–log
scale for n ¼ 0:5; 1:0; 1:5; and 2:0 in red, green, blue, and black
lines, respectively. The straight lines indicate power-law scaling in
the convergence of the form a(m)b, with b ≈ 1.1 for all lines. This
convergence suggests that for all mean photon numbers,
optimized communication strategies with large enough photon
resolution m will at worst provide the same mutual information as
the ideal CM, which serves as a lower bound for the performance
of optimized communication strategies. At the same time, these
optimized strategies with moderate PNR provide large advantages
for increasing mutual information compared to CM at low noise
and high noise levels.

DISCUSSION

We proposed and demonstrated optimized communication
strategies to maximize information transfer and measurement
sensitivity over a non-Gaussian noisy channel. These optimized
strategies are based on simultaneous optimization of the states
used as information carriers with an optimized non-Gaussian
photon-counting measurement that surpasses the QNL for state
discrimination. Simultaneous optimization of alphabet and mea-
surement provides robustness to intrinsic channel noise, and
allows for overcoming the sensitivity limits of conventional
measurements and achieving higher information transfer in
communications over noisy channels.
We demonstrated in a proof-of-principle experiment the

concept of optimized strategies for communication over a channel
with phase diffusion for binary coherent state alphabets and
single-shot optimized measurements with PNR. These optimized
communication strategies provide unexpected benefits to mini-
mize the probability of decoding error and maximize the
achievable mutual information in this noisy channel. Moreover,
we observed that optimized communication strategies not only
provide robustness to intrinsic channel noise but also to technical
noise and imperfections in the receiver.
We expect that optimized communication strategies can

provide advantages for different problems in coherent commu-
nications extending to communication with multiple states and
complex measurements. Moreover, optimized communication
strategies can be applied to other channels utilizing practically
optimized measurements and encodings to maximize information
transfer in realistic noisy communication channels for which
capacity limits are unknown, but that are encountered in optical
communication networks.
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