
 
Abstract— This paper presents a method to achieve optimal 

active and reactive power contributions from each energy storage 
system in an unbalanced distribution network to minimize power 
loss, while ensuring network current and voltage constraints are 
satisfied. By modelling loads as either constant current or constant 
impedance, the AC optimal power-flow is transformed into a non-
iterative convex optimization problem. The application of capacity 
constraints, voltage constraints, and energy storage constraints in 
an unbalanced three-phase four-wire system is considered, 
addressing specific issues pertaining to unbalanced networks such 
as voltage unbalance and neutral voltage displacement. The 
proposed method is then used to demonstrate optimized dispatch 
of energy storage systems in a suitable four-wire unbalanced 
distribution test network. The contribution of losses in the neutral 
wire to the total losses is also determined for a test system under a 
range of operating conditions and various neutral earthing 
systems, highlighting the importance of considering this in a 
typical unbalanced distribution network.   

Index Terms—Energy storage systems, distribution networks, 
network unbalance, neutral voltage displacement, neutral 
earthing systems, optimal power flow, energy losses.  

NOMENCLATURE 
𝛼𝛼     phasor rotation operator 
𝐵𝐵𝑖𝑖𝑖𝑖     susceptance between nodes i and j 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟    controllable real power injection at ESS x 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟   controllable reactive power injection at ESS x 
𝑐𝑐𝑥𝑥 apparent power rating of the ESS x 
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥   energy capacity of ESS x 
𝐸𝐸𝐸𝐸𝐸𝐸    Energy Storage System 
𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  total loss in the energy storage systems 
𝐺𝐺𝑖𝑖𝑖𝑖     conductance between nodes i and j 
𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃   vector of complex branch currents 
𝐼𝐼𝑖𝑖𝑖𝑖  current through the branch connecting nodes i 

and j 
𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊   vector of current injected into the network at 

each node  
l number of branches 
[𝑴𝑴] mapping matrix relating branch currents with 

terminal node voltages 
n      number of nodes in the network 
𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 energy loss in neutral-to-earth connections 
𝜂𝜂𝑥𝑥    one-way efficiency of a particular ESS x 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙    total power loss in the network conductors 
𝑹𝑹     vector of branch resistances 
𝑅𝑅𝑖𝑖𝑖𝑖     resistance between nodes i and j 
𝑅𝑅𝑁𝑁,𝑖𝑖 resistance of a neutral-to-earth connection at 

node i 

𝑠𝑠 number of controllable energy storage devices 
in the network 

 𝒗𝒗     vector of voltages at each node 
𝑉𝑉𝑎𝑎,𝑚𝑚    phase a voltage at bus m; likewise phases b, c 
𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     real part of the complex voltage at node i 
𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖   imaginary part of the complex voltage at node i 
𝑉𝑉𝑉𝑉𝑚𝑚    negative sequence voltage at bus m 
𝑉𝑉𝑉𝑉𝑚𝑚    positive sequence voltage at bus m 
𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚   voltage unbalance factor at bus m 
𝑋𝑋𝑖𝑖𝑖𝑖     reactance between nodes i and j 
[Y]     nodal admittance matrix of the network 
𝑌𝑌𝑖𝑖𝑖𝑖      complex admittance between nodes i and j 

Minimum and maximum limits are denoted by underbars and 
overbars respectively. Vectors and matrices are in bold, while 
matrices [M] are also denoted by square brackets. Also for a 
matrix [M], we use the notation 𝑀𝑀𝑖𝑖,𝑗𝑗 to denote its entry at the 
ith row and jth column. 

I. INTRODUCTION  
USTAINABILITY is an increasingly important goal in the 
electrical power industry, and the smart grid is the key to 

achieving this [1]. A major aim is to increase the amount of 
renewable generation, especially by integrating distributed 
energy resources (DER) such as solar photovoltaics (PV) and 
wind energy. However, these sustainable energy sources are 
highly unpredictable, and the generation profile often does not 
coincide with periods of high network demand.  One of the most 
important solutions is energy storage. Distributed energy 
storage systems (ESS(s)), especially battery energy storage 
systems (BESS(s)) have the potential to provide many benefits 
in many different facets [2], including primary voltage and 
frequency control, peak shaving and smoothing control [3], 
demand response, energy arbitrage, reduction of network 
losses, and outage avoidance. There is a consensus that BESS 
will play a vital role in enabling smart grids [4], however further 
research is needed to determine how to control and optimize 
BESS in the smart grid. 

Energy loss is an important metric for assessing smart grid 
performance. The reduction of losses in the distribution system 
can result in significant savings [5]. Although many factors 
contribute to energy loss, this paper considers power loss as a 
fixed loss (mainly due to transformer losses [6]) plus variable 
losses which depend on the power allocation in the network. 
The variable losses are the product of the square of current and 
resistance in a branch, added to the loss associated with the 
efficiency of each ESS, and the current flowing through each 
neutral to ground connection multiplied by the neutral voltage. 
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Given a certain total ESS injection, we aim to minimize energy 
losses while satisfying important network and ESS constraints. 
The traditional method is for the ESS contributions to be 
proportional to ESS capacity [7]; however, energy losses may 
be significantly reduced by optimally choosing this allocation. 
The rest of the paper is structured as follows. Section II 
summarizes related work; section III describes in detail the 
problem and formulates the corresponding optimization 
problem. The results of a case study are presented in section V, 
with conclusions drawn in section VI. 

II. RELATED WORK 
ESS dispatch problems have been considered in several 
contexts, e.g. [8], [9], [10]. In [9], for example, a fully 
distributed algorithm is proposed to find the optimal dispatch 
schedule for a smart grid with renewable and energy storage 
integration considering energy losses. However, while these 
studies often include the aspect of time scheduling, they tend to 
use either power-balance equations [8], direct current (DC) 
power-flow (extended to include losses in [9]), or require full 
non-convex alternating current (AC) load-flows [10], iterative 
methods [11] and/or complex nonlinear optimization methods 
such as particle swarm optimization [12]. The method proposed 
in this paper is a convex approximation of the AC optimal 
power-flow problem based on a nodal admittance matrix 
power-flow. Similar load-flow algorithms have been used in 
[13] [14] and [15] for unbalanced distribution networks, 
although these do not consider an extension to the optimal 
power-flow or power allocation problem. The convexity of the 
problem significantly improves scalability, guarantees a global 
optimum, and enables the implementation of distributed control 
schemes. It is also an important step towards the 
implementation of receding horizon control schemes. 

Linear direct current optimal power-flow (DC OPF) 
approaches also have these advantages. However, DC OPF is 
typically unable to consider losses, reactive power-flow, or 
voltage constraints, although some progress in this area has 
been made, e.g. [16]. Linear programming (LP) models which 
approximate AC optimal power-flow (AC OPF) are therefore 
more closely related to this work. In [17] and [18], the current-
voltage (IV) formulation of the power-flow problem is 
explored, and this paper convexifies a similar formulation for 
four-wire unbalanced distribution networks. Other models such 
as [19]  [20]  [21]  [22]  [23]  use piece-wise approximations, 
Taylor expansions and other similar methods to obtain a linear 
approximation of the AC OPF problem. However, these models 
often achieve a linearized load-flow via iteration, and few of 
these models consider unbalanced distribution systems where it 
is often important to consider coupling between the phases [24].  

Recent innovations have seen the development of various 
relaxations to convexify the traditional AC optimal power-flow 
equations [25], and these convex relaxations have attracted 
considerable interest [26]. The literature includes [25], a 
significant contribution which shows the exact convexification 
of the AC OPF problem under several mild conditions for a 
balanced network; and [26], where relaxations used to 
convexify the AC OPF problem are studied. An extension to 

unbalanced radial networks was presented in [27]. However, 
these relaxations do not consider unbalance constraints and rely 
on certain conditions which are not always fulfilled in the 
distribution network. Both radial and meshed configurations 
exist in practice and many of these convex relaxations face 
difficulties when either the capacity of the branches or voltage 
upper limit is binding [28]. A robust quadratic AC OPF 
approach which considers these aspects is presented in [29] for 
smart distribution networks. Extensions to both meshed and 
unbalanced networks are also mentioned, although these 
aspects are not explored in detail.  

The aim of the paper is to present a novel convex 
approximation of the optimal power-flow problem for 
unbalanced networks, discussing the challenges and constraints 
relating to network unbalance. We start from a current-injection 
power-flow formulation and make different assumptions to 
formulate the power allocation problem. The formulation has 
no restriction on network structure and it considers current and 
voltage constraints, neutral voltage displacement, and also 
neutral power loss [30]. Neutral currents and voltage 
displacements are a significant problem in practice, and energy 
storage systems are an important tool to mitigate this [31]. 
Therefore, we propose a convex optimization approach which 
fully integrates the neutral wire voltages and currents into the 
power loss minimization problem for unbalanced four-wire 
distribution networks, and we also consider how various 
parameters affect the losses in the neutral. The contributions of 
this study are summarized as follows: 

1. The proposed formulation in the paper allows the 
incorporation of various important features that have not 
been addressed in the literature. To our knowledge, 
previous literature on convexified optimal power flow 
has not considered the case of unbalanced distribution 
networks in much depth, especially considering 
constraints regarding unbalance, power loss in the 
neutral wire, and meshed network configurations. These 
effects are important in many unbalanced distribution 
networks but existing methods are not able to 
incorporate this into a convex formulation. 

2. The convex formulation proposed in the paper for 
optimal ESS dispatch preserves its convexity when a 
future horizon is considered (Appendix A). This 
therefore allows time scheduling to be incorporated in a 
computationally efficient way with models that include 
more advanced features as described in point 1 above. 

3. This study shows that losses in the neutral should not be 
ignored in the OPF for distribution networks.  

4. The paper demonstrates the validity of the assumptions 
and approximations used to convexify the optimal 
dispatch problem in a realistic distribution network. 

5. We have shown that the reduction of energy losses 
achieved by an optimization approach are significant in 
the distribution network. 

III. DERIVATION 

A. Network model 
Consider a four-wire unbalanced distribution network. The 
network consists of a transformer supply, four-wire conductors, 



and multiple loads and ESSs. Each node i ∈ [1, 2, …, n] 
represents a connection on a phase or the neutral, i.e. in a four-
wire system there are four nodes at each bus. The individual 
buses are denoted by m ∈ [1, 2, …, n/4]. The collection of nodes 
on phase a are denoted by the set A, likewise sets B, C and N 
for phases b, c, and the neutral respectively. Each ESS is 
connected to a particular phase node and the associated neutral 
node, as illustrated in Fig. 1. The real and reactive contributions 
of the individual ESSs x (the decision variables) are denoted by 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  respectively. We also use the notation ϕ(x) 
to denote the phase node ESS x is connected to. 
 

 
Fig. 1. Illustration of an ESS connection at phase B 
 

The goal is to minimize energy losses in the network by 
optimally choosing the power allocation of each of the ESS, 
subject to various operational constraints. This is an 
optimization problem where the decision variables are the real 
and reactive power injections at each ESS, and the total power 
loss is the objective function. In this section we appropriately 
formulate this problem, by quantifying first the objective 
function and then incorporating the network constraints. 
Throughout this formulation various practically relevant 
approximations are made that render the problem convex. The 
significance of the problem considered is further discussed in 
section IV where a case study with real data is presented.  

B. Objective function 
The nodal admittance matrix power-flow formulation is 

widely used in distribution system studies [13] [15]: 

[𝒀𝒀]𝒗𝒗 = 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊                                        (1) 

where [𝒀𝒀] is the n x n nodal admittance matrix (n is the 
number of nodes in the network), 𝒗𝒗 is a n x 1 vector containing 
the voltages at each node, and 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 is a n x 1 vector containing 
the currents drawn or injected into the network by any source 
or constant current load at each node. An entry of 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 at 
position (node) i, 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖, will be zero if no constant current load, 
DER, or ESS is connected. This formulation of the nodal 
admittance matrix follows from Kirchhoff’s Current Law and 
is well-studied in literature, e.g. [29] [32] including matrix 
representation of lines, loads, transformers, and generators.  

Assumption 1: The loads may be modelled as either constant 
current or constant impedance.  

Remark 1: Constant current loads are often used in 
distribution network studies [13]. In [33], constant current loads 

were found to be the preferred model for examining losses 
during the winter months. Although relatively few loads are 
constant current, a mixture of constant power and constant 
impedance loads often behaves like a constant current load. The 
equation for a constant power load is:  

𝐼𝐼 =
𝑃𝑃 − 𝑗𝑗𝑗𝑗
𝑉𝑉∗

 

where I is the current drawn by the load, V is the voltage at 
the node, and P and Q are the real and reactive load powers. A 
constant impedance load is governed by: 

𝐼𝐼 =  
𝑉𝑉
𝑍𝑍

,𝑃𝑃 + 𝑗𝑗𝑗𝑗 =
𝑉𝑉𝑉𝑉∗

𝑍𝑍∗
 

where Z is the constant impedance of the load. It is evident 
that the current drawn by a constant power load is inversely 
proportional to the voltage magnitude while the current drawn 
by a constant impedance load is proportional to the voltage 
magnitude. Hence, constant current loads are a reasonable 
approximation of a mixture of constant power and constant 
impedance loads. 

Assumption 2: The ESS contributions may also be modelled 
as current injections. More precisely,  

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖,𝜑𝜑(𝑥𝑥),𝐸𝐸𝐸𝐸𝐸𝐸 ≅
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑗𝑗𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝜑𝜑)
   for all ESSs x       (2) 

where 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖,𝜑𝜑(𝑥𝑥),𝐸𝐸𝐸𝐸𝐸𝐸 is the contribution from ESS x to the 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 ,𝜑𝜑 
term, and 𝑉𝑉𝜑𝜑 is the constant nominal, estimated or measured 
voltage at node ϕ, the ESS connection. 

Remark 2: Note that equation (2) allows us to relate the 
decision variables (the real and reactive contribution at each 
ESS: 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  for all ESSs x) with the entries of 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊. 
This is a reasonable approximation as the voltage deviations are 
small in magnitude compared to the voltage 𝑉𝑉𝜑𝜑. The nominal 
network voltage is used unless measured voltage data or other 
voltage estimates are known. The accuracy of the 
approximations in Assumptions 1 and 2 may often be improved 
using estimated voltages from a previous solution or a 
preliminary solution of the network (1) instead of the nominal 
network voltage. Since these voltages are used as constants, the 
convexity of the problem is preserved. 

In the four-wire system, single-phase loads are represented 
as either constant impedances between the phase wire and the 
neutral wire, or as a constant current drawn at the phase wire 
and a constant current injection of equivalent magnitude and 
angle into the neutral wire in the 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 term. ESSs are modelled 
by a constant current injection at either the phase wire or the 
neutral wire, and the current injection with opposite sign at the 
other wire. Similarly, for ESSs integrated with DER, DER 
output powers can be modelled in the same 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 term without 
requiring further modifications to the optimization problem. 
The DER will charge the ESS while the ESS contribution to the 
grid is determined by optimization. 

The neutral wire is explicitly represented in this model if 
losses or voltages in the neutral wire are to be considered, 
otherwise Kron’s reduction may be used (as in most power-flow 
software [34]). Section V will investigate the importance of 



modelling the neutral wire explicitly by determining how losses 
in the neutral are affected by several parameters.  

The Y matrix in equation (1) is invertible. Hence: 

𝒗𝒗 = [𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊                                     (3) 

The [𝒀𝒀]−𝟏𝟏 matrix is sometimes also known as the Z bus matrix 
in literature [14]. Equation (3) thus expresses each voltage as a 
linear combination of the injected currents. Note that some of 
the terms in 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 represent the ESS contributions which will be 
the decision variables for the optimization problem considered. 
Equation (3) is complex as both [𝒀𝒀]−𝟏𝟏 and 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 are likely to 
contain complex terms; however, by splitting 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊 into real and 
imaginary parts (𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊,𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 and  𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊, respectively) the 
problem can be transformed into a linear problem of dimension 
2n with no complex terms [18], e.g.: 

𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅(�𝒀𝒀𝒊𝒊,∗�
−𝟏𝟏) ∙ 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊,𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 − 𝐼𝐼𝐼𝐼(�𝒀𝒀𝒊𝒊,∗�

−𝟏𝟏) ∙ 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (4) 
 
𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐼𝐼𝐼𝐼(�𝒀𝒀𝒊𝒊,∗�

−𝟏𝟏) ∙ 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊,𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 + 𝑅𝑅𝑅𝑅(�𝒀𝒀𝒊𝒊,∗�
−𝟏𝟏) ∙ 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (5) 

For simplicity, complex notation will be used, and where 
appropriate the equations described by complex variables will 
be separated into real and imaginary parts.  

The voltage vector 𝒗𝒗 is now the direct solution to the network 
given Assumptions 1 and 2. As the objective is to minimize line 
losses, we must first calculate the current through each branch 
and then use this to calculate the active power losses. The 
current through a branch connecting nodes i and j is then: 

𝐼𝐼𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖(𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗)                               (6) 

where 𝑌𝑌𝑖𝑖𝑖𝑖  is the complex admittance of the branch, and 𝑣𝑣𝑖𝑖 and 
𝑣𝑣𝑗𝑗 are the complex voltages at nodes i and j respectively. We 
define 𝑣𝑣𝑖𝑖𝑖𝑖  as the complex voltage drop (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗) over a branch. 
We know 𝑌𝑌𝑖𝑖𝑗𝑗 = 𝐺𝐺𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖, where 𝐺𝐺𝑖𝑖𝑖𝑖  and 𝐵𝐵𝑖𝑖𝑖𝑖  are the branch 
conductance and susceptance respectively. Since power loss 
depends on the magnitude of the current squared (as it is 
proportional to the power loss), we can write: 

�𝐼𝐼𝑖𝑖𝑖𝑖� = �𝑌𝑌𝑖𝑖𝑖𝑖��𝑣𝑣𝑖𝑖𝑖𝑖� = 

��𝐺𝐺𝑖𝑖𝑖𝑖2 + 𝐵𝐵𝑖𝑖𝑖𝑖2���𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑣𝑣𝑗𝑗,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2 + �𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑗𝑗,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

2
  

(7) 
�𝐼𝐼𝑖𝑖𝑖𝑖�

2 = �𝐺𝐺𝑖𝑖𝑖𝑖2 + 𝐵𝐵𝑖𝑖𝑖𝑖2� ��𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑣𝑣𝑗𝑗,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
2 + �𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −

𝑣𝑣𝑗𝑗,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
2�                                          (8) 

Since �𝐺𝐺𝑖𝑖𝑖𝑖2 + 𝐵𝐵𝑖𝑖𝑖𝑖2� is a constant and all 𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are 
linear functions of the decision variables, equation (8) is convex 
as it is a sum of squared linear functions. Hence this part of the 
objective function is convex as the power losses are equal to the 
squared current multiplied by the constant resistance 𝑅𝑅𝑖𝑖𝑖𝑖. This 
can be formulated using matrix algebra, as each branch current 
is the difference in voltages at both ends of the line multiplied 
by the admittance (equation (6)). Therefore, a mapping matrix 
[𝑴𝑴] can be constructed such that: 

𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 = [𝑴𝑴]𝒗𝒗                                  (9) 

where 𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 is a l x 1 vector containing all the branch currents, 
[𝑴𝑴] is the l x n mapping matrix, and 𝒗𝒗 is an n x 1 vector 
containing the voltage at each node calculated by equation (3). 
The mapping matrix [M] relates the branch currents to the nodal 
voltages. Since, by Ohm’s Law, the current through a branch is 
equal to the voltage difference at its end nodes divided by the 
constant impedance, it is possible to write l equations which 
define the branch currents as linear functions of the n nodal 
voltages. Given a branch k connecting nodes i and j, the matrix 
[M] has therefore the following entries: 

𝑀𝑀𝑘𝑘,𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖  and 𝑀𝑀𝑘𝑘,𝑗𝑗 = −𝑌𝑌𝑖𝑖𝑖𝑖 

Every branch of the network is represented in this way, and all 
other entries of [M] are zero. This matrix is also sometimes 
known as a connection matrix or a branch-node incidence 
matrix. The power loss in the lines is a scalar 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ∗ 𝑰𝑰𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃]𝑻𝑻 ∙ 𝑹𝑹               (10) 

where 𝑹𝑹 is a l x 1 vector containing the branch resistances. 
Substituting (3) and (9) into (10), we have: 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [[𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊] ∗ [𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊]]𝑻𝑻 ∙ 𝑹𝑹      (11) 

where * denotes element-wise multiplication and ∙ is the dot 
product. Transformer losses are represented by augmenting the 
matrix [M] with an additional branch, where the additional 
entries in [M] are derived from the transformer admittance. The 
vector R is also augmented with the transformer resistance. 
Care must be taken to refer these constant values to the same 
side of the transformer. 
 Finally, the loss associated with the efficiency of each ESS 
must be considered. We assume that this can be modelled 
adequately with a one-way efficiency. Although the true 
efficiency depends on several time-varying factors such as the 
state-of-charge, a one-way efficiency approximation is usually 
a reasonable one. The formulation is extended to consider 
dissimilar charging and discharging efficiencies for each energy 
storage system as shown in Appendix B. Using a one-way 
efficiency approximation, the energy storage loss term is: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ �1 − 𝜂𝜂𝑥𝑥���𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2�𝑠𝑠
𝑥𝑥=1              (12) 

where 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denotes the real power injected by the ESS x, 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  denotes the reactive power injected by the ESS x, and 
𝜂𝜂𝑥𝑥 ∈ (0,1) is the efficiency of a particular ESS x. Even though 
the square root operator is not a convex function, the decision 
variables within are squared. Hence this term takes the form of 
a two-norm, which is a convex function [35]. 

In the case of four-wire distribution systems with PME 
(Protective Multiple Earthing) / MEN (Multiple-Earthed-
Neutral) earthing systems, the loss through the neutral to earth 
connections (𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) should also be added: 

𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∑ 𝑣𝑣𝑖𝑖∙𝑣𝑣𝑖𝑖∗

𝑅𝑅𝑁𝑁,𝑖𝑖
𝑖𝑖∈𝑁𝑁 = ∑ 𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2+𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2

𝑅𝑅𝑁𝑁,𝑖𝑖
𝑖𝑖∈𝑁𝑁               (13) 

where N describes the set of nodes on the neutral which are 
connected to earth, 𝑣𝑣𝑖𝑖 is the complex voltage at each node i as 
before, and 𝑅𝑅𝑁𝑁,𝑖𝑖 is the constant resistance between each 
individual neutral node and earth. This is also a convex term as 
both 𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are linear functions of the decision 



variables. The total power loss, which is the objective function, 
is now: 

𝑓𝑓(𝑐𝑐) =  𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙                    (14) 
 

𝑓𝑓(𝑐𝑐)  = [[𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊] ∗ [𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊]]𝑻𝑻 ∙ 𝑹𝑹      

+ ��1 − 𝜂𝜂𝑥𝑥���𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2�
𝑠𝑠

𝑥𝑥=1

+ �
𝑣𝑣𝑖𝑖 ∙ 𝑣𝑣𝑖𝑖∗

𝑅𝑅𝑁𝑁,𝑖𝑖𝑖𝑖∈𝑁𝑁

 

(15) 

C. Constraints 
 We will assume that the operation of the ESS optimization 
problem occurs at a time-frame slow enough that dynamic 
limits (e.g. rate of change limits in ESSs) can be ignored. 
Consider then the scenario where a centralized controller 
demands a total injection of ctp,φ Watts (W) and ctq,φ Volt-
Amperes-reactive (VAr) from multiple single phase ESSs on 
the same phase 𝜑𝜑 in one distribution network. The most obvious 
constraint is that the total ESS active power contribution for 
each phase must equal that ordered by a central controller: 

𝑔𝑔1𝑎𝑎(𝒄𝒄) = �∑ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐴𝐴 � − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑎𝑎 = 0            (16.1) 
𝑔𝑔1𝑏𝑏(𝒄𝒄) = �∑ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐵𝐵 � − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑏𝑏 = 0            (16.2) 
𝑔𝑔1𝑐𝑐(𝒄𝒄) = �∑ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐶𝐶 � − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑐𝑐 = 0            (16.3) 

If three-phase ESSs exist, they may be represented as three 
single-phase ESSs, with additional constraints if the three-
phase ESS must be balanced: 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑦𝑦,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                          (17) 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑦𝑦,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑧𝑧,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟               (18) 

where x, y, and z represent the equivalent single-phase ESSs.  
 
1) Branch capacity 

An inequality constraint is enforced on the branch currents 
(equation (8)) to ensure that branches are not overloaded: 

�𝐼𝐼𝑖𝑖𝑖𝑖�
2 ≤ 𝐼𝐼𝑖𝑖𝑖𝑖

2
                               (19) 

where 𝐼𝐼𝑖𝑖𝑖𝑖 is the current limit of the branch connecting nodes i 
and j. This inequality constraint is enforced for all l branches.  
 
2) Voltage limits 

To enforce maximum voltage limits, the following inequality 
constraints are required for all phase nodes: 
𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ≤ 𝑉𝑉𝑖𝑖

2
, for all 𝑖𝑖 such that 𝑖𝑖 ∉ 𝑁𝑁   (20) 

where 𝑉𝑉𝑖𝑖 is the maximum allowable steady-state voltage at bus 
i. Since equations (4) and (5) are linear functions of the decision 
variables, it follows that (20) is a convex constraint. Minimum 
voltage constraints are more challenging as −𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 −
𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 is a concave function of the decision variables and 
hence the convexity of the optimization would be lost. 

 
1 In particular, the constants 𝐾𝐾1𝐴𝐴,𝐾𝐾2𝐴𝐴 are chosen to minimize the expression 

∫ 𝐺𝐺(𝜃𝜃)(𝐾𝐾1𝐴𝐴 cos𝜃𝜃𝜋𝜋/18
−𝜋𝜋/18 +𝐾𝐾2𝐴𝐴 sin𝜃𝜃 − 1)2𝑑𝑑𝑑𝑑, where 𝐺𝐺(𝜃𝜃) is the pdf of a Gaussian 

However, a linear approximation of the voltage can be used 
instead of the concave function [18]: 

−𝐾𝐾1𝐴𝐴𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐾𝐾2𝐴𝐴𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐴𝐴        (21.1) 
−𝐾𝐾1𝐵𝐵𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐾𝐾2𝐵𝐵𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐵𝐵        (21.2) 
−𝐾𝐾1𝐶𝐶𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐾𝐾2𝐶𝐶𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐶𝐶        (21.3) 

where 𝑉𝑉𝑖𝑖 is the minimum allowable steady-state voltage at 
bus i. Using the fact that the approximate voltage angle is 
known at all phase nodes, the constants 𝐾𝐾1𝐴𝐴,𝐾𝐾2𝐴𝐴,𝐾𝐾1𝐵𝐵 , 
𝐾𝐾2𝐵𝐵 ,𝐾𝐾1𝐶𝐶 ,𝐾𝐾2𝐶𝐶 can be chosen such to minimize the weighted 
average squared approximation error over an angle deviation of 
± 10˚ from the approximate voltage angle.1 Since the voltage 
angle is likely to be very close to the expected angle, a Gaussian 
probability distribution function with a mean at the nominal 
angle and standard deviation of 2.5˚ is used to weight the error 
curve. The weighted mean squared error achieved over the 
applicable region is 0.0039%.  

TABLE I. LINEAR APPROXIMATION CONSTANTS FOR EXPECTED PHASE 
ANGLES OF 0˚, -120˚, 120˚ 

𝑲𝑲𝟏𝟏𝟏𝟏 𝑲𝑲𝟐𝟐𝟐𝟐 𝑲𝑲𝟏𝟏𝟏𝟏 𝑲𝑲𝟐𝟐𝟐𝟐 𝑲𝑲𝟏𝟏𝟏𝟏 𝑲𝑲𝟐𝟐𝟐𝟐 
1.001 0 -0.5005 -0.8668 -0.5005 0.8668 

 
Many utilities have limits on the allowable voltage unbalance 

factor, where the true definition of the voltage unbalance factor 
at bus m (𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚) is the negative sequence voltage divided by 
the positive sequence [36]: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚 =  𝑉𝑉𝑉𝑉𝑚𝑚
𝑉𝑉𝑉𝑉𝑚𝑚

= 𝑉𝑉𝑎𝑎,𝑚𝑚+𝛼𝛼2𝑉𝑉𝑏𝑏,𝑚𝑚+𝛼𝛼𝛼𝛼𝑐𝑐,𝑚𝑚
𝑉𝑉𝑎𝑎,𝑚𝑚+𝛼𝛼𝛼𝛼𝑏𝑏,𝑚𝑚+𝛼𝛼2𝑉𝑉𝑐𝑐,𝑚𝑚

                 (22) 

where 𝑉𝑉𝑎𝑎,𝑚𝑚 is the phase a voltage at bus m, 𝑉𝑉𝑏𝑏,𝑚𝑚 and 𝑉𝑉𝑐𝑐,𝑚𝑚 are the 
other phase voltages, 𝑉𝑉𝑉𝑉𝑚𝑚 is the negative sequence voltage at 
bus m, 𝑉𝑉𝑉𝑉𝑚𝑚 is the positive sequence voltage at bus m and 𝛼𝛼 =
1∠120° = −1

2
+ 𝑗𝑗 √3

2
. Although both the negative and positive 

sequence voltages are linear combinations of the decision 
variables (from equations (4) and (5)), the ratio of the two is not 
convex. Hence, the following approximation is proposed: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚 =  𝑉𝑉𝑉𝑉𝑚𝑚
𝑉𝑉𝑉𝑉𝑚𝑚

≅ 𝑉𝑉𝑎𝑎,𝑚𝑚+𝛼𝛼2𝑉𝑉𝑏𝑏,𝑚𝑚+𝛼𝛼𝛼𝛼𝑐𝑐,𝑚𝑚
𝑉𝑉𝜑𝜑

                (23) 

where 𝑉𝑉𝜑𝜑 is the nominal, estimated or measured network 
voltage at phase 𝜑𝜑. This is a very good approximation as in 
practice the positive sequence voltage should always be much 
larger than the negative sequence and close to the nominal 
voltage. Hence the voltage unbalance factor is now a linear 
function of the decision variables. The inequality constraint is: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚2 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚
2
, for all buses m                      (24) 

where 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚 is the maximum allowable voltage unbalance 
factor at bus m. Finally, some countries or utilities require the 
magnitude of the neutral voltage displacement to be below a 
specified maximum voltage 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. This inequality constraint 
is convex: 

distribution; i.e., they minimize the average squared error between the left-hand 
side (LHS) of (20) and the squared value of the LHS in (21.1).  The constants 
for phases b and c are similarly chosen.  



𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ≤ 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2

, 𝑖𝑖 ∈ 𝑁𝑁                  (25) 

3) ESS limits 
ESS size and power constraints are considered by enforcing: 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2+𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 ≤ 𝑐𝑐𝑥𝑥
2 for all ESS 𝑥𝑥            (26) 

where 𝑐𝑐𝑥𝑥 is the rating of the inverter connecting the ESS to 
the grid. The state-of-charge at ESS x (𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥) also constrains the 
active power which may be supplied to the network or sunk 
from the network. If the state-of-charge is defined as being 
between 0 and 1, where 0 represents a fully discharged ESS and 
1 represents a fully charged ESS, the constraints are: 

 −𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ≤
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥

∆𝑡𝑡
�𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥�                (27.1) 

 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ≤
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥

∆𝑡𝑡
�𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥�                (27.2)  

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 are the minimum and maximum 
allowable state-of-charge at ESS x, and ∆𝑡𝑡 is the time 
granularity. In Appendix A we extend this to consider multi-
period energy transition in a time scheduling problem. Note that 
the framework can also consider controllable loads in a similar 
way via a suitable cost function to be added to the objective and 
minimum and maximum power constraints.  

D. Full definition 
The full definition of the optimization problem considered is: 

minimize                                  (28) 
𝑓𝑓(𝑐𝑐)  = [[𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊] ∗ [𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊]]𝑻𝑻 ∙ 𝑹𝑹      

+ ��1 − 𝜂𝜂𝑥𝑥���𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2�
𝑠𝑠

𝑥𝑥=1

 

�
𝑣𝑣𝑖𝑖 ∙ 𝑣𝑣𝑖𝑖∗

𝑅𝑅𝑁𝑁,𝑖𝑖𝑖𝑖∈𝑁𝑁

 

with respect to: 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  for all ESSs x 

 
subject to 

𝑔𝑔1𝑎𝑎(𝒄𝒄) = �∑ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐴𝐴 � − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑎𝑎 = 0          (28.1) 
𝑔𝑔1𝑏𝑏(𝒄𝒄) = �∑ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐵𝐵 � − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑏𝑏 = 0          (28.2) 
𝑔𝑔1𝑐𝑐(𝒄𝒄) = �∑ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐶𝐶 � − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑐𝑐 = 0          (28.3) 

�𝐼𝐼𝑖𝑖𝑖𝑖�
2 ≤ 𝐼𝐼𝑖𝑖𝑖𝑖

2
 for all branches connecting nodes (i, j)   (28.4) 

𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ≤ 𝑉𝑉𝑖𝑖
2

, for all 𝑖𝑖, 𝑖𝑖 ∉ 𝑁𝑁          (28.5) 
−𝐾𝐾1𝐴𝐴𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐾𝐾2𝐴𝐴𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐴𝐴        (28.6) 
−𝐾𝐾1𝐵𝐵𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐾𝐾2𝐵𝐵𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐵𝐵        (28.7) 
−𝐾𝐾1𝐶𝐶𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐾𝐾2𝐶𝐶𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐶𝐶        (28.8) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚2 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚
2

, for all buses 𝑚𝑚          (28.9) 
𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 ≤ 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

2
, 𝑖𝑖 ∈ 𝑁𝑁             (28.10) 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
2+𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 ≤ 𝑐𝑐𝑥𝑥
2 for all 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥      (28.11) 

−𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ≤
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥

∆𝑡𝑡 �𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥�            (28.12) 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  ≤
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑥𝑥

∆𝑡𝑡 �𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥�           (28.13) 
Assuming normal network operation is feasible, an optimal 

 
2 doi://10.13140/RG.2.2.20058.54723/1 

solution exists if the magnitude of each 𝑐𝑐𝑡𝑡𝑡𝑡,𝜑𝜑 is not unfeasibly 
large. Very large 𝑐𝑐𝑡𝑡𝑡𝑡,𝜑𝜑 values may unavoidably constrain line, 
voltage or ESS power rating limits.  
 Remark 3: Note that a practical implementation of this 
optimized ESS dispatch algorithm would also require the issue 
of scheduling to be addressed since the ESS limits depending 
on the state-of-charge are influenced by decisions in past time 
periods. This extension is addressed in Appendix A. 

IV. CASE STUDIES AND DISCUSSION 
The case studies are performed on a representative urban four-
wire unbalanced distribution network in New Zealand which 
supplies 71 customers. The network data and sample load 
profiles are available in [37] and the supplementary file2. The 
neutral conductor is explicitly modelled in the simulation, and 
it is earthed at multiple points in what is variously known as a 
Terrestrial Neutral Combined and Separated (TN-C-S) system, 
MEN, or a PME system. The single line diagram of the test 
network is shown in Fig. 2, and the total load profile for each 
phase is shown in Fig. 3. 

 
Fig. 2. Topology of the test network 

 
Fig. 3. Network load profiles 

A. Power-flow comparison 
Part A of the case study compares the reduced approximate 
power-flow used by the convex optimization formulation 
derived in this paper to a full power-flow. Both the reduced 
power-flow and the full non-linear power flow are implemented 
in a custom MATLAB solver which was developed and verified 
against PSS SINCAL and Simscape Power Systems in [15]. 
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The proposed model considers constant current and constant 
impedance loads only. While this is likely to be a reasonable 
assumption in many distribution networks, in this case study we 
have taken the worst case (all loads are constant power) when 
comparing the proposed approximate power-flow to the full 
power-flow. Hence, the approximation error includes the error 
arising from this simplification.  
 Fig. 4 demonstrates the very good accuracy of the 
approximate power-flow by comparing the predicted voltages 
and currents to the full AC power-flow at peak load without 
ESS contribution, plotting the distribution of the voltage and 
current error. This simulation uses a preliminary estimation of 
the network voltages as mentioned in Remark 2. A flat initial 
voltage profile results in larger, but still acceptable, errors of up 
to 2 x 10-3 V (p.u.) and 2% current respectively. A further 
comparison is given in Fig. 5 which compares the predicted 
power losses (including losses in the neutral) against the 
reference (full AC power-flow) losses in the test network at 
each hour of the day. 

 
Fig. 4. Histogram of voltage and current errors in the test network 

  
Fig. 5. Comparison of network losses in the approximate formulation 
(“Predicted”) and in the full AC power-flow (“Reference”)  

B. Losses in the neutral 
The proportion of losses in the neutral depend primarily on the 
load unbalance of the network, the earthing system, the 
distribution of the unbalanced connections, and the impedance 

of the neutral conductor [30]. Load unbalance is defined as the 
maximum deviation between phase powers divided by the 
average. The neutral loss percentage is important for deciding 
when the explicit representation of the neutral wire should be 
used. Fig. 6 shows the effect of load unbalance on the neutral 
losses in the test system for various earthing systems and 
neutral conductor impedances. The results in Fig. 6a are 
comparable with the result in [38] for 8% load unbalance.  

 
a) Assuming neutral impedance is equal to phase impedance 
 

 
b) Assuming neutral impedance is twice the phase impedance 

Fig. 6. Effect of load unbalance on the neutral losses for various earthing 
systems 

Fig. 7 shows the effect of the neutral wire impedance on the 
neutral losses for various earthing systems and 20% load 
unbalance. The 1 Ohm, 5 Ohm and 10 Ohm curves represent 
the individual resistive impedance of the neutral-to-earth 
connection at each load. It is evident that when the load 
unbalance is high, it is important to consider the neutral wire 
explicitly. The loss percentage in the neutral is often higher than 
the approximation error, especially for the Terrestrial Neutral 
Separated (TN-S) system or higher impedance neutral 
conductors. 
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Fig. 7. Effect of the neutral wire impedance on the neutral losses (20% load 
unbalance) 

C. Reduction of total losses and OPF comparison 
Using the daily load profiles at each load node, the energy saved 
by the proposed optimized method is demonstrated. Ten ESSs 
are simulated in the test network, the locations being randomly 
chosen from equiprobable load nodes; and they aggregately 
supply or sink power to flatten the network load profile. The 
one-way efficiency is 0.9 or 90%, and the nominal voltage is 
230V phase-to-neutral with voltage limits of ± 6% p.u. and the 
transformer tap is set to 1.04 p.u. The base scenario is equitable 
contributions from each ESS, which is the starting point for the 
optimization problem, and a flat initial voltage profile is used. 
The load profiles have a time resolution of 1 hour, and the 
convex approximate OPF formulated in section III is solved at 
each hour by the interior-point solver fmincon in MATLAB. 
The simulation results are given in Fig. 8. By evaluating the 
area between the two curves, the total losses are calculated to 
be reduced by 14.08% overall. The ESS losses do not vary 
significantly as all ESS units have the same efficiency; 
however, the line losses are reduced by 33.20%.  

 
Fig. 8. Demonstration of the power loss reduction throughout one day 

 The simulations in Fig. 8 assumed that all ESS storage 
systems in the distribution network have identical one-way 
efficiencies. In practice this may not be the case. Figs. 9 and 10 
show the power savings throughout the day where the 
efficiency of each individual ESS was randomly and 
independently chosen from a Gaussian distribution with mean 
90% and variance (σ2) of 2% (Fig. 9) and 4% (Fig. 10). The 
one-way efficiency of each ESS is bounded between 0.825 and 

0.975 since it is impossible to achieve an arbitrarily high 
efficiency. The energy savings are increased to 18.90% in Fig. 
9 and 21.77% in Fig. 10. 

 
Fig. 9. Demonstration of the power loss reduction throughout one day, varied 
ESS efficiency (σ2=2%) 

 
Fig. 10. Demonstration of the power loss reduction throughout one day, varied 
ESS efficiency (σ2=4%) 

 To demonstrate that the proposed formulation is effective in 
a meshed network, the ends of the two feeders are connected to 
a new distribution transformer secondary (identical to the 
existing one) via hypothetical low impedance links of 0.001 + 
j0.001 Ω in simulation, as illustrated in Fig. 11. Fig. 12 shows 
the simulation result for the meshed network.  

 
Fig. 11. Topology of the meshed network 
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Fig. 12. Demonstration of the power loss reduction throughout one day for the 
simulated meshed network 
 
The proposed method was also compared to the related non-
linear and non-convex AC OPF3. Table II shows the optimality 
ratio statistics for the studies in this section, where the 
optimality gap is defined as the difference between the value of 
the true objective function at the approximate solution of the 
proposed method and the non-convex AC OPF, normalized 
with the value of the true objective function at the solution of 
the non-convex AC OPF. The maximum optimality gap refers 
to the maximum value of the optimality gap at any time during 
the simulated day as presented in Figs. 8-10 and 12.  

TABLE II. OPTIMALITY STATISTICS IN THE CASE STUDIES 
Case Network ESS efficiency 

variance 
Maximum 

optimality gap 
Average 

optimality gap  

1 Radial 0% 0.07% 0.01% 
2 Radial 2% 0.35% 0.03% 
3 Radial 4% 0.93% 0.15% 
4 Meshed 0% 0.02% 0.00% 

D. Computational time 
In order to demonstrate the practical advantages of the convex 
formulation in terms of scaling, the computational time 
performance of the proposed algorithm was compared to the 
non-convex AC OPF with a convergence tolerance of 10-2 V at 
any node for the associated non-linear power-flow. Both 
algorithms were executed in MATLAB on an Intel® Xeon® 
CPU E3-1240 V2 @ 3.40 GHz.  
 Monte-Carlo simulations (50 for each data point) were 
required as the optimization time in this problem depends on 
the starting point and other unpredictable factors. Due to the 
presence of multiple phases, if unbalance constraints are not 
active the total optimization time is likely to depend mostly on 
how many ESSs are on the phase with the most ESS 
connections.  The test network is the radial network of Fig. 2, 
and the total ESS active power was set to 1000W / ESS for each 
phase. Fig. 1 shows that the proposed algorithm scales much 
better than the non-convex AC OPF. 

 
3 The non-convex AC OPF was solved by taking the minimum feasible value 

found by any of the MATLAB functions ga (genetic algorithm), pso (particle 

 
Fig. 13. Computational time comparison 

V. CONCLUSION 
This paper has presented a convex approximate AC optimal 
power-flow for unbalanced three-phase four-wire distribution 
networks with energy storage systems. The problem is of 
practical importance, as previous literature on convexified 
optimal power flow has not considered unbalanced effects and 
constraints in detail. Furthermore, we have extended the 
formulation to consider ESS time scheduling, and the 
application of network unbalance constraints to this problem is 
also novel.  
 Several challenges exist which are unique to unbalanced 
networks, and we have made assumptions in order to be able to 
incorporate unbalance constraints into the convex approximate 
power-flow. These assumptions have been substantiated by 
reference to the features of typical distribution networks, and 
the accuracy of the formulation was demonstrated in an actual 
distribution system. 
 Consideration was also given to the losses and voltages in the 
neutral wire. The factors which determine when it becomes 
important to consider neutral losses were identified and the 
relationship explored. Furthermore, it was shown that losses in 
the neutral wire can often be significant; and hence it is 
important to consider this in the power allocation problem. 
Finally, the practical energy saving of the proposed framework 
was demonstrated in several test cases.  
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VII. APPENDIX A. EXTENSION TO MULTI-PERIOD TIME 
OPTIMIZATION 

Given suitable load and distributed generation forecasts, the 
optimal dispatch formulation (28) may be extended to a multi-
period time scheduling problem with a horizon h. The 
constraints which depend on past decisions are maximum 
charging and discharging capacity constraints (28.12-28.13). 
Let us therefore define the energy stored in each ESS at the end 
of each time slot k as: 

𝐸𝐸(𝑥𝑥, 𝑘𝑘) = 𝐸𝐸0 + �𝐸𝐸𝑔𝑔(𝑟𝑟) −�𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟)
𝑘𝑘

𝑟𝑟=0

∆𝑡𝑡
𝑘𝑘

𝑟𝑟=0

𝑓𝑓(𝑥𝑥, 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟)) 

where x is the energy storage system in question, 𝐸𝐸0 is the initial 
energy of the storage device, Eg(r) is the energy input from any 
integrated distributed generator throughout the time slot r, 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟) is the ESS dispatch throughout the time slot r, ∆𝑡𝑡 is 
the time granularity (i.e. the length of each time slot), and 𝑓𝑓(𝑥𝑥,𝑐𝑐) 
is defined as: 



𝑓𝑓(𝑥𝑥, 𝑐𝑐) = �
𝜂𝜂𝑥𝑥   𝑖𝑖𝑖𝑖 𝑐𝑐 < 0
1
𝜂𝜂𝑥𝑥

 𝑖𝑖𝑖𝑖 𝑐𝑐 ≥ 0                𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 < 𝜂𝜂𝑥𝑥 < 1  

(28.12) and (28.13) are then replaced by: 

𝐸𝐸(𝑥𝑥, 𝑘𝑘) ≤ 𝐸𝐸𝑥𝑥  for all ESS 𝑥𝑥 and time slots 𝑘𝑘 
−𝐸𝐸(𝑥𝑥, 𝑘𝑘) ≤ −𝐸𝐸𝑥𝑥  for all ESS 𝑥𝑥 and time slots 𝑘𝑘 

where 𝐸𝐸𝑥𝑥  and 𝐸𝐸𝑥𝑥 denote the minimum and maximum limits of 
the energy that may be stored in the ESS x. It is sufficient to 
write 𝐸𝐸(𝑥𝑥, 𝑘𝑘) as a linear function of the decision variables for 
the constraints above to be convex. There is a standard method 
to achieve this by defining two new decision variables 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) and 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) [9], where: 

   𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) = �𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)     if 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘) ≥ 0
0         otherwise

 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) = �
0         if 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘) ≥ 0

−𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)  otherwise                      

and the actual dispatch of the energy storage system is: 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘) = 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) − 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) 

Then we have the following linear relation: 

𝐸𝐸(𝑥𝑥, 𝑘𝑘) = 𝐸𝐸0 + �𝐸𝐸𝑔𝑔(𝑟𝑟)
𝑘𝑘

𝑟𝑟=0

−�
1
𝜂𝜂𝑥𝑥
𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑟𝑟)(+)∆𝑡𝑡 +

𝑘𝑘

𝑟𝑟=0

�𝜂𝜂𝑥𝑥𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑟𝑟)(−)∆𝑡𝑡
𝑘𝑘

𝑟𝑟=0

 

At the optimum point, at least one of 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) or 
𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) is zero at each time slot k if we use the definition 
of 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) and 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) to rewrite the ESS loss term 
(12) as:  

∑ (1 − 𝜂𝜂𝑥𝑥)��𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎�𝑘𝑘�
(+)2

+ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎�𝑘𝑘�
(−)2

+ 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2�𝑠𝑠
𝑥𝑥=1 . 

Clearly for a certain 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘) which minimizes the objective, 
at least one of 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) or 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) must be zero. Then 
the full definition of the time scheduling optimization problem 
with horizon h is: 

minimize 
𝑓𝑓(𝑐𝑐, ℎ)  

= �� [[𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝒌𝒌)] ∗ [𝑴𝑴[𝒀𝒀]−𝟏𝟏𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊(𝒌𝒌)]]𝑻𝑻 ∙ 𝑹𝑹
ℎ

𝑘𝑘=0

+ ��1 − 𝜂𝜂𝑥𝑥� ��𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+)2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−)2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2�
𝑠𝑠

𝑥𝑥=1

+ �
𝑣𝑣𝑖𝑖(𝑘𝑘) ∙ 𝑣𝑣𝑖𝑖(𝑘𝑘)∗

𝑅𝑅𝑁𝑁,𝑖𝑖𝑖𝑖∈𝑁𝑁

�    

with respect to: 

𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+), 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−), 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)  
for all ESS x and time slots k 

subject to the following constraints for all time slots k 

𝑔𝑔1𝑎𝑎(𝒄𝒄,𝑘𝑘) = � � 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) − 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−)

𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐴𝐴

� − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑎𝑎(𝑘𝑘) = 0 

𝑔𝑔1𝑏𝑏(𝒄𝒄,𝑘𝑘) = � � 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) − 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−)

𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐵𝐵

� − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑏𝑏(𝑘𝑘) = 0 

𝑔𝑔1𝑐𝑐(𝒄𝒄,𝑘𝑘) = � � 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) − 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−)

𝑥𝑥,𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝜙𝜙(𝑥𝑥)∈𝐶𝐶

� − 𝑐𝑐𝑡𝑡𝑡𝑡,𝑐𝑐(𝑘𝑘) = 0 

�𝐼𝐼𝑖𝑖𝑖𝑖(𝑘𝑘)�2 ≤ 𝐼𝐼𝑖𝑖𝑖𝑖
2
  for all branches connecting nodes (i, j) 

𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘)2 ≤ 𝑉𝑉𝑖𝑖
2

  
for all 𝑖𝑖 such that 𝑖𝑖 ∉ 𝑁𝑁 

−𝐾𝐾1𝐴𝐴𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) − 𝐾𝐾2𝐴𝐴𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐴𝐴 
−𝐾𝐾1𝐵𝐵𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) − 𝐾𝐾2𝐵𝐵𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐵𝐵 
−𝐾𝐾1𝐶𝐶𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘) − 𝐾𝐾2𝐶𝐶𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘) ≤ −𝑉𝑉𝑖𝑖  𝑖𝑖 ∈ 𝐶𝐶 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚(𝑘𝑘)2 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚
2

, for all buses 𝑚𝑚  
𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2 + 𝑣𝑣𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘)2 ≤ 𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

2
, 𝑖𝑖 ∈ 𝑁𝑁,  

𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+)2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−)2+𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2 ≤ 𝑐𝑐𝑥𝑥
2  

for all ESS 𝑥𝑥 
𝐸𝐸(𝑥𝑥, 𝑘𝑘) ≤ 𝐸𝐸𝑥𝑥  for all ESS 𝑥𝑥 

−𝐸𝐸(𝑥𝑥, 𝑘𝑘) ≤ −𝐸𝐸𝑥𝑥for all ESS 𝑥𝑥  

Since the 𝑣𝑣𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2, �𝐼𝐼𝑖𝑖𝑖𝑖(𝑘𝑘)�2 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚(𝑘𝑘)2 terms are still 
squared linear functions of the decision variables, we have only 
linear and convex constraints and a convex objective function. 
Hence the optimal dispatch problem can be extended to 
consider a multi-period time horizon while still preserving the 
convexity of the problem. This is especially important for 
computational reasons as the number of decision variables will 
increase significantly in a time horizon problem. 

VIII. APPENDIX B. EXTENSION TO DISSIMILAR CHARGING AND 
DISCHARGING EFFICIENCIES 

Some energy storage systems have dissimilar charging and 
discharging efficiencies, and for this reason separate efficiency 
terms for each mode were considered in [8-12]. The 
formulation in Appendix A is easily extended to consider this. 
Let 𝜂𝜂𝑐𝑐(𝑥𝑥) be the charging efficiency and 𝜂𝜂𝑑𝑑(𝑥𝑥) the discharging 
efficiency of the ESS x.  Then the ESS loss term becomes: 

���(1 − 𝜂𝜂𝑐𝑐(𝑥𝑥) )��𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−)2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2�
𝑠𝑠

𝑥𝑥=1

ℎ

𝑘𝑘=0

+ (1 − 𝜂𝜂𝑑𝑑(𝑥𝑥) ) ��𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+)2 + 𝑐𝑐𝑥𝑥,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑘𝑘)2�� 

This again makes use of the fact that at least one of 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(+) 
and 𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑘𝑘)(−) will be zero at the optimal solution at each 
time slot k. The energy stored in each device is:  

𝐸𝐸(𝑥𝑥, 𝑘𝑘) = 𝐸𝐸0 + �𝐸𝐸𝑔𝑔(𝑟𝑟)
𝑘𝑘

𝑟𝑟=0

−�
1

𝜂𝜂𝑑𝑑(𝑥𝑥)
𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑟𝑟)(+)∆𝑡𝑡+

𝑘𝑘

𝑟𝑟=0

�𝜂𝜂𝑐𝑐(𝑥𝑥)𝑐𝑐𝑥𝑥,𝑟𝑟𝑒𝑒𝑎𝑎𝑎𝑎(𝑟𝑟)(−)∆𝑡𝑡
𝑘𝑘

𝑟𝑟=0

 

𝐸𝐸(𝑥𝑥, 𝑘𝑘) is obviously a linear function of the decision variables, 
and the ESS loss term is still a sum of two-norms. Hence 
convexity is preserved. 
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