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ABSTRACT 

The formulation and solution of an optimization problem for the design of a current 

controlled switching power amplifier to drive a piezoelectric actuator is the subject of this 

paper.  The design is formulated as a continuous optimization problem.  A detailed model 

that includes the anhysteretic nonlinearity between the electric field and polarization is 

developed and is coupled with a dynamic model of the amplifier.  The design 

specifications are formulated as optimization constraints.  The objective function is 

chosen to be the weight of the inductor.  Optimization results are presented to 

demonstrate the efficiency of the proposed design methodology. 

mailto:lindner@vt.edu
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NOMENCLATURE 
Variable Description 

ε33 Dielectric permittivity of piezoelectric actuator material, farad/meter 
d33 Piezoelectric charge coefficient of actuator, meter/volt 
Y33 Elastic modulus of actuator, Newton/meter2 
D3 Electric displacement or Polarization in actuator, Coulomb/meter2 
E3 Electric field in actuator, Volt/meter 
T3 Mechanical stress in actuator, newton/meter2 
S3 Mechanical strain in actuator 
l Length of actuator, meter 
w Width of actuator, meter 
d Thickness of a one layer of actuator, meter 
n Number of layers 
k2 Electromechanical coupling coefficient 
ql Charge per layer of the actuator, coulomb 
Cl Capacitance per layer of actuator, farad 
q Total charge in actuator, coulomb 
C Zero stress capacitance of actuator, farad 
K1 Strain of actuator/Displacement of structure, 1/meter 
K2 Force exerted my actuator/Stress in actuator, 1/meter2 
P Net Polarization in the actuator C/m2 
Ps Saturation Polarization of actuator material, C/m2 
a Scaling electric field of actuator material, C/m2 
Cblk Blocked capacitance of actuator, farad 
Vm1,Vm3, Vm5 Fundamental, third and fifth harmonic components of actuator voltage, volt 
Ka Equivalent stiffness of actuator, newton/meter 
M Mass of structure, kg 
K Stiffness of structure, newton/meter 
B Damping of structure, newton-sec/meter 
fext External disturbance force on structure, newton 
fa Force exerted by actuator on structure, newton 
va Instantaneous voltage across actuator, volt 
ia Instantaneous  current through actuator, ampere 
Imax Maximum amplitude of actuator current, ampere 
Vdc DC bus voltage, volt 
idc DC bus current, ampere 
ga, gb Gating signals to amplifier switches 
da, db Equivalent duty cycles of ga, gb 
vab Amplifier output voltage, vab 
dab Amplifier duty cycle 
dab,max Maximum amplifier duty cycle 
Gpq(s) Charge to Polarization transfer function 
Gpi(s) Current to Polarization transfer function 
Hc(s), Hf(s) Current controller transfer functions 
ωF Excitation frequency of iref 
Vabk, Iak, Pk Harmonic components of amplifier voltage, actuator current and Polarization 
Idis Distortion component of actuator current, ampere 
THD Total harmonic distortion of actuator current 
K1l, K2l Aspect ratios of Center leg and window of EE core 



 

Chandrasekaran, Lindner, Smith 3 
 

Cw, Ww Widths of center leg and window of EE core, m 
Acp, Ap Cross sectional areas of inductor winding and center leg of EE core, m2 
n Number of turns of inductor winding 
lg Air gap length of inductor, m 
µo Permeability of free space, H/m 
Bsp Saturation flux density of ferrite, Tesla 
Fw Window fill factor of EE core 
Wbob Width of bobbin of EE core, m 
Fc Winding pitch factor of EE core 
ρCu, ρfe Densities of copper and iron, kg/m3 
Volcu, Volfe Volumes of copper in winding and iron in core of inductor, m3 
Zp Mean magnetic path length of EE core, m 
J Objective function 
WL Inductor Weight, kg 
Wcu, Wfe Weight of copper and iron in inductor, kg 
MLT Mean length/turn of inductor winding, m 
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1. INTRODUCTION 

The design of drive amplifiers for piezoelectric and electrostrictive actuators is a 

challenging task.  It is well known that these actuators exhibit highly capacitive electrical 

characteristics.  In addition, these actuators exhibit a hysteretic nonlinearity between the 

polarization and the electric field.  Due to the reactive undamped electrical characteristics 

of the actuator, the drive amplifier is required to process almost zero real power and a 

considerable amount of reactive power circulates between the actuator and the amplifier.  

The size and the weight of the amplifier is determined almost entirely by the amount of 

reactive power processed.  Hence, the amplifier can be large compared to the actuator 

itself.  Therefore, there is interest in determining a minimum weight amplifier for a given 

actuator.  We address this problem herein. 

Standard linear amplifiers must dissipate the regenerated energy as heat.  These 

amplifiers automatically require a large heat sink.  In contrast, switching amplifiers 

recycle the regenerative energy back to the power source, resulting in a very efficient 

amplifier.  Because of this property, switching power amplifiers are beginning to be 

recognized as promising alternatives for driving piezoelectric and electrostrictive 

actuators (Main, et al., 1995; Zvonar, et al., 1996; Zvonar and Lindner, 1997; Clingman, 

1997; Zvonar and Lindner, 1998).  In this paper, we focus on an optimization 

methodology to minimize the weight of a switching amplifier. 

Optimization of drive electronics for piezoelectric actuators was addressed by 

Newton, et al (1996).  However, a well-defined optimization procedure that yields 

physically meaningful designs of the individual components of the amplifier has not been 
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proposed.  To this end, the formulation of an optimization problem for the design of a 

switching power amplifier to drive a piezoelectric actuator is described.  The topology 

chosen is that of a single-phase DC-AC inverter with a filter inductor connected on the 

AC side.  The switching devices in the amplifier are controlled using the principle of 

pulse width modulation. 

The organization of the paper is as follows: A description of the system under 

consideration, definition of the design specifications and motivation to optimize the drive 

amplifier are presented in section 2.  A detailed electromechanical model of the 

piezoelectric actuator coupled to a mechanical structure is developed in section 3.  The 

operating principles of the drive amplifier, pulse width modulation, the development of 

the average model and implications of using current control are also described in section 

3.  The determination of the DC bus voltage for the drive amplifier is described in section 

4.  The estimation of the switching ripple in the actuator current is discussed in section 5.  

The optimization problem is then explained in detail in section 6.  Section 7 consists of 

the optimization results followed by the conclusions in section 8.   

2. PROBLEM DEFINITION 

In this paper we consider a switching amplifier driving a piezoelectric actuator 

attached to a structure as shown in Figure 1.  We assume that the piezoelectric actuator 

and structure are given.  In this paper we are interested in the design of the amplifier such 

that it has minimum weight. 
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 We assume that the amplifier is configured as a current controlled amplifier.  That 

is, the actuator is controlled by controlling the current flowing into the actuator that is 

proportional to iref.   
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Figure 1.  System Under Consideration 

(The actuator is not controlled by the voltage across the actuator.)  In the frequency 

domain, this specification is defined in the form of a transfer function shown in Figure 2. 
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Figure 2.  Regulation Specifications of Current Controller 

Note that we exclude zero frequency from the passband in this amplifier topology.  

Clearly, this specification defines the frequency band over which the structure can be 
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actuated.  This data is part of the problem definition including the frequencies ωmin and 

ωmax, which define the bandwidth of operation. 

 We also assume that we want to have the capability to drive the actuator to full 

stroke over the entire operational frequency range.  Since the constitutive equations of the 

piezoelectric material have a saturation characteristic, this assumption implies that the 

amplifier must be able to deliver a maximum current over all frequencies in the 

bandwidth of the amplifier.  This maximum current will be calculated below using a 

nonlinear model of the piezoelectric constitutive equations.  This maximum current 

determines the required value of the bus DC voltage. 

 The main components of the amplifier are: 1) the switching power transistors with 

the pulse width modulator, 2) the current controller, and 3) the inductor.  The selection of 

the power transistors is driven by several implementation issues including voltage ratings, 

thermal dissipation, cost, etc.  However, these transistors all tend to be about the same 

size and weight.  Since we are primarily concerned with the performance of the amplifier, 

we will assume that these switches are ideal, and neglect them in the optimization 

process. 

The current controller is largely driven by the frequency domain requirement on 

the amplifier given in Figure 2.  That is to say, the current controller can be readily 

determined once the value of the inductance is known.  Furthermore, the components of 

the current controller have a negligible contribution to the weight of the amplifier.  

Therefore, the current controller is also excluded from the optimization.   
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 In this paper we will focus on the design of the inductor.  Indeed, the inductor is 

by far the largest component over which we have control, and its value is impacted by the 

other parameters of the amplifier.  Here we will consider the actual physical design of the 

inductor, not only the selection of the inductance value. 

 The power transistor switches are used to control the average voltage and current 

that is delivered to the actuator.  Due to the switching of these transistors, a ripple voltage 

and a ripple current ride on top of these average waveforms.  This ripple current acts as a 

disturbance signal on the actuator causing high frequency excitation and unwanted 

heating in the actuator.  The magnitude of the ripple current is determined by the inductor 

size and the switching frequency of the amplifier.  In the optimization process the 

maximum allowable ripple current is a constraint. 

 The other component which has a major impact on the weight of the amplifier is 

the heat sink.  The selection of the heat sink depends on the device properties of the 

transistor switches.  Inclusion of thermal considerations is beyond the scope of this paper. 

The formulation of the optimization problem consists of the following steps: 

1. Modeling the actuator and the amplifier 
2. Calculation of the DC bus voltage and current ripple 
3. Identification of the design variables 
4. Definition of the optimization constraints 
5. Definition of the objective function 

Each of these steps is described in detail in the following sections. 

 It is straightforward to formulate the optimization problem.  The main challenge 

is determination of the current ripple.  The current ripple can be ascertained from a 

simulation of the system in Figure 1, which includes the switching dynamics of the 
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transistors.  These simulations, however, are computationally very expensive.  Any 

optimization methodology that includes such a simulation would take prohibitively long 

to run.  Therefore, it is necessary to develop a computationally cheap estimate of the 

switching ripple.  A substantial amount of this paper is devoted to this task. 

3. MODEL DEVELOPMENT 

Modeling of the Actuator and Structure 

The electromechanical model of the piezoelectric actuator coupled to a simple 

mechanical structure is developed in this section.  The linear, constitutive equations of 

the actuator are used to develop the model.  This model can be directly coupled to the 

dynamic model of the amplifier.  Modifications to the linear model to account for the 

anhysteretic nonlinearity between the polarization and the electric field in the actuator are 

described.  (The anhysteretic nonlinearity arises because of the domain rotations and 

saturation effects in the piezoelectric material.) 

The mechanical model of the actuator-structure is represented by a simple mass-

spring-damper system acted on by a disturbance force fext as shown in Figure 3. 
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Figure 3.  Schematic of amplifier driving the actuator-structure 

A drive amplifier operating off a fixed dc voltage Vdc provides the power to the 

piezoelectric actuator.  The coordinate system and the forces acting on the mass M are 

identified in Figure 4 where aF  is the force exerted by the actuator on the mass.   

M
fext

fa

Kx
Cx.Cx.

 

Figure 4.  Freebody diagram of the mass 

The equation of motion can then be written as 

aext ffKxxBxM −=++ !!!  (1) 

A block diagram representation of Equation (1) is shown in Figure 5.   
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Figure 5.  Block diagram representation of structure 

The electromechanical model of the actuator is determined in the following.  We assume 

that the actuator has a multilayered stack configuration as shown in Figure 6.   
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Figure 6.  Actuator Configuration 

Each layer is rectangular with width w, length l and thickness d.  The actuator is formed 

by stacking n of these layers together.  Contiguous layers are polarized in opposite 

directions and the voltage is applied to the layers as shown in Figure 6.  The one-

dimensional, linear, coupled, electromechanical, constitutive relations between the strain 

S3, stress T3, electric field E3, and electric displacement D3, are  

3333

33

3 3 3

3 33 3 3
1     

S

E

D E d T

S d E T
Y

= ε +

= +  

(2) 

where, ε33 is the dielectric permittivity, Y33 is elastic modulus and d33 is the transverse 

piezoelectric charge constant (IEEE Standard on Piezoelectricity).  The first index in the 
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subscripts indicates the direction of the electrical component and the second index 

indicates the mechanical direction. The superscript indicates that the constant was 

measured at constant field or strain.  (These superscripts are dropped in the subsequent 

development for simplicity of notation.)  The first equation in Equation (2) states that the 

electric displacement or polarization is the superposition of the direct piezoelectric effect 

and the applied field times the permittivity.  The second equation states that the strain is 

the superposition of Hooke’s law and the converse effect where a mechanical 

deformation is caused due to the application of an electric field. 

Using the geometry of the actuator, we can use Equation (2) to express the 

relationship between charge and voltage.  We assume that the actuator is mechanically 

unconstrained in the one and two directions.  And as usual, the electric field is applied in 

the three direction.  Noting that charge is displacement per unit area, and electric field is 

voltage per unit length, the charge ql entering each layer can be obtained as 

33333
1 Td

d
vq

lw
a

l += ε  
(3) 

Rewriting this equation we obtain 

3333333 lwTdvClwdv
d
lwq alal +=+= ε  

(4) 

where, Cl represents the capacitance of each layer and va is the voltage across the 

terminals of the actuator.  The total charge entering all the n layers of the actuator is then 

given by 

333nlwTdvnCnqq all +==  (5) 

Solving Equation (3) for the voltage va we obtain 
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3
33

33
3

33

33 11 dTdq
C

dTdq
nC

v
l

a εε
−=−=  

(6) 

where, 






==

d
nlwnCC l 33 ε  

(7) 

From Equation (6) the voltage across a piezoelectric actuator is the resultant of two 

components: 1) the direct capacitive effect, and 2) a contribution from the mechanical 

stress.  Next we replace electric field by the voltage in the second equation in Equation 

(2) and substitute in voltage from Equation (6).  We obtain 

( ) 3
33

2

33

33

3
33

3
33

3333

33
3333

33
3333

111

1111

T
Y

kqd
nlw

T
Y

dTdq
Cd

dT
Yd

vdT
Y

EdS a

−+=

+





−=+=+=

ε

ε
 

(8) 

The electromechanical coupling coefficient k2 is 

33

2
33332

ε
dYk =  

(9) 

This constant is defined as the fraction of the input electrical energy that is mechanically 

deliverable. 

To enter these equations into the block diagram, we rewrite Equation (8) as 

 1
1 33

33
32

33
3 





−

−
= qd

nlw
S

k
YT

ε  
(10) 

The block diagram corresponding to these relationships is shown in Figure 7.  The 

displacement in the structure induces a strain in the actuator according to 

xKS 13 =  (11) 
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Similarly, the force applied to the structure by the actuator is derived from the stress in 

the actuator according to 

32TKfa =  (12) 

+
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Figure 7.  Electromechanical model of piezoelectric actuator 

The constants K1 and K2 depend on the coupling between the actuator and the structure.  

They are determined by the location of the actuator, configuration of the actuator, 

bonding layers, modal coupling coefficients of the structure, and other factors.  In 

general, these constants can be determined using the methods presented by Hagood, et 

al., (1990), for example.  If we interpret the physical system represented by Figure 1 to be 

a stacked actuator (Figure 6) bonded rigidly to a mass, then the constants K1 and K2 are 

given by 
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lwK
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=

=
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(13) 

Equations (11) and (12) allow us to couple the actuator equations in Figure 7 to the 

dynamics of the structure in Figure 5.  The complete model is shown in Figure 8.   
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Figure 8.  Complete electromechanical model of actuator-structure 

The model shown in Figures 7 and 8 has been derived from the linear, coupled 

constitutive equations (Equation (2)).  The modifications in the model to account for the 

anhysteretic nonlinearity between the polarization and the electric field are described in 

the following section. 
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Anhysteretic Nonlinearity 

In the absence of interdomain coupling, the anhysteretic nonlinearity according to the 

Ising spin model between the polarization P, and the electric field E3, in the actuator is 

given by Smith and Hom (1999). 

 tanh 3 




=

a
EPP s  

(14) 

 

where, Ps is the saturation polarization of the material of the actuator and a is a scaling 

electric field.  However, in the block diagram shown in Figure 8 electric field in the 

actuator is determined from the polarization.  Hence, inverting the nonlinearity given by 

Equation (14) to conform to the block diagram shown in Figure 8, the electric field is 

determined as 







= −

sP
PaE 1

3 tanh  
(15) 

This nonlinearity is shown graphically in Figure 9.   

PPs-Ps

a
E3

0
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Figure 9.  Inverse nonlinearity between polarization and electric field 

The block diagram of the electromechanical model of the actuator and the structure with 

the nonlinearity is shown in Figure 10. 
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Figure 10.  Electromechanical model of actuator-structure with nonlinearity 

Under the assumption that the polarization P, does not exceed the saturation polarization 

Ps a power series expansion can be used to represent the nonlinearity given by Equation 

(15).  This power series expansion for the electric field is given by 


















+





+





=

53

3 5
1

3
1

sss P
P

P
P

P
PaE  

(16) 

The actuator model can be represented as a cascade combination of a linear transfer 

function between the charge and polarization and the nonlinearity between the 

polarization and the voltage as shown in Figure 11. 
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Figure 11.  Actuator model as a cascade combination of linear and nonlinear systems 

In the following analysis we will frequently use sinusoidal steady state analysis.  

It is clear from Figure 11 that if the input signal to the nonlinearity is a sinusoid, the 

output signal will not be purely sinusoidal, but will contain third and fifth harmonics in 

addition to the fundamental component due to the nonlinearity.  Since the actuator current 

and the polarization are related by a linear transfer function, the polarization is sinusoidal 

at the same frequency as the actuator current.  Hence, if the actuator current is given by 

( ) ( )tItia ωcosmax=  (17) 

the polarization can be represented as 

( ) ( )φω += tPtP m cos  (18) 

The voltage va, at the terminals of the actuator, from Figure 11, is then given by 

( ) ( ) ( ) ( )

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
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
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
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
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++





++





= φωφωφω t

P
Pt

P
Pt

P
Padtv

s

m

s

m

s

m
a

5
5

3
3

cos
5
1cos

3
1cos  

(19) 

Using trigonometric identities it can be easily shown that va consists of the fundamental, 

third and fifth harmonics and can be expressed as 

( ) ( ) ( ) ( )[ ]φωφωφω 55cos33coscos 531 +++++= tVtVtVadtv mmma  (20) 

where, 
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(21) 

Drive Amplifier 

Pulse Width Modulation 

 In this section, we discuss certain aspects of the operation and modeling of the 

single–phase DC-AC inverter shown in Figure 1.  The modulation algorithm and the 

switching waveform, which it engenders, are briefly discussed.  Then a simpler, 

“average’ model of the power stage is introduced.  A more detailed description of the 

power stage and pulse width modulator used in this discussion is shown in Figure 12. 
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Figure 12.  Single phase DC-AC inverter driving the actuator 
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In this amplifier the current used to drive the piezoelectric actuator is synthesized 

by pulse width modulating the voltage from the DC source by properly controlling the 

power transistors with the pulse width modulator.  The inductor (in conjunction with the 

capacitive actuator load) filters the pulse width modulated voltage to deliver a current to 

the load that contains a fundamental component that is proportional to the reference input 

signal and that contains an acceptably small current ripple.  In order to analyze this 

current, we begin by analyzing the voltages in the amplifier. 

A bipolar voltage vab is synthesized from the DC voltage source Vdc by operating 

switches Sap, San, Sbp and Sbn according to a technique known as pulse width modulation 

(PWM) (Mohan, et al., 1995).  The reference signal is modulated with a triangular wave 

called the carrier signal as shown in Figure 13.  The frequency of the carrier signal is the 

switching frequency of the amplifier.  The signals ga and gb are the gating signals 

generated by the pulse width modulator to drive the four switches of the amplifier.  The 

gating signal ga, turns on the switches Sap and Sbn when the reference signal becomes 

greater than the carrier signal and turns them off when the reference signal becomes 

lesser than the carrier.  The gating signal gb, for Sbp and San is the logical inverse of the 

drive signal to Sap and Sbn. 

The voltage vab, shown in Figure 14, at the output of the amplifier is then given by 

dcbdca

anbpdc

bnapdc
ab

VgVg

SSV
SSV

v

−=



−

=
on are   and when 

on are   and when 

 

(22) 
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Figure 13.  Pulse Width Modulation (PWM) 
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Figure 14.  Pulse width modulated voltage vab and its average value abv  

The duty cycle of the gating signal is the fraction of the period for which the gating signal 

is high.  The average value of the amplifier output can be obtained from Equation (22) by 
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replacing the control signals for the switches with the equivalent duty cycles of the gating 

signals as follows 

( ) ( ) ( )( ) ( ) dcabdcbaab VtdVtdtdtv =−=  (23) 

From Equation (23), it can be seen that the duty cycles da and db can be replaced by a 

single duty cycle dab which multiplies the input DC voltage to obtain the average of the 

output voltage of the amplifier.  Since the duty cycle dab cannot exceed unity, the 

maximum amplitude of the average value of the output voltage is equal to Vdc. 

A typical waveform of this actuator current ia is shown in Figure 15 where it is 

assumed that the reference input signal is sinusoidal.  It can be seen that the actuator 

current is nearly sinusoidal at the reference frequency.  The deviation of the actual 

current from the desired fundamental component is called the switching ripple.   
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Figure 15.  Typical waveform of current generated by the drive amplifier 

It can be also shown that the average value of the input current to the amplifier is given 

by 

( ) ( ) ( )titdti aabdc =  (24) 
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Average Model of Amplifier 

In order to incorporate a model of the switching amplifier into the optimization process, it 

is necessary to replace the switches to make the model computationally tractable.  This 

simplified model, called an average model, neglects the switching ripple in the currents 

and voltages and reduces the model to a set of relationships between the average 

waveforms.  This model is valid only over frequency ranges significantly lower than half 

the switching frequency of the amplifier (Kassakian, et al., 1991).  The average model is 

shown in Figure 16.   

vaVdc

idc=dab ia L

vab=dab Vdc

ia

+_

 

Figure 16.  Average model of amplifier driving the actuator 

A transfer function representation of the amplifier can be very easily obtained from the 

average model.  A control block diagram representation coupling the models of the 

amplifier and the actuator is shown in Figure 17. 

dab ΣdcV +
_ s

1ia ( )sGpq
vaq ( ) ( ) ( )53

5
1

3
1 •+•+• da

sP
1P

s
1

L
1

ActuatorAmplifier
 

Figure 17.  Block diagram of amplifier coupled to the actuator 
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The final component of the amplifier is the current controller.  The block diagram 

of the closed loop system with a generic representation of the current controller is shown 

in Figure 18.   

dab ΣdcV +
_ s

1ia vaq P
s
1

L
1 ( )sGpq

( )sHc

( )sH f

Σ+
_

iref

Current
Controller 

ActuatorAmplifier

 

Figure 18.  Block diagram of amplifier and actuator with current controller 

The current controller ensures that the fundamental component of the actuator current 

follows the reference over the regulation bandwidth of the amplifier.  In the analysis that 

follows, it is assumed that fundamental component of the actuator current is identical to 

the reference current command. 

This controller uses the current into the actuator as feedback to create an error 

signal with a reference input signal.  The duty cycle command is then synthesized from 

the error signal.  The design of the current controller depends on the inductance L, the 

capacitance of the actuator, DC input voltage Vdc and the switching frequency fs.  The 

dynamics of the structure can usually be ignored.  In this case, the plant to be controlled 

reduces to a simple second order system.  It is a straightforward exercise to design the 

current controller which turns out to be a proportional or PI controller.  In most cases, the 

current controller can be implemented with analog operational amplifier circuits, whose 
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weight is negligible compared to the weight of the overall system.  Furthermore, the 

weight of the current controller is independent of the control gains.  Therefore, the design 

of the current controller is excluded from the optimization formulation. 

4. DETERMINATION OF DC BUS VOLTAGE 

One of the requirements of the amplifier is to drive the actuator to full stroke over 

the bandwidth of the system.  This requirement implies that the amplifier must produce 

enough current to saturate the piezoelectric actuator when the duty cycle of the amplifier 

is at its maximum value.  This current requirement, in turn, places a restriction on the 

minimum bus voltage Vdc.  The minimum bus voltage is related to the inductance, so we 

need a simple expression for this relationship for the optimization methodology.  We use 

the average model of the amplifier to determine the DC bus voltage neglecting the 

switching ripple in the actuator current and the voltage.  This assumption is validated by 

the fact that the electromechanical power transfer between the amplifier and the actuator 

predominantly occurs at the frequency of the reference sinusoidal current, which is much 

lower than the switching frequency.  The determination of the DC bus voltage goes 

through the following steps.  First we determine the maximum current drawn by the 

actuator.  From this current, we determine the voltage across the actuator using the 

nonlinear model.  The amplifier output voltage abv , is then calculated as the sum of the 

actuator voltage and the voltage drop across the inductance.  The DC bus voltage is 

finally determined such that the duty cycle does not exceed unity when abv  reaches its 

maximum amplitude. 
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A simplified block diagram of the average model of the amplifier and the actuator 

with the nonlinearity is shown in Figure 19. 

Σ+
_

ia P
s
1

L
1 ( )sGpi

va

vabdab Vdc

 

Figure 19.  Simplified block diagram of amplifier-actuator with nonlinearity 

To start with, we assume that the reference current command is selected to drive the 

structure at its maximum deflection.  This current controlled amplifier is configured such 

that the fundamental component of the actuator current is identical to the reference 

current.  (See Figure 2).  Let this sinusoidal current be given by 

( ) ( ) ( )titIti aFref == ωcosmax  (25) 

where, ωF is the frequency that results in the maximum deflection.  From Figure 19, it 

can be seen that the actuator current and polarization are linearly related by a transfer 

function Gpi(jω), whose magnitude response is shown in Figure 20.   
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Figure 20.  Actuator current to polarization transfer function 

(In this case, the amplifier bandwidth is assumed to include the mechanical resonant 

frequency of the structure.  For this particular example, ωF is the damped resonance of 

the structure.)  Hence, for the actuator current given by (25), the polarization can be 

expressed as 

)cos()( φω += tPtP Fs  (26) 

since the actuator is being driven to its maximum deflection.  Using the relationship in 

Figure 20 between the current and polarization, we immediately have 

( )FPI

s

jG
PI

ω
=max  

(27) 

The next step is to determine the voltage across the actuator using the nonlinear 

constitutive equations of the piezoelectric material.  Given the polarization in (26) the 

actuator voltage consists of the fundamental, third and fifth harmonics according to 

Equations (19), (20) and (21) because of the nonlinearity.  Substituting Pm = Ps in (21), 

we obtain 
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



 +++++= )55cos(

80
1)33cos(

48
7)cos(

8
11)( φωφωφω tttadtv FFFa  

(28) 

From Figure 16, the voltage abv , at the output of the amplifier is the sum of the actuator 

voltage and the drop across the inductor.  This voltage is given by 

( ) ( )tv
dt

tdiLtv a
a

ab +=)(  
(29) 

Substituting for ia(t) from Equation (25) and for va(t) from Equation (28), we obtain 

( )tLI

tttadtv

F

FFFab

ωω

φωφωφω

sin

)55cos(
80
1)33cos(

48
7)cos(

8
11)(

max+





 +++++=

 

(30) 

It can be seen from Equation (29) that, in order to guarantee the sinusoidal 

actuator current given by Equation (25), the current controller (Figure 19) needs to 

synthesize a duty cycle command dab, such that the third and fifth harmonic components 

of the amplifier output voltage abv  are identical to those of the actuator voltage va.  

According to Equation (23), the duty cycle dab(t) can be written as 

( )tv
V

td ab
dc

ab
1)( =  

(31) 

The minimum DC bus voltage required is then determined such that the duty cycle given 

by Equation (31) does not exceed its maximum allowable amplitude dab,max when the 

amplifier output voltage abv , reaches its maximum amplitude.  The minimum DC bus 

voltage is hence obtained as 

( )[ ]tv
d

V ab
ab

dc max1

max,

=  
(32) 
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5. ESTIMATION OF ACTUATOR CURRENT 

The next step in the analysis is to determine the current ripple.  Specifications on 

the harmonic content of the actuator current are used as optimization constraints to 

determine the values of inductance and switching frequency.  This analysis is 

complicated by the nonlinear constitutive equations of the actuator.  One approach for 

determining the current ripple is to directly simulate the nonlinear system.  This method 

is computationally too expensive for optimization, however.  Therefore, we will estimate 

the size of the current ripple by computing the amplitudes of the components of the 

Fourier series of the actuator current.   

The switching of the power transistors causes the voltage vab in Figure 14 to be a 

pulse width modulated square wave.  We determine a Fourier decomposition of the 

voltage vab given by, 

( ) ( )∑ +=
∞

=1
cos

k
kkabkab tVtv ϑω  

(33) 

A typical harmonic spectrum of the amplifier output voltage is shown in Figure 21. 

Vabk

fs 2fs 3fs

Vab1

Vab3 Vab5

 

Figure 21.  Harmonic spectrum of amplifier output voltage vab 
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The first, third and the fifth harmonics of the voltage vab, are given by Equation (30).  

Since the actuator current has no third and fifth harmonics, the third and fifth harmonic 

components of amplifier output voltage are identical to those of the actuator voltage va 

and do not contribute to the ripple in the actuator current.  The distortion in the actuator 

current is due to the voltage harmonics whose frequencies are in the switching frequency 

range.   

The Fourier decomposition of the actuator current can be expressed as 

 ( ) ( ) ( )∑ ++=
∞

=2
max coscos

k
kkakFa tItIti θωω  

(34) 

It is assumed that the fundamental component of the actuator current ia is identical to iref.  

The polarization and actuator voltage can also be expressed in a similar fashion as 

( ) ( ) ( )

( ) ( )∑ +=

∑ +++=

∞

=

∞

=

1

2

cos

coscos

k
kkaka

k
kkkFs

tVtv

tPtPtP

ϕω

φωφω

 

(35) 

The harmonic components of va for k=1,3 and 5 are given by Equation (28).  We use 

complex phasor notation of sinusoidal steady state variables to determine the Fourier 

components of the actuator current.  Rewriting Equation (29) in complex phasor notation 

we obtain 






 +

+= 2
πθ

ϕϑ ω
k

kk
j

akk
j

ak
j

abk eLIeVeV  
(36) 

The amplitudes Iak, of the actuator current are then obtained from Equation (36) as 











−=






 −−





 −−

221 πθϕπθϑ

ω
kkkk j

ak

j

abk
k

ak eVeV
L

I  

(37) 
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To obtain the Fourier series components of the actuator current, the corresponding 

components of the actuator voltage are required according to Equation (37).  Typical 

switching waveforms of the actuator current, actuator voltage and amplifier output 

voltage are shown in Figure 22. 

From Figure 22 it can be seen that the polarization and the actuator voltage are 

distorted with negligible switching ripple.  The reasons for this are explained in the 

following.  An expanded view of magnitude of the transfer function Gpi(s), from the 

actuator current to the polarization is shown in Figure 23.   

0.07 0.0705 0.071 0.0715 0.072 0.0725

-3

-2

-1

0

1

2

3

ia(t)

0.07 0.0705 0.071 0.0715 0.072 0.0725
-0.5

0

0.5

0.07 0.0705 0.071 0.0715 0.072 0.0725
-1000

-500

0

500

1000

t

va(t)

p(t)

 

Figure 22.  Switching waveforms of actuator current ia, duty cycle dab, and actuator 
voltage va. 
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Figure 23.  Expanded of transfer function Gpi(s) from actuator current to polarization 

Since the switching frequency has to be significantly higher than ωmax, it can be seen 

from Figure 23, that harmonics of the current in the switching frequency range are 

sufficiently attenuated by the transfer function Gpi(s).  Hence, it can be assumed that the 

harmonic components at the switching frequency range of the polarization are equal to 

zero.  In addition, due to the static nonlinearity between the polarization and the electric 

field, the actuator voltage can also be assumed to be devoid of any components in the 

switching frequency range.  As a result, we have 

6for  0
2for  0

≥=
≥=

kV
kP

ak

k

 
(38) 

Hence, Equation (37) reduces to 

6for  1 ≥= kV
L

I abk
k

ak ω  
(39) 
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6. FORMULATION OF OPTIMIZATION PROBLEM 

Introduction 

We are now ready to establish the optimization methodology using the 

calculations in the previous sections.  We will proceed by identifying the design 

variables, setting up the constraints, and defining the objective function. 

Design Variables 

The design variables for the optimization problem are the variables associated 

with the design of the inductor.  The inductor design includes the physical design of the 

inductor's components, not just the selection of the value of the inductance.  The 

inductors are assumed to be typical EE cores as shown in Figure 24.   

K1lWc

WcWw

K2lWw lg

 

Figure 24.  EE Core and relevant dimensions 

The bobbin is housed on the center leg of the core as shown in Figure 25.   
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Figure 25.  Exploded inductor core and bobbin assembly 

The quantities K1l and K2l shown in Figure 24 are assumed to be fixed and represent the 

aspect ratios of the center leg and the window, respectively (Ridley, et al., 1990).  The 

design variables are listed in Table 1.  The design variables include parameters related to 

the windings and wire size. 

Table 1.  Design variables associated with inductor design 
Variable name Description 

n Number of turns 
Acp Cross sectional area of winding 
Cw Center leg width 
Ww Window width 
lg Airgap length 

The inductance as a function of the physical variables is given by 

g

wlo

l
nCKL

22
1µ=  

(40) 

Constraints 

The optimization constraints are subdivided into performance and physical constraints as 

explained in the following subsections. 
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Performance Constraints 

Total Harmonic Distortion of Actuator Current 

The first performance constraint is the maximum allowable current ripple.  

Because the current ripple is a nonlinear function, we express the actuator current as a 

Fourier series Equation (34), and then measure the current ripple as total harmonic 

distortion.  The THD is the percentage ratio of the distortion component of the actuator 

current to its fundamental component (Mohan, et al., 1995).  It is defined as 

1

100
a

dis

I
ITHD =  

(41) 

where, Ia1 is the rms value of the fundamental component of the actuator current and Idis 

is the rms value of the distortion component.  The fundamental component of the actuator 

current is assumed to be identical to the reference command.  According to Equation 

(34), the distortion component is given by 

∑=
∞

=2

2

2h

ak
dis

II  
(42) 

The THD of the amplifier used at full capacity can be expressed as 

2
max

2

2

100
I

I
THD k

ak∑
=

∞

=
 

(43) 

An upper bound is imposed on the THD of the actuator current to size the inductor at the 

specified switching frequency.   

 The THD of the actuator current is a function of the switching frequency and the 

amplitude and the frequency of the fundamental component of the actuator current.  To 

begin with, the switching frequency is fixed at a specified value.  The amplitude and 

frequency of the fundamental component of the actuator current are determined from the 
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mechanical model according to Equation (27) and Figure 20.  The average amplifier 

output voltage abv  then is determined for this maximum current amplitude from Equation 

(30).  The DC bus voltage is then determined from Equation (32) using the maximum 

duty cycle.  For this DC bus voltage the duty cycle dab, is determined from Equation (31).  

This duty cycle is then modulated with the triangular carrier at the switching frequency as 

shown in Figure 13 to generate the pulse width modulated output voltage vab as shown in 

Figure 14.  The Fourier components Vabk, of the pulse width modulated voltage vab are 

then determined.  Finally, the Fourier series components of the actuator current are 

determined from Equation (39) where the inductance is determined from Equation (40).  

The THD of the actuator current is then determined from Equation (43). 

Physical Constraints 

Physical constraints are defined to guarantee physically meaningful dimensions for 

the core and windings used in the inductor (Figure 24). They are defined as follows: 

• The widths of the center leg Cw, and of the window Ww are not allowed to be less 

that 1 mm to ensure sufficient mechanical strength of the core. 

• In order to ensure sufficient mechanical strength for the winding, the copper wire 

used cannot be greater than 30AWG, which is equivalent to a cross-sectional area 

of 7.29 x 10-8 m2. 

• The number of turns in the inductor cannot be less than one and must be an 

integer. 
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• The current density in the windings of the inductor cannot be greater than 

maximum allowable current density for copper. 

26 A/m 105.1 ×=< Cu
cp

a J
A
I

 
 

(44) 

• The available window area of the EE core must be large enough to accommodate 

the windings of the inductor and the bobbin, which houses the windings (Figure 

22). 







+> wlbob
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2
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(46) 

• The dimensions of the inductor should be such that the maximum allowable 

saturation flux density for core material (which is assumed to be ferrite) is not 

exceeded according to 

2
1

max

wl
sp CnK

LIB >  
 

(47) 

 

Objective Function 

The objective function J, is the weight of the inductor.  That is,  

LWJ =  (48) 

The weight of an inductor is determined as the sum of the weights of iron and copper 

used in the core and windings, respectively  
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cufeL WWW +=  (49) 

From Figure 22, the weight of the copper can be obtained as 

 cucucu VolDW =  (50) 

where, 

( )
91
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kg/m9008 

1

3
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KCFMLT

AnMLTVol

c
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cu

=
+=

⋅⋅=
=ρ

 

(51) 

Similarly the weight of the iron used in the EE core is given by (Figure 24) 

fefefe VolDW =  (52) 

where, 

( )
2

1

2

3

2
12

7800kg/m
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fe

CKA

CπWKZ

AZVol

=

++=

=

=ρ

 

(53) 

7. OPTIMIZATION RESULTS 

The results of the optimization problem are presented in this section.  The 

bandwidth requirements and relevant specifications of the actuator are given below in 

Table 2. 

Table 2.  Operating Conditions 
Variable Value 

Operating bandwidth ωmin= 2π 700 rad/sec < ω < ωmax= 2π 1200 rad/sec 
Dielectric Permittivity, 33ε  (1800)(8.854 x 10-12) F/m 

Piezoelectric Coefficient, 33d  3.8568 x 10-10 m/V 
Elastic Modulus, 33Y  10105.5 ×  F/m 
Actuator Length, l  0.01 m 
Actuator Width, w  0.01 m 
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Layer Thickness, d  0.0001 m 
Saturation Polarization, Ps 0.425 C/m2 

Coercive Electric Field, a 6.4  MV/m 
Mass of Structure, M 200 kg 

Damping of Structure, B 2.56 x 104 N-s/m 
Stiffness of Structure, K 5.4 x 109 N/m 

Vdc 1186 V (determined from (32)) 
Imax 2.8895 A (determined from  (27)) 

Optimization was performed using the VisualDOC optimization software (Vanderplaats, 

1988) using the Modified Method of Feasible Directions algorithm (Haftka and Gürdal, 

1992).  The optimization algorithm used for the present work belongs to a class of 

optimization algorithms termed “gradient based methods”.  If the design space contains 

several local minima, there is a possibility that a gradient-based optimizer may be trapped 

by a local minimum, and the answer will depend on the selection of the initial design 

point.  In the present work, it was found that there were not any local minima in the 

design space, and the optimizer converged to the global minima irrespective of the choice 

of the initial design.  The optimizations were achieved in approximately 10 minutes on a 

500 MHz Pentium III PC. 

A family of optimal designs was obtained by varying the upper bound on the 

THD of the actuator current for switching frequencies of 100 kHz and 200 kHz.  The 

inductance values plotted as a function of the THD of the actuator current for the two 

values of switching frequency is shown in Figure 26.  It can be seen that the inductance 

increases as the upper bound on the THD decreases for a given switching frequency.  In 

addition, the inductance value required to meet a given THD specification reduces as the 

switching frequency increases.   
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Figure 26.  Inductance value vs THD of actuator current 

The weight of the inductor as a function of the inductance value is plotted in Figure 27.   
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Figure 27.  Weight of the inductor vs inductance value 

The weight of an inductor is proportional to the energy stored, which in turn is 

proportional to inductance value and to the square of the peak inductor current.  Since the 

peak current is approximately constant (determined by the maximum polarization), the 

weight of the inductance varies almost linearly with inductance. 
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8. CONCLUSIONS 

In this paper we discuss the problem of designing a minimum weight, current 

controlled switching amplifier for a piezoelectric actuator.  These results are partial in 

that the design of the heat sink is ignored.  With this assumption the design of the 

amplifier reduces to the design of the inductor.  Indeed, the inductor is the largest single 

component of the amplifier.  An optimization methodology is formulated that takes into 

account the physical configuration of the inductor, the bandwidth of the amplifier, the 

effect of the ripple current and switching frequency on the sizing of the inductor.  The 

optimization results demonstrate that the proposed optimization formulation provides an 

effective method to obtain physically meaningful results in a time efficient manner. 
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