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Abstract. We describe the optimized effective potential method of density functional theory and
the semi-analytical approximation due to Krieger, Li and lafrate. Results for atomic and molecular
systems including correlation contributions are presented and compared with conventional Kohn—
Sham methods. The combination of the exact exchange energy functional with the correlation energy
functional of Colle and Salvetti works extremely well for atomic systems, while further improvement
isrequired for molecular systems.
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1. Introduction

Density functional heory (DFT) is a powerful quantum mechanical method for
calculating the electronic structure of atoms, molecules and solids [1-3]. The
success of DFT hinges on the availability of good approximations for the total-
energy functional. In this article we shall describe a particular approach to the
construction of such approximations which involves explicitly orbital-dependent
functionals. In order to describe the nature of this approach we will first briefly
review the foundations of DFT.

We are concerned with Coulomb systems described by Hamiltonians of thetype

H=T+Wap+V )
where (atomic units are used throughout this article)
. X
7=y (-5vF) 2
i=1

denotesthe kinetic energy operator,

. 1 X 1
Weip = > >
iyj=1
1#]

©)

|r; — 1]



28 T.GRABOETAL.

represents the Coulomb interaction between the particles, and

. N
V= Z’U(l‘i) (4)

contains all external potentials of the system, typically the Coulomb potentials of
the nuclei.

Modern DFT is based on the celebrated theorem of Hohenberg and Kohn (HK)
[4] which may be summarized by the following three statements:

1. The ground-state density p uniquely determines the external potential v =
v[p] as well as the ground-state wave function ¥[p]. As a consequence, any
observable of a static many-particle system is a functional of its ground-state
density.

2. Thetotal-energy functional

Eyolp)=(T[]|T + Waib + Vo T[p]) )

of a particular physical system characterized by the externa potential vg is
equal to the exact ground-state energy FEj if and only if the exact ground-state
density po isinserted. For all other densities p # po the inequality

Eo < Ey, [p] (6)

holds. Consequently, the exact ground-state density pg and the exact ground-
state energy F can be determined by solving the Euler—Lagrange equation

1)
mEvo [P] =0. (7
3. The functional
Flp:=(T[p]|T + Wein|¥[p]) (8)

is universal in the sense that it is independent of the external potential vg of
the particular system considered, i.e. it is of the same functional form for all
systems with afixed particle-particle interaction (Wb in our case).

The proof of the HK theorem does not depend on the particular form of the
particle-particle interaction. It is valid for any given particle—particle interaction
W, in particular also for W = 0, i.e. for non-interacting systems described by
Hamiltonians of the form

ﬁg =T + Vs. 9
Hence the potential Vs(r) is uniquely determined by the ground-state density:

Vs(r) = Vs[p](r). (10)
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As aconseguence, all single-particle orbitals satisfying the Schrodinger equation

VZ
(—7 +Vs [p](r)> p;j(r) = €j¢p;(r) (11)
are functionals of the density as well:

p;(r) = p;lpl(r). (12)

The HK total-energy functional of non-interacting particlesis given by

Bsl)=Tsll+ [&r  p  ( x )V (@3

where Ts[p] is the kinetic-energy functional of non-interacting particles:

T = 3 dBrofol(r) | —— | wilp)(r). 14
=3 | mp]u( 2><P[p]() (14)

lowest g;

We emphasize that the quantity (14) really represents a functional of the density:
functional means that we can assign a unique number Ts[p] to any function p(r).
Thisis done by first calculating that actual potential Vg (r) which uniquely corre-
spondsto p(r). Several numerical schemes have been devised to achieve this task
[5-10]. Then we take this potential, solve the Schrodinger Equation (11) with it
to obtain a set of orbitals {¢;(r)} and use those to calculate the number Ts by
evaluating the right-hand side of Equation (14). As a matter of fact, by the same
chain of arguments, any orbital functional isan (implicit) functional of the density,
provided the orbitals come from alocal, i.e. multiplicative potential.

Returning to the interacting system of interest we now define the so-called
exchange-correlation (xc) energy functional by

Belpi=Flp] - 5 [ r | ds% T[] (15)

The HK total-energy functional (5) can then be written as

Bulpl = Toll+ [ ofr) +( x )

1 , p ( r )
+§ / dr & h + Exc[p]- (16)

In historical retrospect we may identify three generations of density functional
schemeswhich may be classified according to the level of approximations used for
the universal functionals T's [p] and Eyc[p].
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In what we call the first generation of DFT, explicitly density-dependent func-
tionals are used to approximate both T's[p] and Exc[p]. For example, the simplest
and historically first approximation of thiskind isthe Thomas—Fermi model, where
Eyc[p] is neglected completely and T's[p] is approximated by

T3Flp] = 55373 [ drp(e)®3 an

yielding

3
EIflp] = 756772 [ drp@®P + [ro(x) p (x)
p(r

/ Er [ |r_rf| ) (18)

as approximate expression for the total-energy functional. For functionals of this
type the HK variational principle (7) can be used directly, leading to equations
of the Thomas—Fermi type. As these equations only contain one basic variable,
namely the density p(r) of the system, they are readily solved numerically. The
results obtained in this way, however, are generally of moderate quality.

The second generation of DFT employs the exact functional (14) for the non-
interacting kinetic energy and an approximate density functional for the xc energy:

EESp) = T8p] + [ o v Jop (1) +

+5 / d*r & '+ Exclp)]- ( r ()19)
2 — /|
This total-energy expression leads to the Kohn—Sham (KS) version of DFT [11]
as will be shown in the following. Plugging Equation (19) into the variational
principle (7) yields

oI aCt[P] 3 , 0Exc|p]
s ) Y e e

The variation of the non-interacting kinetic energy functional is given by

— | pilp] >

i d*r'Vs[p ] 21
Ll[p]/ [ o) @2

0= C 7 @

STS™[p] = 52 <soz[p
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where the one-particle Equation (11) has been used. Since the HK theorem ensures
the one-to-one correspondence between the density and the one-particle potential,
avariation §p of the former will result in avariation Vg of the latter. Therefore,
the variation of the one-particle energies ¢; can be calculated using first-order
perturbation theory yielding

de; = (wilpl|0Vsp|pilp])- (22)
Using thisresult in (21) gives
L A I A O R )

which, combined with Equation (20) leads to

Vslol(e) = v vt O[T @

§r|r_

where we have defined the xc potential as

0 Exc[pl
dp(r)
Being the HK variational equation of the interacting system, Equation (20)

determinesthe exact ground-state density of theinteracting system. Since Equation
(24), on the other hand, is equivalent to Equation (20), the density

Vielpl(r):=

(25)

N
pr)= > lpi(®)? (26)
Nt
resulting from the solution of the Schrodinger Equation (11) with the potential
(24) must be identical with the ground-state density of the interacting system of
interest. Equations(11), (24), (25) and (26) are known as Kohn—Sham equations. In
practice, these equations have to be solved sel f-consistently empl oying approximate
but explicitly density-dependent functionals for Exc[p]. The resulting scheme is
still easy to solve numerically and — especially for sophisticated density-gradient-
dependent approximations of Eyc[p] — gives excellent results for a wide range of
atomic, molecular and solid-state systems[2,12].
Finally, in the third generation of DFT, in addition to the exact expression for
Ts one also employs the exact expression for the exchange energy given by

Ee ] =3 Z Z /ds /d3 )P (T) g (T ')Wka(r)‘ﬂjzf(rl)' 27)

2,5 jr — |
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Only the correlation part of Eyc[p] needs to be approximated in this approach. In
contrast to the conventional second-generation KS scheme, the third generation
allows for the treatment of explicitly orbital-dependent functionals for E. as well,
giving more flexibility in the construction of such approximations.

The central equation in the third generation of DFT is still the KS Equation
(11). The difference between the second and third generations lies in the level of
approximation to the xc-energy. Asaconsequence of the orbital dependenceof Eyc
in the third generation of DFT the calculation of Vyc[p](r) from Equation (25) is
somewhat more complicated. A detailed derivation will be given in the following
section for the spin-dependent version of DFT. The result is an integral equa-
tion determining the xc potential. Thisintegral equation, known as the optimized
effective potential (OEP) equation, is very hard to solve numerically. To avoid a
full-scale numerical solution, Krieger, Li and lafrate (KLI) [13-21] have devised a
semi-analytical schemefor solving the OEP integral equation approximately. This
schemeis described in the subsequent section. After that, some rigorous properties
of the OEP and KL I solutionswill be briefly discussed and finally numerical results
for atomic and molecular systems will be presented.

Wefinally mention that atime-dependent generalization of the OEP hasrecently
been developed [22] to deal with explicitly time-dependent situationssuch asatoms
in strong laser pulses [23]. In the linear-response regime this method has led to
a rather successful procedure [24] to calculate excitation energies from the poles
of the frequency-dependent density response. Time-dependent applications of this
kind will not be discussed in the present article. Theinterested reader isreferred to
arecent review of time-dependent DFT [25].

2. The OEP Method

2.1. DERIVATION OF THE OEP EQUATIONS

We are going to derive the OEP equations for the spin-dependent version of DFT
[26, 27], where the basic variables are the spin-up and spin-down densities p;(r)
and p | (r), respectively. They are obtained by self-consistently solving the single-
particle Schrodinger equations

VZ
(—7+V50[m,p¢](r)) ¥io(t) = €jojo(r) j=1, . . ., N,
o o= 1, | (28)
where
No
Pa(r)22|‘P 2 o ( r ) (29) |

i=1
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For convenience we shall assume in the following that infinitesimal symmetry-
breaking terms have been added to the external potential to remove any possible
degeneracies.

The KS orbitals can then be labeled such that

€1 < €24 < C 1) - .o < < . (39 .

The Kohn—Sham potentials Vs, (r) may be written in the usua way as

Vo (r) = wo( / ‘ﬁ’" ot Ve B ' " (@)
= Z pa(r) (32)
o="1,]
where
Vi (r) i= %”g)”” (33)

The starting point of the OEP method is the total-energy functional

Exflorpld = Y Z/d3 P o %W) Piokr) + ) ( -

o="1,}1=1
+/d3ror'up r) +

3 3 P ( r
3 / e & 7,[—_ .
+EQ [{0jr}] (34)

where, in contrast to ordinary spin DFT, the xc energy is an explicit (approximate)
functional of spin orbitals and therefore only an implicit functional of the spin
densities p; and p, . In order to calculate the xc potentials from Equation (33) we
use the chain rule for functional derivativesto obtain

VOEP( ) _ EOEPH‘PW’H

X 5pa( )
_ ! &E[{‘P ir}] 6‘Pza( ")

and, by applying the functional chain rule once more,
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VOEP(r) Z Z Z/ds ’/d3r”><

a=t| =1, i=1
EOEP[{‘F T}] (5(,0“1(I'I) 5V5ﬂ(r”)
’ ( () Vs (") © C'C') opo(r) (36)

Thelast term on theright-hand side isreadily identified with thei nversexgl(r, r')
of the density response function of a system of non-interacting particles

0po(r
Xsa,p(r 1) = 5Vs(;((r)')'

(37)

This quantity is diagonal with respect to the spin variables so that Equation (36)
reducesto

VOEP(r) Z Z/d3 ’/d3r” «

a="1,] =1

% ( EOEP[{(PJT}] dpia(r’)

dpia(r’)  6Vse(r")
Acting with the response operator (37) on both sides of Equation (38) one obtains

/ 'V (t)xse(r',r) = > Z / dr e Ly} didir +c.c.(§9)

S dpia(r’)  0Vss(r)

+ C.C.) X;; (", r). (38)

Finally, the second functional derivative on the right-hand side of Equation (39) is
calculated using first-order perturbation theory. Thisyields

3pia (r') o Pko (r') ko ()

DO = e S RSPk D) (), 40

6VSU(I') Q, Ig- Eio— _ Eko— <)0Z (r) ( )
k#i

Using this equation, the response function

XSa,ﬁ(r r JVSﬂ r/ (Z(ID'L o r (10 i« ( r ) > (41)
i:
isreadily expressed in terms of the orbitals as
Xso(r, 1) ZZ ok ¢ (o, —|—CI..C.( ) I'(42)('0
i—1k 1 = Eio ™ Eko
k= /i

[
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Inserting (40) and (42) in Equation (39), we obtain the standard form of the OEP
integral equation:

/ Fr' (e (1) = tixaio () Gisio (¢, 1)io (1) 97, (1) + €. = 0 (43)

where
1 SElp)]
weir) = w0 o) “
and
Gio(r,r'): z"””“ (45)

Eioc — €ko
/z

The derivation of the OEP integral Equation (43) described here was first given
by Gorling and Levy [28, 29]. It is important to note that the same expression
results [15, 30-32] if one demands that the local one-particle potential appearing
in Equation (28) bethe optimized oneyielding orbitals minimizing the total-energy
functional (34), i.e. that

5E$0EP

VSa’ — VJOEP

Thisequationisthe historical origin [30] of the name optimized effective potential.
As was first pointed out by Perdew and co-workers [33, 34], Equation (46) is
equivalent to the HK variational principle. Thisis most easily seen by applying the
functional chain rule to Equation (46) yielding

_ 5EOEP 3 ? Eg(Spoz (r')
0= JVSO' Z/d 5pa rl 5VSO’( ) (47)

Once again, the last term on the right-hand side of Equation (47) can be identi-
fied with the KS response function (37). Hence, acting with the inverse response
operator on Equation (47) leadsto the HK variational principle

5EOEF’
— Vo
0=5 25 (48)

2.2. APPROXIMATION OF KRIEGER, LI AND IAFRATE

In order to usethe OEP method derived in thelast section we haveto solve Equation
(43) for thexc potential V,QEP. Unfortunately, thereisno known analytic solutionfor
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V.2EP depending explicitly on the set of single-particle orbitals{;, }. Furthermore,
Equation (43) is not in aform that allows for successive approximations of the xc
potential. Thus, we need to solve the full integral equation numerically, which is
a rather demanding task and has been achieved so far only for systems of high
symmetry such as spherical atoms [15, 18, 19, 31, 35] and for solids within the
linear muffin tin orbitals atomic sphere approximation [36-39].

However, Krieger, Li and lafrate [13—21] recently proposed a transformation of
Equation (43) that leads to an aternative but still exact form of the OEP equation
which lends itself as a starting point for a highly accurate approximation of the
OEP potential. Defining

oo [ &'l () (Vige (') = tixcio (t')) o (')

() = kgl p— Pio(T)
ki
B /ds’"'%*(l"'ﬁfp‘(r') — txcio (') G'sio (v, 1), (49)

the OEP integral Equation (43) can be rewritten as

No
> i, (£)pio (r) + c.c. = 0. (50)
=1

Since the KS orbitals {¢;,} span an orthonormal set we readily conclude from
equation (49) that the function +;, (r) is orthogonal to ;. (r):

[ riiy @i (x) =0. (51)

The quantity G, (r’,r) given by Equation (45) is the Green’s function of the
K'S equation projected onto the subspace orthogonal to ¢;,(r), i.e., it satisfies the
equation

(hso(r) = €i0)Gsio (t',x) = =[6(" — 1) — i (r') ¢}, (¢)] (52)

where h g, (r) is ashorthand notation for the KS Hamiltonian

2

hso(e) = o+ Vsolop, pil(r). (53)

Using Equation (52), we can act with the operator (hg, — €4, ) on Equation (49),
leading to

(iLSa (r) — €ig) iy (r) = _[K(%EP(T) — Uxcio (T) — (chio — Txcio )@ () (54)
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where Vi, denotes the average of Vi, (r) with respect to theith orbital, i.e.

Vicio 1= / e, (1) V.2E(r)pio (r) (55)
and
xcio 1= / Proot, (r)uxcio (t)@io (). (56)

Using the KS Equation (28), we can solve Equation (54) for Vg, (r); (r):

Vo (r)i, (r) = — V& (r) — tcio (r) — (Vicio — Tixcio) 105, (T) +
2
+ (% + i 15 o i ( o r (Sj)

Thedifferential Equation (54) hasthe structure of aK S equation with an additional
inhomogeneity term. Equation (54) plus the boundary condition that 7 (r) tends
to zero asr — oo uniquely determines 7 (r). We can prove this statement by
assuming that there aretwo independent solutions«7;, ; (r) and ¢}, ,(r) of Equation
(54). Then the difference between these two solutions, W7 (r) = ¢ 4(r) —
10.2(r), satisfies the homogeneous KS equation

(hso — €i0) ¥, (r) =0, (58)

which has a unique solution

Uig(r) = @ig(r), (59)

if the above boundary condition is fulfilled. However, this solution leads to a
contradiction with the orthogonality relation (51) so that ¥ (r) can only be the
trivial solution of Equation (58),

U (r) =0, (60)
This completes the proof.

Atthispointitisuseful toattach some physical meaningto the quantity 1;,: from
Equation (49) it is obviousthat 1, isthe usual first-order shift in the wavefunction
caused by the perturbing potential §V;, = V,QEP — uyc,. This fact also motivates
the boundary condition assumed above. In x-only theory, uy;, isthelocal, orbital-
dependent HF exchange potential so that ;. is the first order shift of the KS
wavefunction towards the HF wavefunction. One has to realize, however, that the
first-order change of the orbital dependent potential ux;,[{ vis }| has been neglected.
This change can be expected to be small compared to 6V;, [20].
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Having found an equation satisfied by 7 (r) in which V;EP(r) shows up
explicitly, we may use thisidentity to further transform the OEP Equation (50). To
this end we multiply Equation (50) by the KS potential Vg, (r)

Na'
dVsobpl#)eeeH0) + (61)
=1

and employ Equation (57) to obtain

Ny

= Z {[V;((gng( ) chia(r) - (V;(Cia - ﬁXCiU)](p;FU (I‘) -
=1
2
_ (% + ) i) i) + ©2)

Solving this equation for V,2EP yields

Vio: (¥) = ! % {\w (0)[P[uxcio () + (Veio — tixcio)] +
XCo 2p0' (I‘) = a
2
+ (%%(r) ¥ eww;;(r)> Pirle) } + o (63)

The second term in the curly brackets may be rewritten by using the KS and the
OEP eguation again, leading to

VZ
Z < ¢w( ) + Eiaw;a(r)> ‘Pz‘g(r) + C.C.

=1
2
_ Z l( Pio (T > Yig(r) — P, (r) (%(pw(r)> + C.C.
= 3V (4, () Vi () + .
=1

In thisway Equation (63) may be written as

Vies (¥) =

Z | z[vxi:ia(r) + (Yxcio — tixdio)] + C.CT (65) )



OPTIMIZED EFFECTIVE POTENTIAL FOR ATOMS AND MOLECULES 39

with

Y WO ln) (66

chia(r) = chia(r) - W

Equation (65) is an exact transformation of the original OEP integral Equation
(43). The advantage of Equation (65), although still being an integral equation, lies
in the fact that it may serve as a starting point for constructing approximations of
V.OEP: We only need to approximate +%, in Equation (66) by a suitable functional
of the orbitals.

The simplest possible approximation is obtained by completely neglecting the
terms involving 7, i.e. by replacing vycis DY uxcio. At first sight, this approxi-
mation might appear rather crude. It can be interpreted, however, as a mean-field
approximation in the sense that the neglected terms averaged over the ground-state
spin density p,(r) vanish. To demonstrate this, we investigate the quantity

1Yz
/d?»rv-ézj(i v (. r )V e (6D,
=1

which amounts to the difference between the exact V,25"(r) and the approximated
Xc potential averaged over p,(r). By virtue of the divergence theorem, the integral
can be transformed to a surface integral. The latter vanishes because ¢}, (r) and
wic(r) decrease exponentially for » — oo [15]. Hence, the neglected terms have
zero average value. The resulting equation, known as the KLI approximation, is
given by

AL

() = Zlunei (r) + (V) — k)] + cr
V) = g gl i)+ Gl +cor  (69))

which has proved to be an excellent approximation to the full xc potential V,QEP(r)
[15, 18, 19]. We immediately recognize that this form is very similar to the Slater
potential.

In contrast to the full OEP Equation (43), the KLI equation, still being an
integral equation, can besolved explicitly intermsof theorbitals{y;, }: multiplying
Equation (68) by |¢;, (r)|? and integrating over spaceyields

~ - Ny—1 1
W = Vo + 30 M 5 = e + i) (69)
i=1

where

N,
_ .- 1 .
Woim fr s Sl @ et o) 0
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and

Y W A O RSN
Miia = )& po(r) ' (1)

The term corresponding to the highest occupied orbital ¢y, , has been excluded
from the sum in Equation (69) because Vicn,s = txcn,o [15]. The remaining
unknown constants (V<L — 3 (ixcio 4+, ) ) aredetermined by thelinear equation

_ 1 I
> (65 = Myir) (T2 = 5 s + i)

_ 1, .
= (V;«:ja - E(uxcjo + uxcja)) ) (72)

with j = 1,..., N, — 1. Solving Equation (72) and substituting the result into
Equation (68), we obtain an explicitly orbital dependent functional.

We note that the KLI Equation (68) can also be obtained by a less rigorous
derivation, namely by approximating the energy denominator in the Green’s func-
tion (52) by asingle constant as was first suggested by Sharp and Horton [30] and
further elaborated by Krieger, Li, and lafrate [13, 15].

Numerical calculations [15, 18, 19] for atomic systems neglecting correlation
effectshave shownthat the KL I approximation givesexcellent resultswhich deviate
only by afew ppm from the much more involved exact solutions of the full OEP
integral Equation (43). Results for diatomic molecules[39] appear to be of similar
quality. Exampleswill be presented in Section 3.

2.3. RIGOROUS PROPERTIES OF THE OEP AND KLI POTENTIALS

To conclude this section we will describe (without proof) some exact properties of
the OEP method and the KLI approximation.

e Asymptotics: for finite systems, both the full OEP and the KL | potential fall off
as—1/r forr — oo [15] if the exact expression (27) for the exchange-energy
functional is employed.

e Freedom of self-interaction: if the employed xc-energy functional cancelsthe
self-interaction of the Hartree term, this property is preserved by the KLI
approximation. Thus x-only OEP and x-only KL| schemesare self-interaction
free. It has to be noted, however, that the inclusion of an LDA-correlation-
energy functional might introduce a self-interaction error again.

e Derivative discontinuities. an important property of the exact xc energy is
that it exhibits derivative discontinuities as a function of particle number N at
integer values of N. This has important consequences for the values of band
gapsin insulators and semiconductors (for adetailed description seee.g. [2]):
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Table |I. Various self-consistently calculated x-only results for the Ar atom. All
values in atomic units

OEP KLI B88 xPWo1 XxLDA
Eror —526.8122 —526.8105 —526.7998 —526.7710 —524.5174
€1s —114.4524 —114.4279 —114.1890 —114.1887 —113.7159
€25 —11.1534  —11.1820 —10.7911  —10.7932  —10.7299
€2p —8.7339 —8.7911 —8.4107 —8.4141 —8.3782
€35 —1.0993 —1.0942 —0.8459 —0.8481 —0.8328
€3p —0.5908 —0.5893 —0.3418 —0.3441 —0.3338
€4s —0.1607 —0.1616 —0.0102 —0.0122 —0.0014
(r?) 1.4465 1.4467 1.4791 1.4876 1.4889
(r=h 3.8736 3.8738 3.8731 3.8729 3.8648
p(0) 38397 3832.6 3847.3 3847.0 3818.7

The correct value E9 of the gap is obtained by adding the discontinuity Ay
of the xc potential to the KS gap, i.e., B9 = E} s+ Axc. Neither the LDA nor
GGA s reproduce this discontinuity. To date, the OEP and the KLI potential
are the only known approximations of Vyc(r) that reproduce this property of
the exact xc potential [15].

3. Sdlected Results
3.1. ATOMIC SYSTEMS

We begin with a comparison of x-only results. In an x-only world, the OEP rep-
resents the exact KS potential of DFT and can therefore serve as a standard to
compare approximations with.

In Table | we show as a typical example various results for the argon atom
obtained with different x-only methods. Besides the exact OEP and KL| methods
employing the exact exchange energy functional (27) described above, we also list
results from conventional KS-DFT obtained with the x-energy-functional approx-
imations due to Becke (B88) [40], Perdew and Wang (PW91) [41] and from the
well-known x-only LDA approximation. The KLI results given in the second col-
umn of Tablel clearly demonstrate the high quality of the KLI approximation asall
resultsdiffer only slightly from the exact OEP ones. For all standard DFT methods,
the disagreement is much more pronounced, especially for the highest occupied
orbital energies and even more so for the unoccupied ones.

Extensive calculations for atoms [32, 39, 42] have shown that a suitable cor-
relation-energy functional to be combined with the exact exchange energy func-
tional in the KL schemeis the one developed by Colle and Salvetti (CS) [43, 44].
Itisgiven by
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Egs[{(Pia}]

= —ab [ ()6
| 0o E 190 0 - 90000

-3 IR 2B -

—a / d3m(r)%, (73)

where
) = 42 0R), (74
n(r) =1+ Y3, d p ( r (75
) — P explepr) -

n(r)

The values of constants a, b, ¢ and d are ¢ = 0.04918, b = 0.132, ¢ = 0.2533, d =
0.349.

In Table |l we comparetotal ground state energies of first-row atoms calculated
self-consistently with various approximations. The first column, headed KLICS,
shows the results from the KLI method employing the exact exchange energy
functional (27) plus the CS-correlation energy functional, while the next columns
show conventional KS results. The latter were obtained with an LDA functional
using the parametrisation of the correlation energy of a homogeneous electron gas
by Perdew and Wang [47]; the x-energy functional due to Becke [40] combined
with the c-energy functional of Lee, Yang and Parr [48], denoted as BLYP; and
the generalized gradient approximation due to Perdew and Wang [41], referred to
as PW91. The quantum chemistry values, headed QC, are based on configuration
interaction calculations [45]. The exact non-relativistic energies, i.e. the experi-
mental values with relativistic effects subtracted, have been taken from [46]. The
mean absolute deviations of the calculated from the exact values, denoted by A,
are about the same for the KLICS and QC approaches, while they are about twice
as high for the GGAs and about a factor of 80 higher in the LDA. We emphasize
that the numerical effort involved in the KLICS scheme for atomsis only slightly
higher than in the LDA and GGA schemes.



OPTIMIZED EFFECTIVE POTENTIAL FOR ATOMS AND MOLECULES 43

Tablell. Total absolute ground-state energies for first-row atoms from various self-
consistent calculations. Quantum chemistry (QC) values from [45]. A denotes the
mean absol ute deviation from the exact non-relativistic values [46]. All numbersin
Hartrees. Taken from [32] and modified.

KLICS XCLDA BLYP PWO1 QC Exact

He 2.9033 2.8346 29071 2.9000 2.9049 2.9037
Li 7.4829 7.3433 7.4827 7.4742 7.4743 7.4781
Be  14.6651 144465  14.6615 14.6479  14.6657  14.6674
24.6564 243525  24.6458  24.6299  24.6515  24.6539
37.8490 374683  37.8430 37.8265 37.8421  37.8450
545005 541344 545032 545787 545854  54.5803
75.0717 745248  75.0786  75.0543  75.0613  75.067
997302  99.1112  99.7581  99.7316  99.7268  99.734
Ne 1289202 128.2299 128.9730 128.9466 1289277 128.939

A 0.0047 0.3813 0.0108 0.0114 0.0045

mTOoOzZzZ0OWw

Apart from total energies, the highest occupied orbital energies, which should
be equal to the exact ionization potential in an exact implementation of DFT, are
much closer to the experimental ionization potentials in the KLICS scheme than
in the conventional KS approaches. Thisis shownin Tablelll: al the conventional
KS calculations are inadequate, the numbers are off by about 100% due to the
wrong asymptotic behaviour of the xc-potentialsin these approximations. Only the
KLICS schemeresultsin a potential with the correct —1/r decay for large r.

3.2. RESULTS FOR DIATOMIC MOLECULES

The feasibility of the KLI approximation for more complex systems has been
demonstrated recently [39] by x-only calculations on diatomic molecules. Some
x-only results for the N, molecule are shown in Table IV. Among al the density
functional approaches the KLI scheme yields results closest to the HF values. In
principle, the density functional results should not be compared with HF but rather
with exact x-only OEP values. For molecules, however, the latter are not available
yet. From atomic results [18, 19] it is expected that HF and exact x-only OEP
values will agree closely for total energies while the orbital energies are expected
to be somewhat different.

It remainsto examinethe effect of correlation contributions. Therefore, we have
implemented the CS functional (73) for E. in our fully numerical basis-set-free
code for diatomic molecules, which is based on the Xa program developed by
L aaksonen, Sundholm and Pyykkd [50]. The solution of the Kohn—-Sham equation
and the exchange energy integral s are cal culated by means of relaxation techniques
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Table I11. lonization potentials from the highest occupied
orbital energy of neutral atoms. A denotes the mean absolute
deviation from the experimental values, taken from [49]. All
values in Hartrees. Taken from [32] and modified.

KLICS xcLDA BLYP PW9l Experiment

He 0945 0.570 0585 0583 0.903
Li 0.200 0.116 0111 0.119 0.198

Be 0.329 0.206 0201 0207 0.343
B 0.328 0.151 0143 0149 0.305
C 0.448 0.228 0218 0226 0414
N 0.579 0.309 0297 0308 0.534
(0] 0.559 0.272 0266 0.267 0.500
F 0.714 0.384 0376 0379 0.640
Ne 0.884 0.498 0491 0494 0.792
Na 0.189 0.113 0.106 0113 0.189

Mg 0273 0.175 0.168 0.174 0.281
Al 0222 0.111 0102 0112 0.220
Si 0.306 0.170 0160 0.171 0.300
P 0.399 0.231 0219 0233 0.385
S 0.404 0.228 0219 0222 0.381
Cl 0.506 0.305 0295 0301 0477
Ar 0619 0.382 0373 0380 0579

A 0.030 0.176 0.183 0.177

TablelV. X-only resultsfor N, with bond length of 2.07 a.u. HF values
from [50]. Q%" and Q¥ denote the total quadrupole and hexadecapole
moments, respectively, calculated from the center of mass. All numbers
in atomic units. Taken from [39] and modified.

HF KLI xPW91 XLDA
Eror —108.9936 —108.9856 —109.0581 —107.7560
€log —15.6822 143722 140717 —13.8950
Elou —15.6787 —143709 —-14.0703 —13.8936
€209 —1.4726 —1.3076 —1.0014 —0.9875
€20u —0.7784 —0.7453 —0.4611 —0.4434
€30g —0.6347 —0.6305 —0.3927 —0.3335
Elng —0.6152 —0.6818 —0.3478 —0.3887
QY —0.9372 —0.9488 —1.1962 —1.1643
Q¥ —7.3978 —6.7476 —6.1809 —6.2553

(1/r)~ 21.6543 21.6439 21.6921 21.5820

on atwo-dimensional grid. For comparison, we have also performed calculations
employing the conventional density dependent xcLDA and PW91 functionals for
EXC.
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Table V1. Cdculated bond lengths of the closed-shell-first-row
dimers and hydrides. HF values taken from [51]. Experimental
vauesfrom [52] except where noted. All valuesin atomic units.

KLICS PwW9l xcLDA HF Experiment

H, 1378 1414 1446 1379 14012
Li, 508 5153 5120 5304 5051
Be, - 4588 4522 - 4.63°
C. 2306 2367 2354 - 2.3481
N, 1998 2079 2068 2037 2074
F, 2465 2669 2615 2542 2.6682
LiH 2971 3030 3030 3.092 3.0154
BH 2274 235 2373 - 2.3289
FH 1684 1756 1761 1722 17325

aExact vaue from [53].
®From [54].

Table VII. Absolute total ground-state energies of the closed-shell-
first-row dimers and hydrides calculated at the bond lengths given
in Table V1. Estimates for exact values calculated using dissociation
energies from Table VIII and non-relativistic, infinite nuclear mass
atomic ground-state energies from [55]. All numbersin Hartrees.

KLICS PWO1 XCcLDA Exact
H> 1.171444 1.170693 1.137692 1.174448
Li> 14.9982 14.9819 14.7245 14.9954
Be 29.3197° 29.3118 28.9136 29.3385

C 75.7736 75.8922 75.2041 75.922
N2 109.4683 109.5449 108.6959 109.5424
F2 199.4377 199.5699 198.3486 199.5299
LiH 8.0723 8.0625 7.9189 8.0705
BH 25.2857 25.2688 24.9770 25.29
FH  100.4241 100.4715 99.8490 100.4596

3Exact value from [53].
PCalculated at the experimental bond length of 4.63 a.u.

To demonstrate the accuracy of our implementation, we show results for the
neon atom obtained with our molecular code and compare them with the onesfrom
our one-dimensional atomic structure program in Table V. It is obvious from the
table that the accuracy of our molecular code is very good, the deviation from the
exact results obtained with the atomic codeis afew pHartrees at the most.

We have calculated the ground-state properties of the closed-shell-first-row
dimers and hydrides in the approximations mentioned above in a fully self-
consistent fashion. As our program uses no basis functions, the results are free
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Table VIII. Dissociation energies of the closed-shell-first-row
dimers and hydrides calculated at the bond lengths given in Table
V1. HF values taken from [51]. All numbers in mHartrees.

KLICS PW91 XcLDA  HF Experiment

H> 171.444 167.665 180.270 121.0 174.47%°

Lis 324 335 37.9 35 393
Be, —105? 15.9 20.6 - 3.8
Cs 75.6 239.2 267.5 - 2321

N 287.3 3875 4271 167.5 364.0¢°
F, =227 106.7 126.2 —-547 62.1°
LiH 89.4 86.8 96.9 484 924
BH 129.3 137.4 145.8 - 135°

FH 193.9 2384 259.1 1308 2257

&Calculated at the experimental bond length 4.63 a.u.
PExact value from [53].

°From [54].

9From [52].

°From [56].

Table IX. Absolute values for the highest occupied orbital
energiesof the closed-shell-first-row dimersand hydrides cal-
culated at the bond lengths given in Table VI. Experimental
values are theionization potentials taken from [52]. All num-
bersin Hartrees.

KLICS PW91 xcLDA Experiment

H> 0.621563 0.382656 0.373092 0.5669
Li; 01974 0.1187 0.1187 0.18
Be; 0.2560° 0.1678 0.1660 -

Cz 0.4844 0.2942 0.2987 0.4465
N> 0.6643 0.3804 0.3826 0.5726
F. 0.6790 0.3512 0.3497 0.5764
LiH 0.3237 0.1621 0.1612 0.283°
BH 0.3692 0.2058 0.2041 0.359
FH  0.6803 0.3567 0.3594 0.5894

&Calculated at the experimental bond length 4.63 a.u.
b From [57].

of basis-set truncation errors. Where available, we have also included HF results
which, however, were abtai ned with conventional codesusing basis-set expansions.

In Table VI wedisplay resultsfor the bond lengths. It is apparent that the KLICS
scheme results in distances which are generally too short, an effect present in the
HF approximation as well. The LDA and PW91 functionals give values which are
clearly superior, the latter further reducing the error of the former.
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Total absolute ground-state energies calculated at the bond lengths given in
Table VI areshownin Table VII. The exact valuesfor the dimers are from [54], for
the hydridesthey are calculated by the same method using the exact non-rel ativistic
ground state energies for atomsin [55] and the experimental dissociation energies
in [52]. For the lighter molecules Hy, Li,, Bey, LiH and BH the KLICS and
PWO1 results are of the same good quality, yielding errors of afew mHartrees. For
the heavier molecules, however, the KLICS results are worse. Being the simplest
approximation, it is not surprising that the LDA gives values for the total energies
which show the largest errors.

Apart form Hz and LiH, the dissociation energies as obtained within the KLICS
approach are disappointing, as may be read in Table VIII. In most cases, the
magnitudeis considerably underestimated and for Be; and F, even thewrong sign
is obtained. Since the corresponding atomic ground-state energies given in the
previous subsection are of excellent quality, the error must be due to correlation
effects present in molecules only. In particular, the | eft-right correlation error well-
known in HF theory also occurs in DFT when the exact Fock expression (27)
for E,, is employed. Apparently, the error is not sufficiently corrected for by the
Colle-Salvetti functional. The LDA and PW9L results are clearly much better, the
latter reducing the over-binding tendencies of the former.

Despiteall of these shortcomings, the asymptotic form of the KLICSxc potential
is of much better quality than that of all the conventional xc-functional approxi-
mations. In Table IX welist the absolute values of the highest occupied molecular
orbital energies. In an exact implementation their values should be equal to the
ionization potentials of the systems under consideration. It is evident that the con-
ventional KS approaches represented by the LDA and PW91 functionals yield
results which are typically 30 to 40 percent too high, while the KLICS values
are much closer to the experimental results. As for atomic systems, this fact may
be traced back to the correct asymptotic behaviour of the KLICS xc potentia for
larger.

4. Conclusions

Due to the wealth of exact properties satisfied by the OEP, we argue that this
third generation of density functional theory provides apromising basisfor further
advances. While the results for atoms are very encouraging, the construction of
correlation functional s better adapted to correct the left-right deficiency of the exact
exchange energy functional is necessary if reliable results for molecular systems
areto be obtained.
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