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Abstract. Displaying natural images on an 8-bit computer monitor
requires a substantial reduction of physically distinct colors. Simple
minimum mean squared error quantization with 8 levels of red and
green and 4 levels of blue yields poor image quality. A powerful
means to improve the subjective quality of a quantized image is
error diffusion. Error diffusion works by shaping the spectrum of the
display error. Considering an image in raster ordering, this is done
by adding a weighted sum of previous quantization errors to the
current pixel before quantization. These weights form an error dif-
fusion filter. We propose a method to find visually optimized error
diffusion filters for monochrome and color image display applica-
tions. The design is based on the low-pass characteristic of the
contrast sensitivity of the human visual system. The filter is chosen
so that a cascade of the quantization system and the observer’s
visual modulation transfer function yields a whitened error spectrum.
The resulting images contain mostly high-frequency components of
the display error, which are less noticeable to the viewer. This cor-
responds well with previously published resuits about the visibility
of halftoning patterns. An informal comparison with other error dif-
fusion algorithms shows less artificial contouring and increased im-
age quality.

1 Introduction

High-quality color images can be displayed on monitors with
24 bits/pixel by assigning 256 different shades (8 bits) of
red, green, and blue to each input pixel. Hence, each pixel
color is selected out of 2%4~16 million different colors, and
the resulting quantization steps are practically invisible to
a human observer.
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However, many low-cost computer and display devices
can display only 256 different colors (8 bits) at a time, due
to hardware constraints. This requires a substantial reduction
of physically distinct colors. Using a simple minimum mean
squared error (MMSE) quantizer with 8 levels of red and
green and 4 levels of blue yields poor image quality.

Applying error diffusion significantly improves the sub-
jective quality of a quantized image. The basic algorithm
was first introduced by Floyd and Steinberg' for halftoning
in the printing process of gray-scale images. It is based on
the observation that the human visual sensitivity to display
errors is dependent on spatial frequency.

Floyd and Steinberg proposed an algorithm that calcu-
lates the quantization error for each pixel and feeds it for-
ward to four unquantized pixels of the input image. As
shown in Refs. 2, 3, and 4, this algorithm is equivalent to
a feedback system that adds a weighted sum of four previous
quantization errors to the current pixel before it is quantized.
Since the weighting factors sum to one, it can be shown
that the average value of the quantized image is locally equal
to the true gray-scale value.

Billotet-Hoffman and Bryngdahl® compared the perfor-
mance of ordered dithering with error diffusion. They con-
cluded that error diffusion, as proposed by Floyd and Stein-
berg, yields quantized images that are comparable or superior
to most ordered dithering techniques, when nonlinear effects
such as dot overlap are not significant. However, the image
quality still suffers from visible, correlated artifacts. To
reduce artificial contouring, Billotet-Hoffman and Bryng-
dahl proposed a combination of error diffusion and ordered
dither, where a dither matrix is used to vary the threshold
level of the quantizer.

Ulichney® examined the spectral characteristics of the
display error for the error diffusion algorithm using a variety
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of feedback filters. He proposed an error diffusion filter
with randomized weighting coefficients to shape the display
error spectrum so that it would have mostly high-frequency
content (‘‘blue noise’’). He stated that blue noise is less
noticeable to a human observer than errors with a white
power spectrum. Goertzel and Thompson’-® applied error
diffusion with a randomized error diffusion filter to mono-
chrome and color images. It was found that randomized
coefficients remove deterministic (iterative) patterns in the
displayed image. Although in comparison to the approach
with a deterministic filter, the image quality is improved,
false contouring artifacts remain.

The objective of this paper is to develop an optimized
algorithm for a specific human visual model. Most previous
methods use information about the human visual system
only indirectly or qualitatively.?-19-13 To achieve this, a
modulation transfer function (MTF) for an overall system
in a luminance-chrominance space is used. This system
model includes the effects of spatial sampling due to the
monitor and a model for the human modulation transfer
function. We assume that each part of this model can be
described by three decoupled system functions for lumi-
nance and both chrominance components. The error dif-
fusion algorithm is then independently matched to the three
components of the resulting system MTF. This is done by
choosing an optimized error diffusion filter for each com-
ponent. Design of the optimal error diffusion filter is shown
to correspond to an optimum 2-D linear prediction problem.

One important underlying assumption of our error dif-
fusion filter design method is that the quantization error has
a white power spectrum. However, in general, this as-
sumption is not valid. It is important to notice that the
quantization error is defined as the difference between the
input and output of the quantizer, while the display error is
the difference between the input and output of the entire
quantizing system. For error diffusion applied to gray-scale
images, it was found that the whiteness assumption about
the quantization error may be locally violated. This often
leads to false contouring.

Whiteness of the quantization error spectrum can be as-
sured by combining standard error diffusion with dithered
quantization (dithered error diffusion, DED). This method
is similar to the one described by Billotet-Hoffmann and
Bryngdahl5 but uses a different dither signal. Our method
is based on the fact that the quantization error spectrum can
be whitened by adding a fixed amount of white noise to the
signal before it is quantized. However, this also increases
the display error variance. A further refinement of this al-
gorithm is examined, that adds dithering noise locally, based
on a nearest neighbor criterion (locally dithered error dif-
fusion, LDED). With this approach, it is possible to remove
false contouring without adding excessive noise to the im-
age.

Simulations were carried out using visual models from
Sullivan,4-!5 Nisanen,'® and Mullen,!” describing the hu-
man MTF and reflecting the low-pass characteristic of the
human visual system to changes in luminance and chromi-
nance. The models differ in their cutoff frequencies and
their spatial symmetry properties.

Considering a modulation transfer function for the overall
system and then designing the error diffusion filter accord-
ingly yields an improvement over the conventional methods
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Fig. 1 Block diagram of the basic error diffusion algorithm.

of error diffusion. The algorithms were applied to gray-
scale images as well as to color images, and their perfor-
mance was compared. The best results were achieved using
the LDED algorithm. False contours are broken up, without
distorting the image through excessive amounts of dithering
noise.

Section 2 describes the error diffusion algorithm for
monochrome images and the optimization for a given human
MTF. Then we extend our analysis to color images. Section
3 discusses the whitening assumption of the quantization
error. Some models of the human MTF are described in
Sec. 4, and Sec. 5 contains experimental results.

2 Optimized Error Diffusion

Section 2.1 briefly describes the basic error diffusion al-
gorithm. Section 2.2 develops our approach for designing
an optimized error diffusion filter for the luminance com-
ponent, and Sec. 2.3 extends the algorithm to color images.

2.1 Basic Error Diffusion

The basic error diffusion algorithm for monochrome images,
as introduced by Floyd and Steinberg,’ is illustrated in Fig.
1. We will use the analysis given in Refs. 3 and 4 as the
basis for our approach. In our simulations, we process the
input image in raster order, starting with the pixel in the
upper left corner and proceeding line by line to the lower
right corner. Let n= (n;, n2) denote the pixel location in the
image. Referring to Fig. 1, we write s(n) for pixels of the
unquantized input image. In general, s(n) will be linearly
proportional to image luminance. Since most image data
formats incorporate some nonlinear predistortion (e.g., gamma
correction), this requires that the data be transformed back
to a linear format before processing. This transformation is
important since our models for the human visual system and
the display assume that the data are proportional to light
intensity.

The input to the quantizer, §(n), is computed by adding
a sum of weighted, previous quantization errors, g(n), to
the current pixel, s(n). This set of weights forms the error
diffusion filter G with impulse response g(n). The output
image of our quantizing system is y(r). We obtain the dis-
play error, e(n), as

e(n)=s(n)—y(n) .
The quantization error g(n) is given by
q(n) =5(n) — y(n)
= 2 gn=kgk) +e() (1
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Table 1 Coefficients of error diffusion fiiters. For the fitter used by
Goertzel, z is a random number, uniformly distributed between 0.25
and 0.75.

do.1 g1,-1 d10 dia

Floyd- 0.4375 | 0.1375 { 0.3125 | 0.0625
Steinberg

Goertzel z 0 0 1.0-z
Ist order LP

(non-separable) | 0.7770 | -0.009 | 0.7861 } -0.6098
(luminance)

Ist order LP

{non-separable) | 0.8767 | 0.0359 | 0.8205 | -0.7376
(chrominance)

B L4 goa
g1,-1 G100 9121

Fig. 2 Location of the filter coefficients.

where n—k=(n, — k1, n2 — k2) and k<\n denotes pixels with
(ky=n; and kp<<mp) or k1<<n;. We define the two-dimensional
Fourier transform of the discrete signal e(n) as in Ref. 18:

E(w)= ZZe(n) exp[—jan] s
ncEZ

where o =(w1,w7) and Z is the set of all integers. Then we
obtain from Eq. (1) a relationship between the spectrum of
the display error E(w) and the spectrum of the quantization
error (),

E(w)=Q0(w)[1-G(w)] , (2)

where G(w) is the frequency response of the error diffusion
filter. We will refer to G(w) and g(n) as the error diffusion
filter interchangeably. If we assume that g(n) is spatially
uncorrelated, then Q(w) is white, and the display error spec-
trum can be shaped by choosing the frequency response
H(w)=1—-G(w). In Sec. 3 we will develop methods to
assure that this whiteness assumption holds.

Based on this analysis, the frequency response of the
error diffusion filter, G(w), is critical in determining the
spectrum of the display error. Table 1 lists some common
examples of error diffusion filters and Fig. 2 shows the
location of the filter coefficients. Floyd and Steinberg pro-
posed a filter, g(n), with four positive, deterministic coef-
ficients. Stucki®? defined a filter that operates on 12 previous
quantization errors. Due to space limitations, it is not listed
in the table. The coefficients of most error diffusion filters,
including the filters from Floyd and Steinberg, and Stucki,??
sum to one. Therefore, G(w=0)=1. It follows from Eq.
(2) that the dc component of the display error E(w=0)=0.
This implies that the average gray value of the quantized
image, y(n), is locally ad]usted to the true gray-scale value
of the input image. Ulichney® and Goertzel and Thompson®
examined error diffusion filters with randomized coeffi-
cients. In these cases g(n) changes randomly with the lo-
cation in the image. Table 1 lists the coefficients of a filter,
used by Goertzel. The parameter z denotes a random num-

ber, uniformly distributed between 0.25 and 0.75 and cho-
sen independently for each pixel. As with the deterministic
filters, the sum of the coefficients at any location is also
equal to one.

The error diffusion should be designed so that the display
error e(n) is the least noticeable to a human observer. Since
the human visual system is more sensitive to low-frequency
changes in luminance than to high-frequency components,
most of the energy of the display error should be shifted to
high frequencies. However, forcing the dc component of
the display error to zero by setting the sum of the filter
coefficients to one is an artificial constraint. Qur simulations
show that better results can be obtained by tolerating some
display error at zero frequency and distributing the error
energy over the entire spectral range according to a human
visual model. The next section formulates such a minimi-
zation criterion.

2.2 Optimization and Design of the Error Diffusion
Filter in Luminance

To design an optimized error diffusion filter G(w) for the
luminance component, we consider a model for the overall
system, as illustrated in Fig. 3. After the error diffusion
algorithm and quantization is applied to the input image,
the quantized image is converted by a monitor to a spatially
continuous signal. It is filtered with the monitor MTF, P((}),
where = (€,Q)2) and Q;,Q0,E(—,»). This gives rise
to aliased terms in the spectrum of the displayed image.
The resulting image is seen by a human observer. It passes
through the human visual system with MTF, W(£}), and
becomes the perceived image. Linearity is assumed for each
component of our system.

We would like to minimize the energy of the perceived
error Efe (x)] by choosing an optlmal error diffusion filter.
As illustrated in Fig. 3(a), e(x) is the perceived difference
between the quantized image y(n) and the original image
s(n). Since linearity of the monitor and the human MTF is
assumed, it is sufficient to consider the difference signal
s(n) — y(n) as the input to our system, as shown in Fig. 3(b).
This is the display error e(n) as it was defined in the previous
section.

Assuming that the input image can be viewed as a stationary
random process, the perceived error g(x) is also a stationary
random process and the energy of e(x) is given by

1
E[ez(x)]=4~;i fa 2 Pe@ a0,

where ®¢({2) is the power spectral density of g(x).

In Appendix A, we show that the energy of the perceived
error can be expressed in terms of the power spectrum of the
display error ®.(w) and an equivalent overall system function
W(w) such that

1 -
E[ez(x)]=;? L €P2<I>e(w)|wm)|2 do , 3)

where P=[~m,7], and the overall system function W(u))
is given by

W(@)|>=£7 > | P(wf;, + 2nlf)W(af,+2wlf)? ,
1E72
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error diffused Dia Monitor Human
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+
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error, € (Xx)
o D/A
original > _ > Monitor Human
image, s(n) S‘::::h;g MTF, P@Q) . MTF, W)
(a)
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display ‘ Monitor Human perceived
— ] sarmpiing—> —> —
error, e(n) Sj::: lfI;g MTF, P(2) MTF, W(Q) error, € (x)
(b)
display Systerll Function ‘ ) ; (n)
error, e(n) W)

(c)

Fig. 3 Block diagram of the monitor and the human visual system.

where /= (/1, [2) and f; is the sampling rate of the monitor
in cycles per degree. The sampling rate is obtained by taking
the reciprocal of the angle of perception of a single displayed
pixel for a fixed viewing distance.

Figure 3(c) illustrates the resulting simplified system model,
where £(n) is the output of an equivalent discrete system
W(w). This simplification results from Eq. (3) and the fact
that

E[¢°(0)]=ElE*(n)] .

Therefore, we can minimize the energy of the perceived
error by minimizing the energy of €(n). Furthermore, from
Eq. (2) it follows that

P () = Py(w)]l — G(w)|* .
Replacing ®.(w) in Eq. (3), we want to minimize

E[éz(n)]z%wz f Epz@q(w)u —G(@)]!|W(w))? do ,

subject to the constraint that G(w) be a strictly causal filter.
Strict causality of G(w) is required since it is located in the
feedback branch of the error diffusion system.

The optimal choice of G(w) has an intuitive interpreta-
tion, which is illustrated in Fig. 4. Figure 4(a) shows the
quantizing system together with the system W(w) and the
perceived error £(n). By exchanging W(w) and 1 —G(w),
Fig. 4(b) illustrates that the filter G(w) acts as a predictor
for the signal u(n). It should be emphasized that the signal
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u(n) is introduced only to simplify our derivation and does
not occur anywhere in the real system.

The problem of minimizing E[éz(n)] is then equivalent
to choosing an optimal linear predictor G(w) for the sta-
tionary random process u(n). This is a classical problem,
which may be solved using ®,(w), the power spectrum of
u(n). If we assume that g(rn) is white, then

D, (w) = Dy(@)|W(w)|?
=No|W(w)]* .

Appendix B gives the details of the optimized 2-D linear
predictor design for this problem.

2.3 Extension to Color Images

When applying error diffusion to color images, the input
image is a sequence of vectors with a red (R), green (G),
and blue (B) component, such that s(n) =[r(n),g(n),b(n)]7.
We will again assume that the three primary components
are linearly proportional to light intensity. The extension to
color will also require the additional approximation that the
quantization errors of the three color components are un-
correlated. This assumption together with an opponent color
model for the human visual system will lead to linear pre-
diction equations so that one filter can be designed for each
color component. For this work, quantization is performed
separately on the RGB components. Other methods of quan-
tization are possible, but separate quantization of RGB com-
ponents does not lead to gamut mismatch.
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q(n) - e(n) .
Quantizing System Monitor Human =
— 1 6o P mE MTE > &)
W(w)
(a)
q(n) Monitor Human u(n) + =
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Wiw)
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Fig. 4 Block diagram of the overall system.

s(n) + s(m) y(n)
+ >

q(n)
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Fig. 5 Block diagram of the error diffusion algorithm applied to color
images.

A more natural color space to evaluate perception of the
human visual system is spanned by a luminance-chrominance
coordinate system. Experimental results!”-1° are available
that describe the contrast sensitivity function of the human
visual system to variations in luminance, as well as for
variations in two chrominance components. For our exper-
iments we use a color coordinate system specified by the
primaries in Mullen’s paper.I7 We write ““Y”’ for lumi-
nance, ‘‘rg’’ for the red-green component, and ‘‘yb’’ for
the yellow-blue component. Furthermore, we selected the
Degsoo standard white point as the chromaticity of the lu-
minance component.

Figure § illustrates our color error diffusion algorithm,
where the error diffusion is performed in the Y,rg,yb space,
while the quantization is done in RGB coordinates. We
define a transformation matrix T to convert from the RGB
space to Y,rg,yb coordinates. Matrix T can be decomposed
into the product of two matrices A and B, such that

T=B!A,

where A is a device-dependent matrix, converting from
RGB coordinates to standard X,Y,Z coordinates,?’ and B
transforms Y,rg,yb coordinates to the X,Y,Z space. Matrix
A is defined as

A=[r2b] ,

where 7, g, and b are column vectors containing the X,Y,Z

coordinates of the three primaries of the display device.
These vectors have to be determined for each display. The
transformation matrix B can be calculated for the wave-
lengths of the color stimulus described in Ref. 17. We
obtained B as

0.0670 —0.1116 —0.0830
B=| 0.0707 0 0
0.0767  0.0049 -1.0000

The quantization error g(n) is transformed to Y,rg,yb co-
ordinates. Each component of the transformed quantization
error is passed through a separate error diffusion filter. Then
the filtered error is transformed back to RGB coordinates
and added to the next unquantized input pixel.

The analysis of the system is analogous to the case of
luminance error diffusion, where signal variables now de-
note vectors of three color coordinates. The system functions
Gi(w) and W(w) are now matrices of functions of spatial
frequency. Including the color transformations T and T~
of the feedback loop into the calculation, we obtain a re-
lationship for the display error spectrum in terms of the
quantization error spectrum,

E()=[1-T 'G(w)T]0(w) ,

where | is the identity matrix and T~ ! denotes the inverse

transformation from the luminance-chrominance to RGB
coordinates.

A model for the monitor and the human visual system
is shown in Fig. 6(a). The components of the system are
analogous to the monochrome model. A transformation T
is inserted, since W({)) is given for luminance-chrominance
coordinates. We assume that human contrast sensitivity to
variations in luminance and chrominance is decoupled, and
that W(Q) is therefore diagonal. If we also assume that
P(Q) and the digital-to-analog conversion are the same for
each of R, G, and B, we may exchange the order of the
system blocks and obtain the model illustrated in Fig. 6(b).
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Fig. 6 Block diagram of the monitor and visual system.
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t del
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Fig. 7 Block diagram of the overall color system.

As shown earlier for the monochrome model, this system where
has a discrete equivalent, given in Fig. 6(c), where . ) )
G(w)=W()G(0)W () . (5)
Wy(w) O 0 Notice that G(w) should be an optimal predictor for the
W) T= 0 W,g(u)) 0 T. signal u(n). Therefore, the objective is to minimize the
0 0 Wby(w) energy of &(n) by choosing the filter G(w) and then con-

verting to G(w), using Eq. (5).
Figure 7(a) shows the overall discrete color system. As Let R(m) be the autocorrelation matrix of the transformed
illustrated in Fig. 7(b), the spectrum of the perceived error quantization error g(n)=Tq(n). Then we will assume that
is related to the spectrum of the quantization error by _ } 7
R(m)=E{g(n+m)g" (n)]

8(w) = W) Tl - T~ 'G(@) TI0) = Rod(m) ©

=W(w)[l - G(w)]TQ(w) .
. B where Ro is assumed to be a diagonal matrix and 8(m) is
=[l1- G(w)|W(®)TO(w) , 4) the Dirac delta function, given by

282 / Journal of Electronic Imaging / July 1992 / Vol. 1(3)




Optimized error diffusion for image display

1 ifm=0

3(m)= {0 otherwise .
Again, the spatial independence of §(n) is ensured by the
methods described in Sec. 3. In general, the structure of Rg
is difficult to determine when nonuniform quantization is
used. If Ro is not diagonal and the quantization error be-
tween components is correlated, we could calculate the op-
timal G(w) according to a minimum mean square error cri-
terion for the perceived error. However, this is a fairly
complex problem, which involves the design of six error
diffusion filters to account for the cross-coupling between
the quantization error components. In practice, R(m) is usu-
ally unknown, but our experiments indicate that the cross-
correlation between the three error components is small,
particularly when the quantization error is spatially white.
Therefore we will assume that Ro(m) is diagonal.

Making the assumption of Eq. (6) and that Ry is diagonal
we have that

Du11(w) 0 0
P (w)= 0 D 02(w) 0 , N
0 0 q)u33(w)

where
®Di(w) =W (w)Ro;; -

By the form of Eq. (7), the three components of u(n) are
uncorrelated and the optimal predictor for u(n) is therefore
of the form

G(0) = G(w)

Guw) 0 0
= 0 Gxn(w) 0 ,
0 0 Gui(w)

where Gii(w) is chosen to be the optimal predictor for the
signal ui(n) with power spectrum ®,;;(w). Notice, that w
and W ! cancel in Eg. (5) since W(w) and G(w) are di-
agonal, and therefore G(w)= G(w).

3 Whitening the Quantization Error Spectrum

3.1 Dithered Error Diffusion

The design of the error diffusion filter assumed that the
quantization error g(n) has a white power spectrum. How-
ever, simulations showed that this assumption is not always
valid. Based on our simulations, two observations about the
power spectrum of g(n) were made. On the one hand, the
whiteness of g(n) depends on the error diffusion filter. On
the other hand, the simulations indicated that the quanti-
zation error is not white in regions of the image where the
input gray-scale value is close to one of the quantization
levels. The quantization error resulting from regions of such
input pixels is not large enough to alter the output value of
the quantizer. This results in bands of constant gray level
[as can be seen in Fig. 11(a)].

s(n) + S(n) y(n)

q(n)

G

Fig. 8 Block diagram of the dithered error diffusion algorithm.

In Appendix C, we show that a possible way to obtain
a white quantization error spectrum is to vary randomly the
thresholds #(n) of the quantizer Q. Moreover, it is shown
that the expected value of the output image, E[Q[5(n)]], is
equal to the expected value of the quantizer input, E[5(n)],
and that the signal is uncorrelated with g(n). Let oy for
k=0, ..., M~ 1 be the M nonuniformly spaced quantization
levels, and assume that the signal falls in the range
aoss(n)<op-y. The dithered quantization of s(n) is giv-
en by

y(n)=Q[s(n)] = { Ok~ 1 if o — 1=<s(n)<t(n)

o if tin)ss(n)<oy

where #(n) is a sequence of independent random thresholds
uniformly distributed on (o —1, o).

We also show in Appendix C that for a uniform quantizer
the variation of the thresholds is equivalent to adding noise
to the signal before it is quantized. This is done by defining
a noise sequence N(n) of independent random variables.
Each N is uniformly distributed on the interval (— Ag/2;
Ag/2). As for the nonuniform quantizer, the expected value
of the output image, E[Q[5(n)]], is equal to the expected
value of the quantizer input, E[3(n)], and the signal is un-
correlated with the noise. Figure 8 illustrates the resulting
quantization system. We will refer to this method as dithered
error diffusion (DED).

Figure 9 shows estimates of the power spectrum of the
quantization error obtained for a natural image using the
Floyd-Steinberg filter and an optimized error diffusion filter.
The estimates of the power spectrum are calculated by av-
eraging periodograms over the image. They are plotted as
a function of f;, while £, is set to zero. We used a uniform
3-bit quantizer and limited the input signal to the range of
the quantizer to avoid saturation effects. A comparison of
the spectra, resulting from the basic error diffusion method
and the DED algorithm, clearly shows the whitening effect
of the DED algorithm when the Floyd-Steinberg filter is
used. We also notice that the optimized error diffusion filter
seems to produce a white quantization error, without the
addition of dithering noise. However, experimental results
in Sec. 5 will show that the quantization error can be locally
nonwhite. Therefore, dithering noise has to be added to
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Spectral Density

Horizontal Spatial Frequency f1, £2=0

Fig. 9 Estimates of the power spectrum of the quantization error as
a function of f1€(0,w) and f2=0: (a) basic error diffusion, Floyd-
Steinberg filter; (b) optimized error diffusion, linear predictor; (c) DED,
Floyd-Steinberg filter; and (d) DED, linear predictor.

ensure whiteness of the quantization error. The disadvantage
of the DED algorithm is an overall increase of graininess
and noise in the output image.

3.2 Locally Dithered Error Diffusion

To produce results similar to DED but with less noise, we
selectively add noise to the image based on a nearest neigh-
bor criterion. We will call this method locally dithered error
diffusion (LDED). Figure 10 illustrates the algorithm. Our
simulations indicate that areas with smooth, slowly varying
gray-scale values in the input image often show artificial
textural contouring after they are quantized. This may be
due to the fact that most pixels in a neighborhood of the
input image are represented by the same quantization level
and that the diffused error is too small to change the quan-
tization level of successive pixels. As a result, the quanti-
zation error tends to have the same sign in such areas.
Therefore, it seems to be desirable to whiten the quantization
error by adding some noise in critical regions of the image.
As a criterion, the algorithm compares the quantization lev-
els of two previously quantized pixels, located to the left
and above the current input pixel, such that

if (y(n1 —1,n2)=y(nl,n2-1))
dither quantization

else
do not dither quantization .

Whenever the same quantization level was assigned to these
two pixels, dithered quantization was used. This modifi-
cation reduces the variance of the quantization error com-
pared to dithered error diffusion, but also whitens the quan-
tization error in critical regions of the image.

4 Models for the Human Visual System

4.1 Luminance Contrast Sensitivity

In this section, we briefly describe two of the various human
MTF models found in the literature, and then develop the
model used in our experiments. Most models for the human
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Fig. 10 Block diagram of the locally dithered error diffusion algo-
rithm.

MTF have a low-pass characteristic. It should be empha-
sized that our proposed method for designing an optimal
error diffusion filter for a given visual model is applicable
to any given modulation transfer function describing the
specific display and viewing conditions.

Sullivan and colleagues'*1> quote a proprietary model
from Daly that describes the human MTF by a weighted
exponential function of the frequency vector. The model is
also a function of the viewing angle and decreases faster
for diagonal frequencies to account for the reduced sensi-
tivity of the human visual system toward luminance changes
in diagonal directions.

Nisinen'® describes a circular symmetric model based
on an exponential function. This model features parameters,
which depend on the average luminance of the display. The
slope of the exponential decreases with increasing average
luminance.

For our simulations, a model was used that combines the
models from Sullivan et al. and Nésidnen. Our model is
based on an exponential function as used by Nisénen'®:

W(H)=K(WL) expl-aD)f] ,

where L is the average luminance in cd/m?, fis the spatial
frequency in cycles per degree,

K(L)=al? ,

1

D)= +d

and a=131.6, b=0.3188, ¢=0.525, and d=3.91. De-
viating from Nisénen’s model, we define f to be the weighted
magnitude of the frequency vector f=(fi, f2), where the
weighting has an angular dependence as used by Sullivan,
Ray; and Miller' of

o AL
f—s(e) ,

where [|fll=(f1+f3)” and

1 +w

-w 1
> cos(49) + -

s(0)=
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(a) (b)

(c) (d)

Fig. 11 Error diffusion applied to a gray-scale ramp (zoomed by factor of 2): (a) basiq error diffu_sion,
Floyd-Steinberg filter; (b) basic error diffusion, first-order linear predictor; (c) DED, first-order linear

predictor; and (d) LDED, first-order linear predictor.

The angle © is defined as

O =arctan <%)

and the symmetry parameter w=0.7. Throughout our sim-
ulations, we assumed a monitor MTF P(Q))=1. An inves-
tigation of the spatial characteristics of gray-scale CRT
pixels was recently presented by Naiman and Makous.?!

4.2 Chrominance Contrast Sensitivity

We base our model for human sensitivity toward variations
in chrommance on the experimental results obtained by
Mullen.' Evaluatlng the presented data, the chrominance
contrast sensitivity function can be approximated by an ex-
ponential function,

W(f)=A exp(—af) .

We determined =0.419, A=100 for both chrominance
components, and assumed circular symmetry for our model
such that f=(f7+3)"*. As with the luminance model, we
assume P(£2)=1 for both chrominance components.

5 Experimental Results

5.1 Error Diffusion in Luminance

Our experiments were carried out on a Sun SPARCstation
1 with a calibrated color monitor. Simulations were per-
formed with 512 X 512 pixel natural images and a gray-scale
ramp. A monochrome version of a natural color image was
obtained by calculating the lummance component Y ac-
cording to the Y,cr,cb standard® from RGB image data.
The monochrome image was then scaled and rounded to
integer values between 0 and 255. Uniform and nonuniform
quantizers were examined. We chose to use a nonuniform
quantizer where steps increase toward higher luminance lev-

els since this corresponds to the fact expressed in Weber’s
law that human contrast sensitivity follows a logarithmic
function of luminance. Let ay x denote the luminance quan-
tization levels, where a value of O corresponds to zero in-
tensity, 255 denotes maximal intensity, and intermediate
values are proportional to the energy of the corresponding
image pixel. The luminance quantization levels were as-
signed such that

ay =255k,

where k=0, ..., 7.

Our output images were displayed on an 8-bit color mon-
itor. We calibrated the monitor using measured values of
gamma and offset. The error-diffused image was trans-
formed according to the nonlinearity of the display. A nor-
mal viewing distance was assumed and measured to be 40
cm, which is equivalent to approximately 3.5 times the
image height. The quantized images shown in this paper
are zoomed by a factor of 2 and should therefore be viewed
at a distance of approximately 7 times the image height.
Calculating the angle of perception for a single pixel yields
Adb=0. 0317 deg/pixel. This determines the sampling rate,
fi=(Ad) " 1=31.5 cycles/deg. The average luminance of
our display was measured to be approximately L=11.0
cd/m?.

The coefficients for the first-order linear prediction filters
for lJuminance and chrominance are listed in Table 1. Notice
that the coefficient g ; of both prediction filters is negative
and that the coefficients do not sum to one. Since the op-
timized filters shape the display error spectrum according
to a human visual model, some display error energy is
allowed at zero frequency. Notice also that the coefficient
g1.—1 is very close to zero and can be neglected to reduce
the computational complexity of the algorithm.

Figures 11(a) and 11(b) show a quantized gray-scale ramp,
comparing the performance of the basic error diffusion al-
gorithm, using the Floyd-Steinberg filter, and the first-order
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{c)

{b)

(d)

Fig. 12 Error diffusion applied to a natural image (zoomed by factor of 2): (a) basic error diffusion,
Floyd-Steinberg filter; (b) basic error diffusion, first-order linear predictor; (c) DED, first-order linear

predictor; and (d) LDED, first-order linear predictor.

linear predictor for luminance, according to the human vis-
ual model described in Sec. 4. When using the Floyd-Steinberg
filter, the quantized image shows diagonal patterns and ar-
tificial contours. Applying a first-order linear predictor with
the basic error diffusion shows fewer patterns.

Our simulation indicated that for basic error diffusion
averaged over the entire image the quantization error spec-
trum is whiter when using a linear prediction filter than for
the alternative filters (see Fig. 9). This may result from limit
cycles and saturation effects, which occur more frequently
for filters with coefficients that sum to one. For all tested
filters, the quantization error is not equally white in all
regions of the image. Whenever the input gray-scale value
is close to a quantization level, the whiteness assumption
seems to be locally violated. In these regions, the contri-
bution of the quantization errors of adjacent pixels to the
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current pixel is negligible. Thus, the quantizer assigns the
same output gray level to almost all pixels in that region.
In Figs. 11(a) and 11(b) this causes artifacts that are visible
as lines in the gray-scale ramp.

Figure 11(c) shows the resulting image for the DED
algorithm using the first-order linear predictor. The resulting
image does not suffer from lines and patterns as the previous
two examples. However, the overall perception of the image
is more noisy.

Figure 11(d) shows the resulting image for the LDED
algorithm. This algorithm also removes the false contours,
but the LDED algorithm is superior to the DED algorithm
since it reduces the amount of noise in the image.

Figure 12 shows the same algorithms applied to a natural
image. Critical regions of the image such as the shoulder
and the cheek appear to be smoother for the LDED algorithm
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(c)

(b)

(d)

Fig. 13 Quantization error images for a natural image (full image): (a) basic error diffusion, Floyd-
Steinberg filter; (b) basic error diffusion, first-order linear predictor; (c) DED, first-order linear predictor,;

and (d) LDED, first-order linear predictor.

than for basic error diffusion, using either the Floyd Stein-
berg filter or the optimal linear predictor.

Knox® proposed to display the quantization error image
to examine the correlation between the input image and the
quantization error. Figure 13(a) shows the quantization error
image, for a natural image, processed with basic error dif-
fusion, using the Floyd-Steinberg filter. Note that Fig. 13
shows the full error images. It can be seen that the quan-
tization error is highly correlated with the input image.
Figure 13(b) shows the quantization error image for the same
natural image, processed with our optimized error diffusion
algorithm. Notice that the quantization error becomes less
correlated to the input image simply by changing the coef-
ficients of the error diffusion filter. The whitening effect of
adding dithering noise can be seen in Figs. 13(c) and 13(d),
which show the quantization error images for DED and

LDED. Adding dithering noise globally to the image pro-
duces a quantization error that is almost uncorrelated. The
LDED algorithm improves the whiteness of the quantization
error without adding an excessive amount of noise.

5.2 Color Error Diffusion

Our images were quantized in RGB coordinates, using 256
colors, where we assigned 3 bits (8 levels) to red, 3 bits to
green, and 2 bits (4 levels) to blue. Our input data are linear
in luminance. Again, uniform and nonuniform quantizers
were examined, where a nonuniform quantizer was chosen
with increasing steps toward higher luminance levels. Let
.k, Ogk, and oy i denote the R, G, and B quantization
levels, respectively, where a value of 0 corresponds to zero
intensity, 255 denotes maximal intensity, and intermediate
values are proportional to the energy of the corresponding
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(a)

{b)

{d)

Fig. 14 Color error diffusion applied to the natural image “Balloon” (monochrome reproduction, zoomed
by factor of 2): (a) basic error diffusion, Floyd-Steinberg filter; (b) basic error diffusion, first-order linear
predictor; (c) DED, first-order linear predictor; and (d) LDED, first-order linear predictor.

primary. For red and green the quantization levels were
assigned such that

o k=g x=255(k/7)!® |
where k=0, ..., 7. For the blue primary we used
apr=255(ki3)"® |

where k=0, ..., 3. The monitor was calibrated using offsets
and gamma for each color gun. The color of the monitor
was also calibrated by measuring the elements of matrix A
in Sec. 2.3. Display and viewing conditions were the same
as for the monochrome case.

Figure 14 shows monochrome reproductions of our ex-
perimental results using four different error diffusion meth-
ods applied to a color image. For all cases we used a color
transformation to a luminance-chrominance space as de-
scribed in Sec. 2.3. Notice that using the Floyd-Steinberg
filter on all three components of the quantization error can-
cels the effect of the transformation T and its inverse. As
in the case of luminance error diffusion, the optimized al-
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gorithm removes almost all artificial contouring in smooth
areas of the image. Furthermore, it eliminates the deter-
ministic patterns typically associated with the Floyd-
Steinberg filter.

Figure 15 shows the Y component of the quantization
error images for a natural color image. As in the case of
luminance error diffusion, the correlation between the input
image and the quantization error is greatly reduced, when
using an optimized error diffusion filter. However, Figs.
15(c) and 15(d) show that the contours of the original image
are still noticeable, even when dithering noise is added to
the quantizer input. This results from saturation of the quan-
tizer, mainly for the blue component, since only four output
levels are assigned to this component and the white quan-
tization error assumption is often violated.

6 Conclusion

Starting with an analysis of the basic error diffusion algo-
rithm proposed by Floyd and Steinberg, we developed an
optimization criterion for the design of an error diffusion
filter for monochrome images, based on a model for the




Optimized error diffusion for image display

(a)

(c)

(b)

(d)

Fig. 15 Luminance quantization error for “Balloon” (full image): (a) basic error diffusion, Floyd-Steinberg
filter; (b} basic error diffusion, first-order linear predictor; (c) DED, first-order linear predictor; and (d) LDED,

first-order linear predictor.

human visual system. We showed that the analysis can also
be extended to color images. Additive white noise is used
to ensure a white quantization error spectrum, which is an
important underlying assumption for the design of the error
diffusion filter. The resulting images show less artificial
contouring and a uniform texture. In addition, the noise in
slowly varying regions of the image apears to be more
uncorrelated and less noticeable.

7 Appendix A
In this section we will show that E[ez(x)] =E[éz(n)], where
1

EE*ml=_— | _

T 2
p P2<I>e(u))|W(u))l dw

and P=[~r,], while E[e%(x)] is given by

E[e*(x)] =i2 f De()) dQ (8)
47° JaeRr?

where Q=(0,,Q;) is a frequency vector with

01,Q,E(—x,2). The digital image is displayed and con-

verted to a spatially continuous signal. It is filtered by the

monitor MTF P(Q). Ideally we would like P(£2) to be a

perfect low pass with

1 if QeED?
0 otherwise ,

P(Y) ={

where D =[ — 7f;, mfs], and f; is the sampling frequency of
the monitor. Since the monitor is not ideal, we also have
to consider effects due to the side lobes of P(£)). Accounting
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also for the effect of the human MTF W({}), we obtain the
power spectrum of the perceived error ®(2) in terms of
the display error power spectrum P ()/f;):

0
¢>e<0>=<be<7) IPOWE)|* .

We note that ®.(Q)/fs) is the power spectrum of a discrete
signal and is therefore a 2-D periodic function with period
27. Substituting in Eq. (8) and expanding the integral we
obtain

1
Ele’(01 = nemq"(%) P@QWQ)? dQ

1 f Q
=— o\ —+2ml
4r? 15222 nen? e(fy ﬂ)
X |P(Q+ 2wif)W(Q+27ify)|* dQ
where /= (I1, I5) and Z is the set of all integers. Exchanging

the order of the sum and the integral and using the periodicity
of ®.(£/f;), we have

1 Q
E[’()]=— Q.| —
[e“(0)] 4 Joco? e<fs>
X 22[19(9 +2mlf,) W +2wlfy)|* dQ) .
1€7
Finally, we make the substitution o = {}/f; to obtain
Bl =—
4n? Jue

x 3 [Plaf,+ 2wlf)Wofs+ 20l do
ez

D (w)f?
P2

= —_— W 2
4m? wePZ(DE(w), (@) do

=E[e*(m)] ,

where W(w) is any discrete space filter, which satisfies

|W(w)|?=f2 ZZJP((O £+ 2wl Wif, + 2mlf)|
le

8 Appendix B

In this section we develop linear predictor equations for the
2-D random process u(n). The signal u(n) is the output of
the linear system W(w). Since the input of the system is a
stationary white noise signal g(rn), with power spectral den-
sity No, the output u(n) is also stationary. The power spectral
density of u(n) is given by

@, (w) =No|W(w)|* . ®
Assuming raster order when processing the input image,

each present pixel divides the image into a past and future
halfplane as illustrated in Fig. 16. Based on pixels from the
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Fig. 16 P=past and F =future halfplanes of the image and X de-
notes the present pixel.

past (causal) halfplane of the signal, we want to obtain an
estimate of the present pixel that is optimal in the mean
square sense. Let ug,o denote the present pixel. Then we
define ui, to be the pixel / steps to the right and k steps
below the present pixel. An estimate of the present pixel,
ito,0, in terms of weighted previous pixels is given by

14 r p
ftoo= D, hoyto,— 1+ > > heq—x—q ,
=1 E=11==p

where hy ; denotes the coefficients of a p’th-order 2-D causal
filter. Define U to be a vector of image pixels with

T_
U —[uo,_1,...,uo,_p,u_l,p,...,u_l,_p,...,

u*P,p,-n,u—p,—p] »

where T denotes the transpose of the vector. The dimension
of U is 2(p2+p). Then let

h=T1ho1,...,hops 1, —ps... Bl pseccshp, —pye s Bppl .
Using these definitions we can write for ig o

o=hU .

The coefficients of 4 that form the MMSE estimator for g o
are given by

h=R; b ,

where b=E(uooU") and R, =E(UUT) where R, is the au-
tocorrelation matrix of U. Notice that R, has a structure
known as block Toeplitz. Let the point spread functions of
the monitor and the human visual system be denoted by
p(x) and w(x). Then the coefficients of b and R, can be
obtained by calculating and sampling the autocorrelation
function r,(x) of the convolution of p(x) and w(x),

ru(x) = Nop(x)xp(— x)*w(x)*w(—x)

=NoF ~'[IPEOYW)|*]
and ! denotes the inverse Fourier transform. We can
approximate r,(x) by

r)=Af? 3 IPRANWKALN explj2mkAfa]
kEZ

where Af is sufficiently small. To obtain the coefficients of
R., r.(x) is sampled at multiples of the spacing between
adjacent pixels, Ax, with

E(untim) =ry[(n—m)Ax} .
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9 Appendix C

We show that dithered quantization of a signal s(n) will
generate quantization error g(n), which is zero mean, white,
and uncorrelated with the signal s(n).

Let o for k=0, ..., M — 1 be the M nonuniformly spaced
quantization levels, and assume that the signal falls in the
range of ao=s(n)<oap . The dithered quantization of s(n)
is given by

= _Jo—1 if o 1=<s(n)<t(n)

yn) =Qls(n)]= {ak if 1(n)<s(n)<a

where #(n) is a sequence of independent random thresholds
uniformly distributed on [ax — 1, ok]. Notice that in the case
of uniform quantization with spacing A, this corresponds
to the simple operation

y(n)=Qls(n) +N(n)] ,

where Q[-] is normal minimum distance quantization and
N(n) is a sequence of independent noise samples with uni-
form distribution on [ —Aa/2, Aa/2].

The quantization error is given by g(n) =s(n) — y(n). We
first compute the conditional mean of the quantization error
given the signal:

Elg(n)|s(n)] = Els(n) — y(n)|s(n)]
= s(n) ~ E[Q[s(n)]|s(n)]

o —s(n) s(n) — o —1
+ ok

=s5(n) — -1

Ol — Ok —| O — Olg—1
= s(n) —s(n)
=0 .

From this we may show that g(n) is mean zero:
E[q(m)] = E[E[g(m)|s(m)]}=0
and uncorrelated for n # m:

E[g(n)q(m)] = E[Elq(n)q(m)|s(n)s(m)]]

= E[El[g(n)|s(n)IE[g(m)|s(m)]]
=0 .

The variance of g(rn) is given by

El[g(m)]*] = E[E][g(n))*s(n)]

_—_El:[s(n) - I]ZM

O — O —1

+ o= ()] P2 1]

Ol — Qg —1
=E[[s(n) — ax—11[ax — s(n)]]

=constant=Ng .

Therefore, g(n) has autocorrelation

No if m=n
0 otherwise .

Elg(n)q(m)] = {

Finally, g(n) and s(m) are uncorrelated for all n and m:

Elgq(n)s(m)] = E[E[g(n)s(m)|s(m)]]

=E[s(m)E[g(n)|s(m)]]
=E[s(m)0]=0
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