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1. INTRODUCTION 
 
Today, an important research line in the field of signal 
processing of atmospheric-lidar signals is the pre-processing 
and multi-spectral inversion of atmospheric elastic/Raman 
signals, and in co-operation with passive sensors (WMO 
GAW, 2007; Ansmann et al., 1992). Key data products range 
from simple range-corrected atmospheric quick-looks to the 
retrieval of aerosol microphysical parameters (Böckmann, 
2001).  
In Europe, EARLINET is the ground-based atmospheric lidar 
observation network at continental scale (Matthias et al., 2004; 
Böckmann et al., 2004; Pappalardo et al., 2004). In the 
RSLAB (Remote Sensing Laboratory), an important effort 
within EARLINET has been the development of a scanning 
2+1 elastic/Raman lidar system (1997-2007) and the ongoing 
development of the 3+2+1 multi-spectral (UV-VIS-NIR) lidar 
system since 2003 (Kumar et al., 2006). The acquisition 
system in reception is based on LicelTM TR40-80 transient 
recorders, which provide simultaneous analog/PC acquisition 
of lidar signals by combining a 40-Msps, 12-bit ADC with a 

250-MHz photon counter. Licel transient recorders have a 
parallel analog and PC detection chain. The combination (i.e., 
gluing) of both analog and PC signals gives the high linearity 
of the analog signal for strong signals and the high sensitivity 
of the photon counting for weak optical signals (Licel, 2007). 
Thus, the dynamic range of clean-data glued lidar signals can 
reach up to 5 orders of magnitude. To glue both signals, the 
PC channel must also be dead-time corrected (Whiteman, 
2003; Hamamatsu, 1998). 
 

2. ENHANCED GLUING ALGORITHM 
 
The basic gluing algorithm proposed by LicelTM (2007) 
combines analog- and PC-recorded signals in a fixed fitting 
range interval [ ]BA RR , , where both analog and PC signals 
are valid and have a high signal to noise ratio. Licel’s gluing 
algorithm minimizes the error norm between the dead-time-

corrected photon-counted (PC) signal, pcV , and a scaled and 

offset version of the analog signal, aV , for the solving 
parameters a (scaling) and b (offset) in the fitting interval 
[ ]BA RR , . That is, 
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where the error vector is defined as 

                                   ( )bVaV apcI +−=ε ,                  (2) 

with bVaV aa +=′ , the scaled-and-offset analog signal. 
For a typical mini-PMT the fitting interval corresponds to the 
range interval where the PC signal is in the 0.5-to-10-MHz 

region. In Eq.(1) the residual error norm 
2

Iε  is an indicator 

of the quality of the fitting. Besides, bVa a >>  so that the 

scaling parameter a  is the dominant parameter in the residual. 
 
The enhanced gluing method proposes a fine-tuning 
automatic-search algorithm to find the best fitting range 
interval I  ensuring minimum residual error norm. Towards 
this goal a two-step procedure is followed: 
1) First, the central point of the best fitting range interval, iI , 
is obtained. To do that, the modified form of Eq.(1) above,  
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is solved for ( ) iiii Ibax ↔= ,  along successive adjacent 

fitting range intervals ( )i
B

i
Ai RRI ,∈  of constant length ( RΔ  

= 100m) centered at the range iR . In practice, iR  is 
incremented in steps of RΔ  along the measurement range. 
When the scaling parameter ia  is plotted as function of the 

central range of the fitting interval, iR , a parabolic behaviour 
is obtained. The parabolic behaviour of the error norm is in 
accordance with the foundations of maximum-likelihood 
classical estimation methods (Barlow, 1989). The minimum of 
the parabola, yields the sough-after central point, optR , of the 
best fitting interval along the measurement range. 
2) Once optR  has been determined, the end points of the best 

fitting range interval, opt
AR  and opt

BR  (i.e., left and right to the 

central point optR ) are computed from the intercept points 
between the error parabola and a threshold level 1% above the 
minimum of the parabola (i.e., optaa 01.1=γ , in Fig. 2).  The 
1% criterion has been determined by experiment and yields a 
typical fitting length, opt

A
opt
B RR − , of about 1.5 km, which is 

approximately the same fitting length as in the basic gluing 
algorithm of Eq.(1).  

Because iai bVa >>  also holds for Eq. (3), the error norm, 

2

optIε  is also minimum when so is the scaling parameter ia , 

thus guaranteeing an optimal fitting. 
 

3. CONCLUDING RESULTS 
 
Saharan dust intrusion episodes are frequent in the Iberian 
Peninsula (Pérez et al., 2006) and occur at low-troposphere 
heights. Because of the high intensity of the lidar returns in the 
near-range range, these dust episodes are nicely recorded by 
the analog channel and poorly recorded by the PC channel, 

which saturates due to the large number of counts in the near-
range. The opposite situation occurs when monitoring 
volcanic eruptions (Guerrero et al., 2010), which inject 
volcanic aerosols up in the stratosphere. At such heights, the 
lidar returns are too faint to be properly recorded within the 
sensitivity of the analog channel (only a few ADC levels are 
“moved” and with a very poor signal-to-noise ratio (SNR)). 
 
In Fig, 1, the analog signal is very noisy at the high range 
around 17 km so that volcanic aerosols cannot be 
distinguished from noise. PC signal fails to display aerosol 
layers below about 3 km. In contrast, the glued quick look of 
Fig. 2 and Fig. 3 evidences with a good signal-to-noise ratio 
both Saharan dust layers in the 0-4 km subplot (low range) and 
volcanic aerosols in the 15-18 km subplot (high range). 
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6. FIGURES 

 
Figure 1. Comparison among analog, PC, and glued 

signals. (Blue) Analog raw signal, aV . (Red) Scaled-and-

offset analog signal, bVaV aa +=′ . (Black dotted) PC 
signal. (Green) Glued analog-PC signal. Note that below 
2.6km (corresponding to a 10-MHz count in the PC 
channel) the glued signal follows the analog signal while 
above this range it follows the PC signal. 
 

 
Figure 2. Time series monitoring the evolution of a vertical 
profile of volcanic aerosols in the stratosphere (about 
17km) and several Saharan dust layers in the troposphere 
(below 3.5km), 532nm channel. (a) Range-corrected profile 
for the glued signal. (b) Glued signal time series. 

 

 
Figure 3. Glued signals zoomed in the low range (0-4 km) 
and in the far range (15-18 km).
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