
Optimized Content Caching and Request Capture in
CNF Networks

Lijun Dong Dan Zhang Yanyong Zhang Dipankar Raychaudhuri
WINLAB, Rutgers University

Technology Center of New Jersey
671 Route 1 South

North Brunswick, NJ 08902-3390
{lijdong, bacholic, yyzhang, ray}@winlab.rutgers.edu

Abstract—In order to meet the overwhelming demands of
content retrieval for mobile end users, a novel architecture for the
next-generation Internet called Cache-and-Forward (CNF) has
been proposed to transport content as large “packages” in a hop
by hop manner towards the destination, instead of transporting a
stream of small packets along an established TCP/IP connection.
In this paper, we investigate how CNF network architecture can
be designed for efficient content retrieval for wireless mobile
nodes. In particular, we look at Integrated Caching in which
we assume each CNF router on the future Internet can cache
contents that pass by and reply to content requests with its
local copy. We name this content delivery method Caching-
n-Capture(CC). We develop a mathematical model for CC to
optimize the average content retrieval latency with limited storage
on each CNF router. We propose Sequential Reassignment(SR)
algorithm to solve the optimization problem. We compare the per-
formance of the derived optimal solutions against our integrated
caching and routing heuristics. The results show the Sequential
Reassignment algorithm significantly reduces the average content
retrieval latency by as high as 70%.

I. INTRODUCTION

In the past few decades, the Internet has enabled a large
array of applications, which have profoundly changed the
way we interact with the rest of the world. However, as
applications become more demanding, and as new technology
makes available larger storage, higher bandwidth, as well
as diverse means of connecting to the Internet, the current
design of the Internet may not be sufficient to address the
future needs and opportunities. In response to this challenge,
the research community recently initiated an effort aiming
the design and evaluation of “clean slate” protocols for the
future Internet [1]. One of these clean-slate Internet projects
is the “Cache-and-Forward” architecture which proposes the
use of hop-by-hop transport along with in-network storage and
caching to achieve efficient content delivery to both fixed and
mobile end-points [2], [3].

Assumptions of stability and end-to-end connection have
traditionally guided the design of TCP/IP protocols, and have
led to efficient information transfer and effective recovery
strategies during periods of stress. Now, however, this end-
to-end strategy is being threatened by a revolution in wireless
access technology that alters dramatically the nature of internet
traffic, and challenges the basic assumptions upon which its

protocols were built. While the end-points of Internet traffic
were once stable and predictable, now they are increasingly
embodied in wireless devices, whose numbers and information
rates are varying and frequent disconnections are common.
They have introduced instability to Internet connectivity and
made the easy assumptions of end-to-end traffic flow increas-
ingly untenable.

Wireless access rates have increased 50-fold in the last
decade, solid-state storage capacities have increased 100-fold,
while dropping in cost to $50/GB, and magnetic storage
devices have increased 100-fold, while dropping in cost to
$0.50/GB. It has become cheap enough to afford putting
storage on each individual router, enabling routers to make
independent decision whether to cache contents while forward-
ing them.

Fundamental to CNF architecture are two components: a
transport layer service that operates in a hop-by-hop store-
and-forward manner, and a content retrieval framework that
exploits large, inexpensive storage at each CNF router to cache
contents when they are routed through. For mobile nodes, the
CNF architecture enables opportunistic push-pull delivery of
files, both to and from the wired network. Routing to and from
mobile terminals will exploit location information provided by
an enhanced name service. Distributed caching of popular con-
tent will occur throughout the network, thus making peer-to-
peer file sharing a first-class service. We call the CNF caching
paradigm as In-network Caching. This paper is mainly focused
on the design of optimal content dissemination algorithms
based on distributed in-network caching.

The content dissemination framework consists of two
phases. The first phase is content discovery, which aims at
discovering the locations of the requested content based on a
distributed directory. The second phase is content retrieval, in
which the endpoint acquires the content from the content loca-
tion. A straightforward in-network caching approach is to have
each en-route CNF router independently decide whether or not
to cache passing contents, which we call Cache-n-Capture.
We note that Cache-n-Capture is not a new approach; in fact,
it was discussed in earlier studies, such as en-route caching
in [4], [5]. Researchers have been working on coordinated
enroute web caching context [24], [25], [26], [27]. However,



the performance of en-route web caching depends both on
the locations of the caches and how the cache contents are
managed. In Cache-and-Forward networks, cache is integrated
to each router. Caching can happen at every enroute router
from the server to the mobile end user. Thus it is still a
challenging problem whether there is a general principal for
each CNF router to follow when a caching decision needed to
be made.

In this paper, we formulate a novel mathematical model
which takes the content caching and request capture ability
of each enroute router into consideration. We propose a
distributed caching scheme, which is called Sequential Reas-
signment. We prove that the algorithm solves the optimization
problem and converges to a suboptimal solution. The simu-
lation results further show that the average content retrieval
latency performance is much improved under the Sequential
Reassignment caching scheme.

The rest of the paper is organized as follows. Section
II summarizes related work. We give a brief overview of
CNF architecture in Section III. Next, we discuss the content
dissemination framework in Section IV. The proposed mathe-
matical model and optimal solution is presented in Section V.
The simulation results are shown in Section VI. Finally, we
provide concluding remarks in Section VII.

II. RELATED WORK

Disruption/Delay Tolerant Networking (DTN): There are
major differences between CNF architecture and DTN ar-
chitecture [6]. DTN network is driven by disruption which
implies potentially long periods of disconnection while CNF is
driven by a combination of wireless, intermittent connectivity
and content. Because of this fundamental difference in the
drivers of the design, the architectures have resulted in subtle
but fundamental differences.

DTN network is an extension of the TCP/IP network for
disconnected environment. As a result, applications interface
with DTN network in a manner similar to how they interface
with TCP/IP networks. In CNF network, applications interface
with the network in a distinctly different way. Specifically, the
interface abstraction is that of content retrieval as opposed
to conversation. Therefore, an application would request the
network to retrieve a content specified by Content ID (CID),
which differs from connecting to a specific node for the
purpose of delivering/retrieving information.

DTN routing [7], [8] is again driven by disconnection, with
the goal of delivering content to a destination which may not
be connected. CNF routing has two phases, the first being a
content discovery phase whereby the network locates/discovers
the content requested by the end-user and the second phase is
similar to DTN routing. Note that the content discovery phase
is built in to the CNF architecture and is not an overlay as in
DTN architecture.

To summarize, the differences between DTN and CNF
architectures stem from the distinctions in the design drivers
for the two networks. However, most of the differences are

complementary as opposed to conflicting and hence can be
incorporated in the next-generation DTN architecture.

Caching: A lot of work has been done in the field of caching.
Caching can be implemented in various flavors, namely, hi-
erarchical caching [9], [10], [11], distributed caching with
centralized control [12], cooperative caching [13], [14] etc.
Much has been done in the placement of caches [15], [16] and
cache replacement policies [17], [18], [19].

Most of the work in the literature assumes an overlay of
caches on the network. Caches have not been considered as
an integral part of the underlying network in the same way
routers have been.

The idea of having Internet routers cache passing data has
been proposed and discussed in several contexts. For example,
in [4], the authors proposed to associate caching with en-route
router nodes to speed up object access latency. Several simple
association methods were discussed in this paper, namely,
caching at every transit node, caching at every gateway node,
and independently caching at every router node. The similar
idea was also discussed in the context of Active Networks [20].
In[21], a network level caching protocol was proposed to cache
individual data packets in the nodes of the network, which
can reduce network traffic near the server as well as packet
latency. In Active Reliable Multicast [22], routers perform
“best-effort” caching of multicast data such that any router
on the route of a request can perform retransmission, which
can significantly improve the multicast performance. In [23],
the authors proposed to cache data on intermediate routers so
that the routers can intercept later requests to reduce the server
load and the data retrieval time.

In [24], the authors considered the coordinated enroute
web caching environment for linear topology. An enroute
web caching algorithm was proposed for placing web files
at only one node on the path from client to server in the tree
network in [25]. In [26], the authors presented a mathematical
model to optimally decide where copies of the requested
object should be placed for tree networks too. The optimiza-
tion problems were formulated in single server networks in
[24], [25], [26]. In [27], the authors solved the problem
of coordinated enroute web caching in multiserver networks,
with emergence of various advanced networks that comprise
a group of geographically distributed servers. In this paper,
we still make the assumption that there is only one original
server for each content. However, our mathematical model
can be easily extended to multiserver situations. Maximizing
cost gain is considered as the optimization objective which is
widely used in web services in [24], [25], [26], [27]. However,
in Cache-and-Forward networks, quickly satisfying mobile
end users’ content requests is the main focus. Therefore,
we consider a concrete performance objective, called average
content retrieval latency throughout the paper.

III. OVERVIEW OF CACHE-AND-FORWARD
ARCHITECTURE

In this section, we present the basic concepts of Cache-
and-Forward architecture. We also shed some light on what



improvement that CNF achieves over the existing TCP/IP
architecture.

A. Concepts of Cache-and-Forward

The Cache-and-Forward architecture makes the following
assumptions:
• The network is hierarchical. As shown in Fig. 1, a very

high-bandwidth static core has edge nodes (EN) that con-
nect via a medium-high bandwidth static access network
to access nodes (AN) that act as wireless gateways. At
the mobile fringe are mobile nodes that connect to the
AN via low-medium rate multi-hop wireless links as
well as mobile nodes that exploit disconnected high-speed
file exchanges. The AN is the aggregation point for the
mobile nodes and ad hoc mobile networks, and the EN
is the aggregation point for the Access Nodes.

• Transport is provided by Cache-and-Forward(CNF)
routers. These CNF routers may appear throughout the
network hierarchy, as caching routers or edge nodes in the
core, as caching access nodes, or even as caching mobile
hosts in the mobile fringe, which are called as Carry-and-
Carry(CNC) routers. Both CNF and CNC routers have
persistent storage.

• Every mobile node is associated with a set of Post Of-
fices(PO): Typically, access nodes on the wired network
will serve as post offices. However, in our design, any
CNF node, even a mobile CNF node can be a PO.
Each mobile has a list of post office descriptors (POD)
that characterizes both the mobile time-varying network
connection as well as the properties, such as mobility,
of the associated POs. Each mobile node is responsible
for updating its post office descriptors. Note that a PO
is different from Mobile IP Foreign Agent because the
PO is not required to forward data to the mobile; rather
the mobile is expected to arrange to pick up any data
destined for it from the PO. In addition, unlike Mobile
IP, there may be multiple POs corresponding to a mobile
node.

B. Advantages of Cache-and-Forward

1) Efficient Multihop Wireless Transmission: Consider an
ad hoc wireless network with stationary nodes such that the
PHY layer radio connectivity is adequate. Suppose that these
nodes are supporting a TCP file transfer over a multihop radio
path. In this case, data packets in the forward direction (from
sender to receiver) contend for the channel with RTS/CTS
at the PHY layer as well with TCP ACK messages in the
reverse direction. These contending data packets cause self
interference to the multihop route and can disrupt timely
control message exchanges. This condition can be perceived
as a lost link, triggering inappropriate route repair or route
discovery mechanisms, ultimately resulting in transport layer
timeouts and dramatic reductions in throughput. This defi-
ciency is in addition to the problems caused by physical layer
outages induced by fading on a single link, for which solutions
have been developed. Alternatively, hop-by-hop transmission

Algorithm 1 The routine on an endpoint.
contentLocationList ← FindLoc(CID)
bestLocation ←
CalculteBestLocation(contentLocationList)
content ← RetrieveContent(CID, bestLocation)

of the file by CNF routers avoids self-interference, since the
transmission on any hop does not start until the previous
hop is completed. Although this forfeits the potential benefits
of pipelining, preliminary experiments[28] indicate that the
reduction in self-interference more than compensates.

2) Facilitating cache-and-carry to increase capacity in
mobile scenarios: Cache-and-Forward allows for a seamless
unified routing solution for wired and wireless networks. In
this case, a route could be a sequence of hosts capable of
sustaining a real-time connection or a sequence of hosts(CNC
routers) physically carrying the data, or even some combina-
tion of these approaches. The potential diversity of routes is
increased because an end-to-end real-time connection is no
longer mandated.

3) Making content sharing a first class service: Cache-
and-forward can provide benefits in the wired Internet where
peer-to-peer (P2P) traffic has become widespread. Since P2P
data transfer is not a ”service” offered by the Internet, several
independent applications with very different architecture and
protocols have been developed to accomplish what is essen-
tially the same result. Such peer-to-peer file transfers have
become so common that it is worth having a common service
from the network to meet these needs. This is analogous to
TCP, without which each application that requires reliable
transport of packets would have had to develop its own reliable
transport protocol. Just as TCP offered a ”reliable byte stream”
service to the hosts connected to the Internet, the Cache-and-
Forward architecture can provide an ”efficient file transport
service” between hosts on the next generation network.

In such an architecture, caching of popular files becomes
a natural component of the network layer. Multiple copies of
any large content file may be stored in caches to maximize
the probability of timely delivery when the location of the
recipient is not certain.

IV. CONTENT DISSEMINATION FRAMEWORK IN A CNF
NETWORK

The content dissemination framework consists of two
phases. The first phase is content discovery, in which a
requestor discovers the location(s) of the desired content files.
Following that, the second phase is content retrieval, in which
the endpoint sends a request towards the hosting server, and
the requested content will be returned to the requestor as the
outcome. This framework is summarized in Algorithm 1. In
the rest of this section, we discuss these two phases in detail.

A. Content Discovery Through Content Name Resolution Ser-
vice (CNRS)

To make the network centered around content delivery, we
introduce the notion of persistent, globally unique content



Fig. 1. Cache-and-Forward architecture.
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Fig. 2. CNRS implementation using handle system.

identifiers, referred to as CID’s. CID’s must be location-
independent: A content file stored in multiple locations within
the CNF network will be referred to by the same CID. In
today’s Internet, content is identified by a URL whose prefix
consists of a string denoting the location of the content, which
is not location-independent, and thus is not a good candidate
for CID. One possible candidate for CID is the notion of a
handle as in the Handle System [29]. In the Handle system,
upon creation, a content file is assigned to a unique CID, and
the CID stays the same throughout its lifetime, even though the
content may be relocated or replicated to multiple locations.
An important service a CNF network provides is for endpoints
to retrieve specific content. Here, we assume that endpoints
can obtain the content’s CID before hand through a search
engine-like service.

After obtaining the CID, an endpoint then needs to find the
locations of the content through the Content Name Resolution
Server (CNRS), which maps a CID to a list of hosts (and/or
their mirrors) that have a copy of the content. A possible
implementation of CNRS would be through the handle system
that consists of a global handle registry, local handle services,
and handle servers that form a hierarchical structure, as shown
in Fig.2. The global handle registry can map a CID to the
corresponding local handle services providing links to handle
servers, which in turn store the locations of the content.

In such a system, a Content Name Resolution re-
quest from the requestor endpoint is first routed to the re-
questor’s local handle service node. If the requested CID is
not found on the local handler service node, the request will
be routed to the global handle registry, which then forwards
the request to the destination local handle service node. The

Algorithm 2 Cache-n-Capture routine on a CNF router.
loop

/* Capture */
if The CNF just received a ContentRetrieval request originated
from node S for content CID then

cached ← CheckCache(CID)
if cached =true then

Send(CID, S, content)
else

Forward(req, nextHop)
end if

end if

/* Cache */
if The CNF just received a ContentReply destined to node S
with content CID then

toCache ← CheckCachingCriteria(CID)
if toCache =true then

Cache(CID)
else

Forward(reply, nextHop)
end if

end if
end loop

destination local handle service will then consult its handle
server and return a list of servers/hosts of the content to the
requestor. The location list consists of two parts: the default
server, and the other servers (or mirrors). The list will be
routed back to the requesting endpoint using IP protocols.

From the list of content sources, an endpoint can select the
most suitable source node to send a Content Retrieval
request to. An endpoint can make this selection based on
various criteria, and one likely candidate is the closest source
node. The request is routed towards the chosen content source
using IP protocols.

In this paper, we consider every content only has one
original server, the mapping between a CID and its server
is maintained by the CNRS service.

B. Content Retrieval Method: Cache-n-Capture (CC)

In Cache-n-Capture (CC), both content caching and access
are passive. Here, a CNF router only caches those content files
that are routed through it (i.e., caching), and a CNF router only
helps return the cached copy to those requests that are routed
through it (i.e., capture).



First, let us look at the capture part of CC. A CNF router,
after receiving a Content Retrieval request, first checks
whether the content is cached locally. If the CNF router has a
copy of the requested content, it stops forwarding the request
to the destination node, but instead, it returns the local copy
to the requestor hop by hop.

Next, let us look at the caching part of CC. When a content
file is routed through a CNF router towards the requesting
endpoint, the CNF router can choose to cache the content
based on some criteria. Below are some example criteria:
• Popular content. Content popularity can be indicated by

the content sources.
• Interest level. A CNF router can maintain a list of content

files to which the number of requests has exceeded a
threshold, and chooses to cache these files when they
pass by.

• Source specification. Sometimes the content source can
specify whether and how the cache should be cached, e.g.
caching at every hop.

Another issue that is worth noting is the cache replacement
policy. When the cache of a CNF router becomes full, it can
evict a victim content to accommodate the new content. The
victim can be selected based on a range of policies, including
First In First Out(FIFO), Least Recently Accessed First(LRU).

The algorithm of CC is summarized in Algorithm 2.

V. THE CC OPTIMIZATION FRAMEWORK

In this study, we formulated the Caching-n-Capture strategy
as an optimization problem with the objective of minimizing
average content retrieval latency. Since the storage on each
CNF router in the static access network can not be infinitely
large to cache all contents, the problem is to answer what is
the optimal set of contents that should be cached in each CNF
router with the limited storage.

A. System Model

To formulate the optimization problem, we assume that the
popularity distribution of the contents is known a priori, which
follows the MZipf distribution, which defines the probability
of retrieving the i-th content out of F available contents as

Pr(i) =
1

(i + q)α ·K , (1)

and

K =
F∑

i=1

1
(i + q)α

, (2)

where α is the skewness factor which is the same as the
skewness factor in Zipf distributions, and q is the plateau factor
which controls the plateau shape (i.e. flattened head) near the
most popular objects that are lowest ranked. A larger q value
indicates a more flattened head.

Since in CNF architecture, the access node is aggregation
point for the mobile nodes and ad hoc mobile networks,
it represents the mobile nodes to send out content retrieval
requests. Thus we model the static core and access network to

be as an undirected graph G = (V, E), where a vertex in V
represents a node, and an edge in E represents a network link.
An access node may request the same content more than once,
if there are different mobile nodes connecting to it which have
the same interest to that content. We also assume each node in
the network is a CNF router, which has persistent but limited
storage.

Before we introduce our models, we first summarize the
parameters and variables used in the model. The following
parameters are defined in the formulation:
• Nodes: 1, 2, ...N ;
• Contents: 1, 2, ...F ;
• Link bandwidth: B;
• Request packet size: Q;
• Size of content i : fi;
• Processing delay at each node: Dp;
• Per-hop request transmission delay: Dq = Q/B;
• Per-hop content transmission delay: di = fi/B;
• Total delay of requesting content i over a hop: Di =

Dq + Dp + di;
In addition, the following variables are defined:
• Pi,j , the probability for node i to request content j;
• Vi,j , the probability for node i to cache content j;
• Ri, the storage limit of node i;

B. Problem Formulation

To formulate CC, we need to define the following additional
variables:
• Sj , the original server of content j;
• Ha,b, the hop count of the shortest path from node a to

node b;
• Ca→b

h , the h-th node on the routing path from node a to
b (assuming a is the 0-th node on the path);

The objective function is to minimize the average latency,
which can be realized through minimizing the sum of the
latencies for all requests:

min

N∑

i=1

F∑

j=1

Pi,j ·(
Hi,Sj∑

h=1

(h ·Dj ·VC
i→Sj
h

,j
·
h−1∏

k=0

(1−V
C

i→Sj
k

,j
)))

(3)
In Equation 3, the product

∏h−1
k=0(1 − V

C
i→Sj
k

,j
) denotes

the probability that the query from node i for content j is not
captured by the first h − 1 nodes on the routing path to the
server. The h-th node on the path (excluding the requester)
is denoted by C

i→Sj

h , and the probability that it holds the
requested content is V

C
i→Sj
h

,j
. Finally, the product, h ·Dj , is

the latency of retrieving content j from this node.
We have the following constraints:

F∑

j=1

Vi,j · fj ≤ Ri (4)

VSj ,j = 1, j = 1, 2, . . . F (5)



0 ≤ Vi,j ≤ 1 (6)

The first constraint is to make sure that the total size of the
contents cached on each node will not exceed its storage limit.
The second constraint states that the probability that content
j resides in its server should be 1. The third constraint is to
ensure the probability for node i to cache content j is between
0 and 1.

C. Sequential Reassignment Algorithm

In this subsection we give a distributed algorithm that can
obtain a suboptimal solution to (3), which is called Sequen-
tial Reassignment Algorithm. As suggested by its name, the
atomic operation of the reassignment algorithm is reassign-
ment at node i which is denoted by A(i). The execution
of the reassignment algorithm simply consists of each node
randomly or periodically executing A(i), whose details are
given in Algorithm 3. A(i) adjusts Vi,j for j = 1, 2, . . . , F
for local optimality. When A(i) is executed, Vi′,j , i′ 6= i,
j = 1, 2, . . . , F , are assumed to be feasible (meeting the
respective constraints) and fixed. Though the algorithm we
present here implicitly assumes each node i somehow knows
Vi′,j for all j and i′ such that i ∈ (i′, Sj) (the shortest path
from node i′ to the original server of content j), in practice,
these quantities can be piggybacked by requests from i′ or
be estimated at node i by observing request patterns of node
i′. The morale of the reassignment algorithm comes from the
following observations.

Proposition 1: ci,j ≤ 0.
Proof: As given in the assumption for A(i), when Vi′,j

(∀j and ∀i′ 6= i) are known as fixed feasible values at node i,
(3) can be rewritten as

minimize
F∑

j=1

ci,jVi,j + some constants, (14)

subject to
F∑

j=1

Vi,jfj ≤ Ri, (15)

0 ≤ Vi,j ≤ 1, if Sj 6= i, (16)
Vi,j = 1, if Sj = i. (17)

after some algebra. Though (7) that gives the formula of ci,j

is fairly complicated, it is clear that increasing Vi,j for any
particular choice of i and j, while keeping other caching
probabilities fixed, can only decrease the average latency, i.e.,
caching a new file without replacing any old files can only
reduce the latency. Apply this observation to (14), we find
this is possible only when ci,j ≤ 0.

Proposition 2: A(i) solves the optimization problem in
(14).

Proof: If
∑F

j=1 fj ≤ Ri, then the optimal solution is
trivially Vi,j = 1,∀j, which is accomplished by A(i). Now

Algorithm 3 A(i) (Reassignment at node i)
Step 1: Calculate ci,j

for j = 1 to F do

if i 6= Sj then

ci,j =
∑

i∈(k,Sj)

i6=k

Pk,j(hk,i,Sj− 1)Dj

hk,i,Sj
−1∏

`=0

(
1− V

C
k→Sj
`

,j

)

−
∑

i∈(k,Sj)

Pk,j




Hk,Sj∑
h=hk,i,Sj

+1

(h− 1)DjV
C

k→Sj
h

,j

h−1∏
`=0

6̀=hk,i,Sj

(
1−V

C
k→Sj
`

,j

)



(7)

end if
end for

Step 2: Sort ci,j/fj
such that

ci,j1/fj1 ≤ ci,j2/fj2 ≤ · · · ≤ ci,jti
/fjti

(8)

where ti denotes the size of the set of j ∈ {1, 2, . . . , F} such that
i 6= Sj ;

Step 3: Find extra storage space of node i
Find 0 ≤ d ≤ ti such that

∑

1≤m′≤F
i=Sm′

fm′ +
∑

1≤m≤d

fjm ≤ Ri (9)

and for any n > d,
∑

1≤m′≤F
i=Sm′

fm′ +
∑

1≤m≤n

fjm > Ri (10)

Step 4: Reassign the values of Vi,j
Set Vi,j = 1 for Sj = i.
if d = 0 then

Set Vi,j = 0, if Sj 6= i;
else

Set

Vj1 = · · ·Vjd = 1 (11)

and

Vi,jd+1 =

Ri −
∑

1≤m′≤F
i=Sm′

fm′ −
∑

1≤m≤d
fjm

fjd+1

, (12)

Vjd+2 = · · · = Vti = 0 (13)

end if

assume
∑F

j=1 fj > Ri. Form the partial Lagrangian of (14)

minimize L =
F∑

j=1

ci,jVi,j + µ




F∑

j=1

fjVi,j −Ri


 (18)

=
F∑

j=1

(ci,j + µfj)Vi,j − µRi (19)

=
F∑

j=1

fj(ci,j/fj + µ)Vi,j − µRi (20)



subject to (16) and (17), with µ ≥ 0 be the dual variable.
Suppose the optimal dual variable µ satisfies µ = 0. Since we
know ci,j ≤ 0 by Proposition 1, the optimal solution is clearly
Vi,j = 1,∀j. But by assumption

∑F
j=1 fjVi,j =

∑F
j=1 fj >

Ri, i.e., the optimal solution violates the constraint. This
contradiction shows that µ > 0 and, by complimentary
slackness, (15) is tight. The optimal solution is hence obtained
by setting Vi,j = 1 if Sj = i and setting

Vi,j =





1, ci,j/fj + µ < 0,

0, ci,j/fj + µ > 0,

any feasible value, ci,j/fj = 0,

(21)

for those j if Sj 6= i, such that µ > 0 and (15) is tight. Readers
can check that one such solution is constructed by A(i) if we
let µ = −ci,d+2/fd+2.

Corollary 1: The reassignment algorithm converges to a
suboptimal solution.

Proof: By Proposition 2, each execution of A(i), in any
order, can only result in a smaller and better optimal objective
value in (3). Since the objective value is lower bounded by
0. The reassignment algorithm converges to a suboptimal
solution.

Corollary 2: If the reassignment algorithm discovers a op-
timal solution, every further execution of A(i) can only result
in an optimal solution.

Proof: Obvious.

VI. SIMULATION RESULTS

A. Parameter Settings

1) Network Topology: In order to keep the optimization
problem tractable, we considered a network with 12 CNF
routers that totally host 12 contents. We used the Georgia
Tech Internetwork Topology Model (GT-ITM) [30] [31] to
generate the network topology. The network consists of one
transit network and two access networks. Within a stub, the
stub nodes represent access nodes for mobile end users in local
area networks (LANs) (each of these stub nodes represents one
LAN), and as a result, these stub nodes generate user requests.
Each CNF router can cache contents that pass by.

2) Normalized Content Request Probability: In order to
solve the objective functions, the key is to calculate Pi,j , the
unified probability for node i to request content j. In order
to model spatial locality, we assume that requests from an
end node are most for contents originated from the same stub,
others are for remote contents. We define this percentage to
be σ, which is called locality parameter.

Calculating the variable Pi,j involves two steps. First, from
Equation 1, we can derive the probability of retrieving an
content at a certain rank out of a total of F contents. Second,
we should take the locality property of content retrieval into
consideration. Thus, we have:

Pi,j =





0,

if i is the server of content j

σ × 1
N
× Pr(j)∑h∈SSi Pr(h)

,

if j ∈ SSi

(1− σ)× 1
N
× Pr(j)∑h∈DSi Pr(h)

,

if j ∈ DSi

1
N
× Pr(j)∑h∈DSi Pr(h)

,

if j ∈ DSi and SSi is empty
1
N
× Pr(j)∑h∈SSi Pr(h)

,

if j ∈ SSi and DSi is empty

(22)

SSi = {contents hosted in the same stub as node i}
DSi = {contents hosted in different stubs}

B. Caching Schemes Evaluated

In addition to the proposed Sequential Reassignment
caching algorithm, we included four caching schemes:
• LPFO-every: Contents are cached on every enroute CNF

router from the original content server to the requester
if there is extra storage. Otherwise, Least-Popular-First-
Out(LPFO) replacement policy is applied, which means a
CNF router always evicts the least popular content from
its cache to provide room for the new one.

• LPFO-even: Contents are cached on enroute CNF routers
which are even hops away from the original server. In
any case, the requester always caches the content. LPFO
replacement policy is also used.

• LRU-every: It is similar to LPFO-every. Instead of Least-
Popular-First-Out, LRU replacement policy is employed.
If thre is no enough free space, the CNF router purges
one least recently accessed content to make room for the
new one.

• LRU-even: It only varies from LPFO-even in the replace-
ment policy. LRU is used instead.

C. Performance Results

1) Impact of Cache Size: In Fig. 3, we compare the average
content retrieval latency of the four caching schemes. The
simulations were made across a wide range of cache sizes,
from 10% to 80%, and we set the locality parameter σ
to be 0.8. All caching schemes provide steady performance
improvement as the cache size on each CNF router increases.
The curves of LPFO-every and LPFO-even overlap. With
LPFO replacement policy, caching contents on every or every
other enroute CNF router does not make much difference
in the resulting performance. The two schemes with LRU
replacement policy achieves better average retrieval latency
than those two schemes with LPFO. Compared to LPFO, LRU
running on each intermediate CNF router is more capable
of learning the real content popularity by looking at the
access rate of cached contents. The caching scheme LRU-
every outperforms other three schemes, thus in Fig.4 we only
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Fig. 3. Average content retrieval latency with four caching schemes
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Fig. 4. Average content retrieval latency with Sequential Reassignment

compared the proposed Sequential Reassignment algorithm
with LRU-every.

From Fig.4, we can see that Sequential Reassignment
algorithm significantly reduces the average content retrieval
latency. The relative improvement over LRU-every increases
with the cache size on each CNF router. The performance
gain can be as high as 70% when the cache size is 80%. At a
reasonable cache size, such as 20% or 30%, the performance
improvement can reach 20% and 30% respectively.

2) Impact of Locality Parameter: In this set of experiments,
we varies the locality parameter σ from 0.6 to 1. The cache
size on each CNF router is set to 20%. From Fig.5, we can
see that the average content retrieval latency decreases with
the locality parameter for both LRU-every and Sequential
Reassignment. Larger σ means mobile end users tend to
request the contents originated from the same stub, which
makes the retrieval latency small due to small distance from
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Fig. 5. Average content retrieval latency vs. locality parameter

the original server or enroute cache. The gap is more widened
between LRU-every and Sequential Reassignment when the
locality parameter is smaller. Sequential Reassignment shows
outstanding efficiency in guiding enroute CNF routers to cache
proper contents.

VII. CONCLUDING REMARKS

The Cache-and-Forward (CNF) Internet architecture is a
significant departure from TCP/IP based Internet architecture
in that it opportunistically transports named contents in “pack-
ages” in a hop-by-hop manner. CNF is designed to solve
the problem of content dissemination and content retrieval in
future Internet with a significant number of intermittently con-
nected mobile endpoints. Such an architecture is made feasible
by improving cost-performance of storage and computation at
routers.

The CNF network has two key components when it comes
to content dissemination and content retrieval: (1) in-network
caching and (2) content-enhanced routing. Caching in the
CNF network is distinctively different from caching in today’s
Internet because caching is built into the very fabric of the
CNF network by allowing each individual CNF router to cache
rather than building caching as an overlay infrastructure on top
of the core TCP/IP network. This is instrumental in keeping
content close to the requester, no matter whether the content
is globally or locally popular.

Based on this architecture, we presented the content dis-
semination framework, which consists of two phases: content
discovery and content retrieval. We focused on the content re-
trieval method: Cache-n-Capture. An intermediate CNF router
can cache those content files that are routed through it and
helps return the cached copy to those requests that pass by.

We developed a mathematical model for CC to solve the
problem how a CNF router independently decides which con-
tents should be cached. We proposed the Sequential Reassign-
ment algorithm to solve the optimal problem. The simulation



results show that SR outperforms the simple enroute caching
with LPFO and LRU replacement policies by as high as 70%
when the cache size is large. Even with small cache size, the
performance gain can achieve 30%.
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