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Optimized Feature Extraction for

Learning-Based Image Steganalysis

Ying Wang, Student Member, IEEE, and Pierre Moulin, Fellow, IEEE

Abstract

The purpose of image steganalysis is to detect the presence of hidden messages in cover photographic

images. Supervised learning is an effective and universal approach to cope with the twin difficulties of

unknown image statistics and unknown steganographic codes. A crucial part of the learning process is

the selection of low-dimensional informative features. We investigate this problem from three angles and

propose a three-level optimization of the classifier. First, we select a subband image representation that

provides better discrimination ability than a conventional wavelet transform. Second, we analyze two

types of features—empirical moments of probability density functions (PDFs) and empirical moments

of characteristic functions of the PDFs—and compare their merits. Third, we address the problem of

feature dimensionality reduction, which strongly impacts classification accuracy. Experiments show that

our method outperforms previous steganalysis methods. For instance, when the probability of false alarm

is fixed at 1%, the stegoimage detection probability of our algorithm exceeds that of its closest competitor

by at least 15% and up to 50%.

Index Terms

Steganalysis, steganography, supervised learning, feature selection, detection theory, characteristic

functions.

I. INTRODUCTION

Steganography, the art of covert communication, was already in use thousands of years ago in ancient

Greece and China [1]. Today, steganography is an active research area due to the abundance of digital
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media, which serve as cover signals, and to the wide availability of public communication networks

such as the Internet. By secretly embedding information into an innocuous cover signal, the transmitter

hopes that the message will reach the receiver without arousing suspicion. Cover signals with hidden

information are called stegosignals. Steganalysis, the counter problem to steganography, aims at detecting

the presence of hidden information from seemingly innocuous stegosignals.

This paper focuses on image steganography and steganalysis. Various techniques have been developed

to hide data in digital photographic images. Among them, least significant bit (LSB) embedding, which

replaces the LSB plane of image pixels with information bits, is easily detectable. This is because

LSB embedding limits the pixel value transitions to 0 ↔ 1, 2 ↔ 3, · · · , 254 ↔ 255, and introduces

unnatural statistical patterns [2], [3]. However, steganalysis of other embedding techniques, such as

spread-spectrum (SS) embedding [4], [5], quantization index modulation (QIM) embedding [6], and

stochastic quantization index modulation (SQIM) embedding [7], [8], is more difficult. One reason is

that these embedding techniques, unlike LSB embedding, do not have an obvious Achilles’ heel. Another

reason is inherent to image steganography and steganalysis: unknown image statistics pose a serious

challenge to both the steganographer and the steganalyzer. Although recent years have seen considerable

progress in image modelling, universal image models still do not exist. However, given a training set

consisting of two classes—cover photographic images and stegoimages with hidden information—we can

extract features from images and learn their statistics through supervised learning [9], [10]. Hence, the

steganographer faces the difficult challenge of approximately preserving statistics of all image features

after data embedding, and the steganalyzer faces the opposite problem of finding some features whose

statistics are distinguishably changed by data embedding.

Farid [10] was the first to propose a framework for steganalysis based on supervised learning and

to demonstrate that supervised learning is an effective and universal approach to cope with the twin

difficulties of unknown image statistics and unknown steganographic codes. The framework was further

developed with various ingredients proposed and tested in subsequent papers. Farid [10], Harmsen and

Pearlman [11], Xuan et al. [12], Holotyak et al. [13], and Goljan et al. [14] extracted features from

image pixels (or wavelet coefficients) and their histograms, while Sullivan et al. [15] worked on the co-

occurrence matrix of adjacent image pixels. In order to suppress the large cover interference, Farid [10]

used cross-subband prediction errors of wavelet coefficients; Holotyak et al. [13] and Goljan et al. [14]

used image denoising techniques to estimate the embedding noise. Given a group of image pixels or

wavelet coefficients, two kinds of statistical moments have been used as features. The first is empirical

probability density function (PDF) moments (often called sample moments in the probability and statistics
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literature). They refer to the estimates of moments of a PDF from samples and were used by, e.g.,

Farid [10], Holotyak et al. [13], and Goljan et al. [14]. The second is empirical characteristic function

(CF) moments, which refer to moments of the discrete CF of the histogram. They were used by, e.g.,

Harmsen and Pearlman [11] and Xuan et al. [12]. The latter approach appears to be more successful; the

authors in [12] made the first attempt to explain this phenomenon, but gaps in the explanations remain

(see Section III-C). Finally, different numbers of moments were used during the learning and testing

phases: the first four orders of empirical PDF moments were used in [10]; only the first-order empirical

CF moments were adopted in [11]; and the first three orders of empirical CF moments were selected

in [12].

There are several fundamental questions one may ask: Which moment features are more informative

in terms of discriminating between cover images and stegoimages? Is there a mathematical explanation

for the superiority of these features? Until what point does steganalysis performance improve with the

number of features used? These questions are all related to a crucial ingredient of any machine-learning

system: feature extraction. This paper investigates the feature extraction problem for image steganalysis

from three angles:

(1) Image subband decomposition. Given an image, we select an appropriate image subband repre-

sentation. For instance, Farid’s image representation includes wavelet subband coefficients and their cross-

subband prediction errors [10]. However, we have discovered that decomposing the diagonal subband on

the finest scale and combining the resulting detail subbands with Farid’s representation is beneficial; see

Section II.

(2) Choice of features. Given a sequence of data samples, we consider both empirical PDF and CF

moments as features. These moments are good at capturing different statistical changes; see Sections III-

A and III-B. To decide which moments should be used as features, we exploit our prior knowledge about

images and commonly used steganographic algorithms. We observe that an effect of data embedding is

to smooth out the peaky probability distributions that characterize wavelet coefficients of photographic

images. A reasonable embedding model in the wavelet domain takes the form of a generalized Gaussian

cover signal plus independent Gaussian embedding noise. Under this model, we show in Sections III-E

to III-G, both qualitatively and quantitatively, that the empirical CF moments of subband histograms

are more sensitive to embedding and hence are better features than empirical PDF moments of subband

coefficients. Moreover, this conclusion also holds for those nonadditive embedding algorithms that smooth

out the peaky distributions of subband coefficients. On the other hand, for our choice of cross-subband

prediction errors (cf. Section II), statistical changes caused by embedding are different from those of
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wavelet coefficients and instead the empirical PDF moments outperform the empirical CF moments in

our simulations.

(3) Feature evaluation and selection. All features are not equally valuable to the learning system.

Furthermore, using too many features is undesirable in terms of classification performance due to the curse

of dimensionality [9]: one cannot reliably learn the statistics of too many features given a limited training

set. Hence, we need to evaluate the features’ usefulness and select the most relevant ones. In Section IV,

we apply feature dimensionality reduction techniques from the pattern recognition and machine learning

literature [16] to image steganalysis, thereby improving classification performance.

Finally, Section V applies our proposed image steganalysis method to images and reports experimental

results.

1) Notation: We use uppercase letters for random variables, lowercase letters for individual values,

and boldface fonts for sequences, e.g., x = (x1, x2, · · · , xN ). We denote by p(x), x ∈ X , the probability

mass function (PMF) of a random variable X if X is a set; we use the same notation if X is a continuum,

in which case p(x) is referred to as the PDF of X . We denote by E the mathematical expectation.

The characteristic function of a PDF p(x) is defined as

Φ(t) =

∫ ∞

−∞
p(x)ejtxdx, (1)

where j =
√
−1, and the PDF can be recovered as

p(x) =
1

2π

∫ ∞

−∞
Φ(t)e−jtxdx. (2)

II. MULTIRESOLUTION IMAGE REPRESENTATION

We decompose images into groups of data samples with similar statistics. A subband transform is

often used to decorrelate image data. The resulting coefficients in each detail subband are assumed to be

approximately independently and identically distributed (i.i.d.).

In this paper, images are first decomposed into three scales through a Haar wavelet transform1 to obtain

nine detail subbands (horizontal Hi, vertical Vi, and diagonal Di, i = 1, 2, 3) and three approximation

(lowpass) subbands (Li, i = 1, 2, 3) as illustrated in Fig. 1. Let us denote by I1 the set of these 12

wavelet subbands plus the image itself. This image representation was used by Xuan et al. in [12].

1The type of wavelets has impact on steganalysis results. The optimal selection of wavelets is however not in the scope of

this paper. We simply choose the Haar wavelet for its computational efficiency. The complexity of the fast wavelet transform,

measured by the number of arithmetic operations (multiplications and additions) per sample, is directly proportional to N or

log
2
N , where N is the filter length [17]. The Haar wavelet is the simplest wavelet with filter length N = 2.
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We propose to further decompose the first-scale diagonal subband D1 to improve the performance

of the learning system. We then obtain I2, the set of four extra subbands: lowpass L′
2, horizontal H ′

2,

vertical V ′
2 , and diagonal D′

2 as shown in Fig. 1. The reason for doing so is as follows. D1 is the finest

detail subband in the Haar wavelet transform, and each of its coefficients involves diagonal differences

in a four-pixel block. The coefficients in H ′
2, V ′

2 , and D′
2 involve more neighboring pixels. For example,

each coefficient in D′
2 is essentially a function of adjacent 16 pixels. Hence, H ′

2, V ′
2 , and D′

2 reveal more

information about the difference of differences between neighboring pixels. In contrast, H2, V2, and D2

are the averaged differences because they are calculated from the first-scale lowpass subband L1, where

every coefficient is the average of a four-pixel block.

L
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V2

V1

H2

D2
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V3

D3H

H2

1

3

’

’

’
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Fig. 1. Three-scale standard wavelet decomposition and an extra level of decomposition on the first-scale diagonal subband

D1.

Since wavelet coefficients possess strong intra- and intersubband dependencies, Farid [10] constructed

a set I3 of nine prediction error subbands to exploit these dependencies as follows. Take a subband

coefficient Hi(j, k) as an example, where (j, k) denotes the spatial coordinates at scale i. The magnitude

of Hi(j, k) can be linearly predicted by those of its parent Hi+1(j/2, k/2); neighbors Hi(j + 1, k),

Hi(j, k + 1), Hi(j − 1, k), and Hi(j, k − 1); cousins Di(j, k) and Vi(j, k); and aunts Di+1(j/2, k/2)

and Vi+1(j/2, k/2). Denote the predicted magnitude as ̂|Hi(j, k)|. Then the logarithmic error eHi(j, k)

is given by [10]

eHi(j, k) = log
|Hi(j, k)|

̂|Hi(j, k)|
. (3)

This defines an error subband eHi that corresponds to Hi. One can similarly define the error subbands

eVi and eDi at scales i = 1, 2, 3. The prediction errors for a cover image and its stegoimage have

different statistics, which is useful in steganalysis.
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Features, such as the various moments to be defined in Sections III-A and III-B, are extracted from

each subband in Ii, i = 1, 2, 3. Experimental results in Section V-E will show that our best steganalysis

performance comes from the more complete multiresolution representation:
⋃3

i=1 Ii.

III. CHOICE OF FEATURES: MOMENTS

Given a group of data samples, e.g., coefficients in any subband of the image multiresolution repre-

sentation
⋃3

i=1 Ii, the first important step of supervised-learning based image steganalysis is to choose

representative features. Then a decision function is built based on the feature vectors extracted from the

two classes of training images: photographic cover images and stegoimages with hidden information.

The performance of the decision rule depends on the discrimination capabilities of the features. Also, if

the feature vector has low dimension, the computational complexity of learning and implementing the

decision function will decrease. In summary, we need to find informative, low-dimensional features.

In this section, we first introduce two kinds of such features—empirical PDF moments and empirical

CF moments—and explain the interconnections between them. Then we will mainly focus on feature

extraction from wavelet subbands in I1 and I2. We build statistical models of image steganography,

under which we argue that the empirical CF moments are better features for wavelet subbands. For the

error subbands in I3, we do not have a tractable model to analytically argue which kind of moments is

better, but a heuristic answer is that the empirical PDF moments are better instead.

A. PDF Moments

For a sequence x = (x1, · · · , xN ) of i.i.d. samples drawn from an unknown PDF p(x), a natural choice

of descriptive statistics is a set of empirical PDF moments. The nth empirical PDF moment is given by

m̂n =
1

N

N
∑

i=1

xn
i , n ≥ 1, (4)

which is an unbiased estimate of the nth PDF moment

mn = EXn =

∫ ∞

−∞
p(x)xndx. (5)

The first four moments define the mean, variance, skewness, and kurtosis of the PDF p(x), respectively.

Empirical PDF moments were used by Farid [10] and Holotyak et al. [13].

Often, image and stegoimage wavelet coefficients exhibit symmetry around 0, and hence empirical

PDF moments of odd orders are approximately 0. Therefore, Goljan et al. in [14] chose to use the nth
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empirical absolute PDF moment

m̂
A
n =

1

N

N
∑

i=1

|xi|n, n ≥ 1, (6)

which is an estimate of the nth absolute PDF moment

m
A
n = E|X|n =

∫ ∞

−∞
p(x)|x|ndx. (7)

From (5) and (7), p(x) is weighted by xn and |x|n, respectively, and any change in the tails of p(x)

is polynomially amplified in PDF moments. As is well known, m̂n and mn in (4) and (5) relate to the

nth derivative of the CF Φ(t) of the PDF p(x) at t = 0 by

m̂n ≈ mn = j−n dn

dtn
Φ(t)

∣

∣

∣

t=0
. (8)

Moreover,

m̂
A
n ≈ m

A
n ≥ |mn| =

∣

∣

∣

∣

dn

dtn
Φ(t)

∣

∣

∣

∣

t=0

. (9)

For a heavy-tailed PDF, mn is large and it follows from (8) that Φ(t) has large derivatives at the origin,

i.e., is peaky.

B. CF Moments

Analogously, for the CF Φ(t), its nth moment is defined by

Mn =

∫ ∞

−∞
Φ(t)tndt, (10)

and its nth absolute moment is

M
A
n =

∫ ∞

−∞
|Φ(t)||t|ndt. (11)

In the above integral, |Φ(t)| is weighted by |t|n. Any change in the tails of |Φ(t)|, which correspond to

the high-frequency components of p(x), is thus polynomially amplified. Similarly to (8) and (9), the CF

moments Mn and M
A
n relate to the nth derivative of p(x) at x = 0 by

Mn = jn2π
dn

dxn
p(x)

∣

∣

∣

x=0
(12)

and

M
A
n ≥ |Mn| = 2π

∣

∣

∣

∣

dn

dtn
p(x)

∣

∣

∣

∣

x=0

. (13)

If a CF Φ(t) has heavy tails and M
A
n is large, then the corresponding PDF p(x) is peaky. Equations (8),

(9) and (12), (13) reveal a duality between PDF moments and CF moments that follows from the duality

between the PDF p(x) and its CF Φ(t).
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To obtain the corresponding empirical CF moments from a sample sequence x, we first estimate

the PDF p(x) using an M -bin histogram {h(m)}M−1
m=0 . Let K = 2⌈log2 M⌉. The K-point discrete CF

{Φ(k)}K−1
k=0 is then defined as

Φ(k) =
M−1
∑

m=0

h(m) exp

{

j2πmk

K

}

, 0 ≤ k ≤ K − 1, (14)

which is analogous to Φ(t) defined in (1) and can be easily computed using the fast Fourier transform

(FFT) algorithms. Similarly to (2), the histogram

h(m) =
1

K

K−1
∑

k=0

Φ(k) exp

{

−j2πmk

K

}

, 0 ≤ m ≤ M − 1 (15)

can be recovered from the discrete CF Φ(k).

Harmsen and Pearlman defined the nth absolute moment of the discrete CF {Φ(k)}K−1
k=0 as [11]

M̂
′
n =

K/2−1
∑

k=0

|Φ(k)|kn, (16)

which is obtained by replacing the integral over t in (11) with a summation over k. We prefer to define

the nth moment of a discrete CF as

M̂n =
K−1
∑

k=0

Φ(k) sinn

(

πk

K

)

(17)

and the nth absolute moment of a discrete CF as

M̂
A
n =

K−1
∑

k=0

|Φ(k)| sinn

(

πk

K

)

. (18)

The motivation is that M̂
A
n in (18) provides an upper bound on the discrete derivatives of the histogram

{h(m)}M−1
m=0 , just as in (13) M

A
n bounds the derivatives of the PDF p(x) from above. Indeed, for the first

discrete derivative of the histogram, we have

|h(1)(m)| = |h(m) − h(m − 1)|

≤ 2

K

K−1
∑

k=0

|Φ(k)| · sin
(

πk

K

)

=
2

K
M̂

A
1 , 1 ≤ m ≤ M − 1, (19)

where the inequality follows directly from (15), and (19) is obtained by applying (18) with n = 1.

Similarly, for the nth discrete derivative,

|h(n)(m)| =

∣

∣

∣

∣

∣

n
∑

i=0

(−1)i Ci
n h

(

m + ⌊n

2
⌋ − i

)

∣

∣

∣

∣

∣

≤ 2n

K
M̂

A
n , ⌈n

2
⌉ ≤ m ≤ M − ⌈n + 1

2
⌉, (20)
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where Ci
n is the binomial coefficient that denotes the number of size-k subsets from a size-n set.

We also define the normalized CF moments as

M̃
A
n =

M̂
A
n

M̂A
0

, n ≥ 1, (21)

where M̂
A
n is normalized by the zeroth-order moment M̂

A
0 . A similar normalization was used by Harmsen

and Pearlman [11]:

M̃
′
n =

M̂
′
n

M̂′
0

, n ≥ 1. (22)

The advantage of normalized CF moments over unnormalized ones will be evident in Section IV-A.

C. The Better Choice: PDF Moments or CF Moments?

If we casually examine m̂
A
n and M̂

A
n defined in (6) and (18), it is difficult to tell which one will serve

better as a feature in image steganalysis. Compared to m̂
A
n , M̂

A
n has some computational disadvantages:

an appropriate bin width2 is needed to obtain a histogram that is a good estimate of the underlying PDF;

then a K-point FFT is used to calculate the discrete CF; and finally M̂
A
n is obtained as a weighted sum

of the magnitude of the discrete CF samples.

1) For wavelet subbands in I1 and I2: Image steganalysis experiments conducted by Xuan et al. [12]

show that the moments M̂
′
n in (16) outperform both m̂n in (4) and m̂

A
n in (6) on various data-embedding

methods. In [12], Xuan et al. provided basically two arguments to explain the above phenomenon. Their

first argument comes from a comparison of M
A
n and m

A
n for Gaussian embedding noise N (0, σ2). They

showed that M
A
n is proportional to 1/σn+1 while m

A
n is proportional to σn, and from this they argued that

M
A
n is more sensitive to embedding than m

A
n . However, this reasoning is not satisfactory in that during

the process of supervised learning, we extract features from the cover signal samples and the stegosignal

samples, but not directly from the embedding noise samples. The second argument in [12] is that since

m
A
n “averages” the change of PDFs caused by embedding via “integration” and M

A
n catches the change

of PDFs via “differentiation,” M
A
n must be more sensitive to the change than m

A
n . However, it is not clear

why “differentiation” must outperform “integration.”

2For a fixed-resolution histogram, the bin width plays the primary role of a smoothing parameter, which controls the final

appearance of the nonparametric PDF estimate. If the bin width is too large, the estimate may miss small details and key features

due to over-smoothing; if the bin width is too small, the estimate exhibits volatile and extraneous wiggles. A good choice of

the number of bins is in the range of O(N1/3) to O(N1/2), where N is the number of available samples [18]. The histogram

of a typical image wavelet subband usually has 50 to 200 bins.



10

In Sections III-D to III-G, we will exploit our prior knowledge about image steganography in choosing

the right features: image wavelet coefficients (those in I1 and I2) have peaky, heavy-tailed probability

distributions; after data embedding, these peaky distributions are smoothed. We will build approximate

statistical models for image steganography, examine the statistical differences between cover signals and

stegosignals, and discuss which kind of moments, m
A
n or M

A
n , best captures these differences.

2) For prediction error subbands in I3: To our knowledge, only Farid [10] has reported steganalysis

results using m̂n from the prediction error subbands in I3. Unfortunately, unlike for wavelet subbands,

we do not have a tractable statistical model for these prediction error subbands: the errors are centered

around zero for cover images, but we do not observe a clear law that governs how the statistics change

after even the simple additive embedding. Based on our simulations, however, we conclude that for the

prediction error subbands in I3, the empirical PDF moments m̂n outperform the CF moments M̂
A
n . We

defer the experimental details to Sections IV-A and V-D.

Next, we focus on the wavelet subbands in I1 and I2 only. Also, we mainly deal with additive

embedding for two reasons. First, many embedding algorithms, such as the widely used SS scheme [4],

[5] and the ±k embedding scheme [19], have embedding noise that is independent of the cover signal.

Second, with the constraint of additive embedding, the mathematical analysis is tractable. For simplicity

and clarity, our following analysis is developed for continuous PDFs and uses the definitions of m
A
n in

(7) and M
A
n in (11).

D. General Statistical Model for Additive Embedding

For additive embedding, the relationship between stegosignal X, cover signal S, and effective embed-

ding noise Z is given by

X = S + Z, (23)

where Z is independent of S and is a function of transmitted messages and secret keys shared between

the encoder and decoder. Under the i.i.d. model of Section III-A, the independence between S and Z

leads to the following convolution equation between the marginal PDFs:

pX(x) =

∫

s∈S
pS(s)pZ(x − s)ds. (24)

Therefore,

ΦX(t) = ΦS(t)ΦZ(t). (25)
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We also have

mn,X = E(S + Z)n. (26)

By the uniqueness theorem of moment generating functions [20, p. B-11], mn,X is different from mn,S =

ESn for at least one n ≥ 1, unless pX = pS almost surely. It is hard to compare mn,X and mn,S generally,

but when the noise PDF pZ is symmetric to the origin and n is even, it is easy to verify that

m
A
n,X = mn,X = E(S + Z)n

≥ ESn + EZn

≥ ESn = mn,S = m
A
n,S . (27)

From (24), an independent noise PDF pZ may be thought of as a linear shift-invariant filter applied to

pS . In the frequency domain,3 (25) shows that the stegosignal CF is a product of the CFs of the cover

signal and additive noise. Since

|ΦZ(t)| ≤ 1, ∀ t ∈ R, (28)

it is always true that

|ΦX(t)| ≤ |ΦS(t)|, ∀ t ∈ R. (29)

From (11), it follows that, for any additive embedding noise,

M
A
n,X ≤ M

A
n,S . (30)

If pZ is “smooth,” as is the case for the Gaussian embedding noise in SS schemes [4, Section IV] or

the uniform embedding noise in DC-QIM schemes [21], |ΦZ(t)| decays quickly as |t| becomes larger

and its effect is equivalent to a lowpass filter to pS : the resulting pX has highly attenuated high-frequency

components and is smoother than pS . Interested readers are referred to [22, Chapter 2] and [23] for more

details on the decay properties of characteristic functions.

E. An Image Embedding Model: Generalized Gaussian Cover Signal Plus Gaussian Noise

The additive embedding setup of Section III-D is quite general but does not tell us whether m
A
n or

M
A
n is changed more in image steganography. Even though we do not know the exact image statistics

3The conjugate of the CF of a PDF p(x), denoted as Φ∗(t), is proportional to the Fourier transform of the PDF; see (1) for

the connection. Thus, we can regard the CF ΦZ(t) as a frequency domain response of the noise PDF pZ and study its filtering

effects on ΦS(t) and pS .
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and the underlying embedding algorithms, fortunately, we do have some prior knowledge about image

statistics and characteristics of commonly used data-embedding techniques. Next, we incorporate those

specifics into the additive embedding model of (23).

Image wavelet coefficients in high-pass subbands serve as cover signal S and are well modelled

by generalized Gaussian distributions (GGDs) [24]. This model is widely used in image coding [25],

denoising [26], and other applications. A GGD is given by

pα,β(s)
△
=

β

2αΓ( 1
β )

exp

{

−
( |s|

α

)β
}

, α > 0, β > 0, s ∈ R, (31)

where Γ(·) is the Gamma function, α is the scale parameter, and β is the shape parameter. The Gaussian

and Laplacian PDFs are special cases of GGD with β = 2 and 1, respectively.

−100 −50 0 50 100
10

−6

10
−4

10
−2

s

p
(s

)

GGD approximation
Histogram

Fig. 2. Histogram of Haar wavelet coefficients from the finest diagonal subband of the Lena image and the maximum likelihood

GGD estimate of the underlying PDF.

We model the effective embedding noise as a mixture of zeros (with probability 1 − γ) and Gaussian

noise N (0, σ2) (with probability γ):

Zγ ∼ (1 − γ)δ(0) + γN (0, σ2), γ ∈ [0, 1]. (32)

The justification for this mixture model is as follows. First, many embedding algorithms only embed data

in a fraction (γ ∈ [0, 1]) of either image pixels or transform domain coefficients (see, e.g., [4], [8], and

[19]). The embedding locations are randomized and are part of the secret key. When γ is small, the noise

also has a peaky PDF. Second, conditioned on the embedding locations, Gaussian embedding noise is a

reasonable model for many data embedding methods (e.g., SS methods and ±k methods). Thus, besides

the embedding fraction γ, we also use the reference noise-to-cover ratio (RNCR)

RNCR =
EZ2

1

ES2
=

σ2

ES2
(33)
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Fig. 3. PDFs and corresponding CFs of a Laplacian distributed cover signal S and its stegosignal X = S + Z, where

Z ∼ N (0, σ2) with RNCR = σ2

ES2 = 0.05 and γ = 1. (a) PDFs: pS and pX . (b) CFs: ΦS and ΦX .

as an indicator of the embedding strength.

In summary, we consider the following image embedding model in the wavelet domain:


















X = S + Zγ ,

S ∼ pα,β(s), α > 0, β > 0,

Zγ ∼ (1 − γ)δ(0) + γN (0, σ2), γ ∈ [0, 1].

(34)

F. Remarks

For image wavelet coefficients, histograms and estimated pα,β(s) are often peaky at s = 0 while having

heavy tails at large s; see Fig. 2 for an example. Usually, β ∈ (0.3, 2) [27]. When pα,β(s) is linear-filtered

by a smooth pZ(z) such as a Gaussian PDF, the peak is levelled much more than tails. Thus, the most

significant difference between pS(s) and pX(x) appears in the vicinity of the origin; see Fig. 3(a) for an

illustration. According to (7), PDF absolute moments m
A
n are obtained by weighting the PDF p(x) with

|x|n, which gives zero or little weight to the vicinity of the origin. Thus m
A
n discounts the part of the

PDF that is most changed by embedding instead of emphasizing it. Remember from (9) that m
A
n relates

to the nth derivative of the corresponding CF at the origin: the two before- and after-embedding CFs

shown in Fig. 3(b) correspond to the two PDFs in Fig. 3(a) and have little difference in the vicinity of

t = 0.

In contrast, CF absolute moments M
A
n are obtained by weighting the CF Φ(t) with polynomially

increasing weight |t|n. As illustrated by Fig. 3(b), distinguishable differences between ΦS(t) and ΦX(t)

appear at large t’s and these differences are emphasized by M
A
n . This may also be seen by examining

(13): M
A
n relates to the nth derivative of the corresponding PDF at the origin; we see from Fig. 3(a) that
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pS(s) and pX(x) have considerably different derivatives at the origin. Therefore, M
A
n is more sensitive

to embedding than m
A
n for the image embedding model of (34).

G. Quantitative Analysis

Next we compare the ratio between m
A
n,S and m

A
n,X and the ratio between M

A
n,S and M

A
n,X for the

model of (34). The ratios are defined as

rm,n = max

(

m
A
n,X

mA
n,S

,
m

A
n,S

mA
n,X

)

(35)

and

rM,n = max

(

M
A
n,X

MA
n,S

,
M

A
n,S

MA
n,X

)

. (36)

The more a ratio deviates from one, the more sensitive the corresponding moment is to embedding.

Furthermore, if M
A
n is a better feature choice than m

A
n , the ratio

An =
rM,n

rm,n
(37)

exceeds 1, and we call An the advantage of M
A
n over m

A
n .

1) β = 2: For the Gaussian cover distribution (β = 2), the calculation of the above ratios is given in

Appendix I. We have

rm,n = 1 − γ + γ(1 + RNCR)
n

2 (38)

and

rM,n =
1

1 − γ + γ(1 + RNCR)−
n+1

2

. (39)

See Fig. 4(a) for the case of RNCR = 0.05 and γ = 1. Both rm,n and rM,n are monotonically increasing

functions of the moment order n and embedding strength indicators γ and RNCR. The advantage An is

a function of γ and RNCR:

An =

[

1 − γ + γ(1 + RNCR)−
n+1

2

]−1

[

1 − γ + γ(1 + RNCR)
n

2

] . (40)

Clearly, An = 1 when γ = 0 or RNCR = 0, and An = (1 + RNCR)
1

2 ≥ 1 when γ = 1. Moreover, it is

derived in Appendix I that An ≥ 1 if γ ∈ [max(0, γ1), 1], where

γ1
△
= 1 − (1 + RNCR)

n+1

2 − (1 + RNCR)
n

2

[

(1 + RNCR)
n

2 − 1
] [

(1 + RNCR)
n+1

2 − 1
] . (41)

Also, An ≥ 1 for all γ ∈ [0, 1] only when γ1 < 0, i.e.,

(1 + RNCR)−
n+1

2 + (1 + RNCR)
n

2 < 2. (42)
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Fig. 4. Ratios rm,n and rM,n for GGD cover signals, assuming an additive Gaussian embedding noise. RNCR = 0.05 and

γ = 1. (a) Gaussian cover signal and Laplacian cover signal. (b) GGD cover signal with β = 1.5 and GGD cover signal with

β = 0.5. For the GGD cover signal with β = 1.5, rM,n is not shown since rM,n ≈ 2 when n = 1 and rM,n is infinite when

n > 1. Also, for the Laplacian cover signal and the GGD cover signal with β = 0.5, rM,n is infinite when n > 1 and not

shown.

Thus, for the case of a Gaussian cover signal, when the embedding fraction γ is close to 1, M
A
n is a

better feature choice than m
A
n ; otherwise, m

A
n may have advantage over M

A
n for either large RNCR or

large n.

2) 1 < β < 2: The cover GGDs with 1 < β < 2 are first-order differentiable but higher-order

nondifferentiable at the origin. So M
A
n,S (n > 1) is unbounded according to (13). When RNCR > 0 and

γ > 0, numerical calculation shows that M
A
n,X is finite and hence rM,n = ∞ for n > 1. It also shows

that rm,n is always finite and rm,n=1 < rM,n=1. Fig. 4(b) displays rm,n when β = 1.5. Thus, for any

RNCR > 0 and γ ∈ (0, 1], An=1 > 1 and An = ∞ when n > 1. Hence, for the case of 1 < β < 2, M
A
n

is always a better feature choice than m
A
n .

3) 0 < β ≤ 1: When β ≤ 1, M
A
n=1,S is also unbounded. Numerical calculation shows that when

RNCR > 0 and γ > 0, M
A
n,X is finite and so is rm,n; see Figures 4(a) and 4(b) for rm,n at β = 1 and

0.5, respectively. So, we have rM,n = ∞ and An = ∞ for any RNCR > 0 and γ ∈ (0, 1]. Again, for the

case of 0 < β ≤ 1, M
A
n is always a better feature choice than m

A
n .

In summary, the advantage An increases to ∞ when β decreases from 2 to 1. That is, when the cover

distribution becomes more peaky, M
A
n is much more sensitive to embedding and hence is a better feature

than m
A
n .
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H. Discussion

The above analysis of the CF moment M
A
n versus the PDF moment m

A
n is performed on Gaussian/GGD

PDFs and CFs with infinite precision. In practice, we handle M -bin histograms {h(m)} and K-point

discrete CFs {Φ(k)}; moreover, actual marginal PDFs of image wavelet and DCT coefficients may not

belong exactly to the GGD family. See Fig. 2 for the example of the Lena image. The empirical CF

moment M̂
A
n defined in (18) is always finite, and the theoretical advantage of M̂

A
n over the empirical

PDF moment m̂
A
n may be reduced by factors such as finite precision, suboptimal histogram bin width,

and uncertainty about the underlying cover PDF.

The remarks in Section III-F are not limited to the model in (34), but are applicable to any model

where the marginal cover PDF is peaky and the marginal stego PDF is smooth at the origin (see Fig. 5).

As long as this property holds, the CF moment M
A
n is generally a better feature than the PDF moment

m
A
n , even when the embedding noise PDF is non-Gaussian and/or nonadditive.

X
p

X|S

S

p
p

Fig. 5. An embedding black box that smoothes the peaky cover signal PDF.

IV. FEATURE SELECTION

Given a multiresolution image representation, e.g.,
⋃3

i=1 Ii, we can calculate an arbitrary number of

moments from each subband. In the current literature on moment-based image steganalysis, the number

of moments used in training and testing is somewhat arbitrary: the first four PDF moments m̂n were

used in [10]; the first CF moment M̃
′
n was adopted in [11]; and the first three CF moments M̃

′
n were

selected in [12]. However, we learn form Fig. 4 that in some cases rM,n and rm,n increase with the order

n—the higher order a moment is, the more sensitive it is to embedding. So why do we not use higher

order moments as features instead? And why do we not use as many moments as possible? Next we will

address these issues.

A. Feature Evaluation

Each feature is a statistic of data samples, and its impact on classification accuracy is determined by

the feature-label distribution. Several criteria from the pattern recognition and machine learning literature
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may be used to evaluate the usefulness of a feature in discriminating between classes [28]. In this paper,

we choose to use the Bhattacharyya distance

B(p0, p1) = − log

∫

X

√

p0(x)p1(x) dx, (43)

where x is a feature (or a feature vector), X is the feature space, and p0(x) and p1(x) are the feature

PDFs under Class 0 and Class 1, respectively.

From its definition, the Bhattacharyya distance has the nice property that it is additive over independent

features:

B
(

p0(x)q0(y), p1(x)q1(y)
)

= B(p0, p1) + B(q0, q1), (44)

where pi and qi (i = 0, 1) are the respective PDFs of two independent features X and Y . The

Bhattacharyya distance also provides bounds on Pe, the average probability of error in discrimination

between two equally likely classes, through [29], [30]

1

2

[

1 −
(

1 − e−2B(p0,p1)
)

1

2

]

≤ Pe ≤
1

2
e−B(p0,p1). (45)

The larger the B(p0, p1) for a feature, the better the suitability of that feature for classification. Always,

B(p0, p1) ≥ 0; only when p0 = p1, B(p0, p1) = 0 and the feature is useless. In practice, p0 and p1 are

often unavailable, and instead we use their histogram estimates from training features and compute the

empirical Bhattacharyya distance.
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Fig. 6. Empirical Bhattacharyya distance for features M̂
A
n from (18), m̂

A
n from (6), M̃

A
n from (21), and M̃

′

n from (22),

1 ≤ n ≤ 20. Data are gathered from the first diagonal subband of the Haar-wavelet transform of 1370 photographic images,

and their corresponding stegoimages with additive Gaussian noise N (0, 4) (quantized to integers) in the pixel domain (γ = 1).
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Fig. 7. Empirical Bhattacharyya distance for features M̂
A
n from (18), m̂

A
n from (6), M̃

A
n from (21), and M̃

′

n from (22),

1 ≤ n ≤ 20. Data are gathered from the first horizontal subband of the Haar-wavelet transform of 1370 photographic images,

and their corresponding stegoimages with full LSB embedding (γ = 1).

1) For wavelet subbands in I1 and I2: We compare the empirical Bhattacharyya distance of several

features in Fig. 6. The moments are calculated from the first diagonal subband (D1 in I1) coefficients of

the Haar-wavelet transform of 1370 photographic images4 and their corresponding stegoimages generated

by adding Gaussian noise N (0, 4) (quantized to integers) everywhere in the pixel domain (γ = 1). The

RNCR ranges from −35 dB to −20 dB because the cover signal variance varies from image to image.

We first observe that M̂
A
n from (18) is a better feature than m̂

A
n from (6) since the empirical Bhat-

tacharyya distance of M̂
A
n is larger than that of m̂

A
n . This is consistent with our analysis in Section III.

Also, observe that the empirical Bhattacharyya distance of the normalized CF moment M̃
A
n from (21)

is larger than that of the unnormalized feature M̂
A
n . The reason is that the class of cover images is so

broad that there is a large overlap between the range of M̂
A
n of cover images and that of stegoimages;

however, the self-calibration using the zeroth-order moment reduces the dynamic range of moments and

the overlap. We also see from Fig. 6 that our M̃
A
n has a larger empirical Bhattacharyya distance and is

a better feature than the normalized CF moment M̃
′
n from (22) used by Harmsen and Pearlman [11].

However, it is interesting to observe that for M̂
A
n , M̃

A
n , and M̃

′
n, the empirical Bhattacharyya distance

increases till n = 2 or 3, then decreases as n increases; for m̂
A
n , the empirical Bhattacharyya distance

decreases all the way down to zero as n increases. Therefore, for real images, higher-order moments

4More details on image datasets are available in Section V-A.
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Fig. 8. Empirical Bhattacharyya distance for features m̂n from (4), m̂
A
n from (6), and M̃

A
n from (21), 1 ≤ n ≤ 20. Data are

gathered from the prediction error subband eD1 (in I3) of the Haar-wavelet transform of 1370 photographic images, and their

corresponding stegoimages with additive Gaussian noise N (0, 4) (quantized to integers) in the pixel domain (γ = 1).

are not necessarily more sensitive to data embedding than lower-order moments; this partially justifies

previous work [11]–[14], which used moments of the first few orders as features.

The above phenomena have been fairly consistently observed across all the wavelet subbands in I1 and

I2 and for nonadditive embedding noise as well. For example, Fig. 7 shows the empirical Bhattacharyya

distance of moment features from the first horizontal subband (H1 in I1) when the stegoimages are

generated by full LSB embedding (γ = 1). Note that the effective embedding noise for LSB embedding

is dependent on images.

2) For prediction error subbands in I3: In Fig. 8, we compare the empirical Bhattacharyya distance of

features from the prediction error subband eD1. The stegoimages are again generated by adding Gaussian

noise N (0, 4) (quantized to integers) everywhere in the pixel domain (γ = 1). Contrary to the case of

wavelet subbands, the empirical Bhattacharyya distance of the PDF moments is consistently greater than

or comparable to that of the CF moments across the nine error subbands in I3. Hence, the PDF moment

m̂n from (4) is the best feature choice for I3.

B. Peaking Effect and Feature Selection

All moments whose associated Bhattacharyya distance is positive are potentially useful in image

steganalysis. If we do so in practical image steganalysis, however, we will observe the peaking effect—

there is an optimal number of features beyond which steganalysis performance will deteriorate. The
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peaking effect is due to the finite size of the training set.5 As the dimensionality of the feature space

grows, estimating feature PDFs from the finite training set becomes harder and more inaccurate. It is an

instance of the curse of dimensionality problem [9].

Given a finite set of training samples and a total of J available features, the problem of finding the

optimal number of features has been studied extensively in the pattern recognition and machine learning

literature; see [16] and references therein. It is a complicated problem involving many factors [32]: the

discrimination abilities of features vary, features may have high correlations, and the optimal number

of features may depend on the choice of the classifier (e.g., linear discriminant analysis, support vector

machine, and so on [9]). The optimal solution can be found by an exhaustive search over 2J possibilities,

which is computationally infeasible when J is large.

We propose two methods with reduced computational complexity to find suboptimal feature sets and

to improve image steganalysis performance. Suppose that for each image, we extract the first N moments

from l wavelet (or prediction error) subbands. When N increases from 1, the steganalysis performance

of the lN moments will improve till we reach some number N = Np, after which the performance

will degrade. We take the lNp moments to form the feature set F1 and call this the threshold selection

algorithm. Our second proposed method identifies a smaller feature set F2 ⊂ F1 that potentially has better

performance, using a more sophisticated feature selection algorithm called sequential forward floating

selection (SFFS) proposed by Pudil et al. in [33]. This method achieves better performance at the cost

of higher computational complexity.

V. EXPERIMENTAL RESULTS

So far, we have addressed three aspects of feature extraction: image representation, choice of features,

and feature evaluation and selection. We thus propose a three-pronged approach to improve image

steganalysis performance: use the multiresolution image representation
⋃3

i=1 Ii, the normalized absolute

CF moments M̃
A
n in (21) for the wavelet subbands in I1 ∪ I2 and the PDF moments m̂n in (4) for the

prediction error subbands in I3, and the two feature selection algorithms of Section IV-B.

In this section, first we describe the experimental setups in Sections V-A to V-C. Then we present

our experimental results in Sections V-D to V-F, by successively examining the three aforementioned

aspects of feature extraction. Finally, we show in Section V-G that our optimized steganalysis method

outperforms previous methods.

5For example, the size of the training image set is 300 in [14], 896 in [12], 1800 in [10], smaller than 2000 in [13], and

32,000 in [31].
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A. Image Datasets

1) Cover image dataset: Our cover image dataset consists of 1370 256 × 256 8-bit graylevel photo-

graphic images, including standard test images such as Lena, Baboon, and images from the Uncompressed

Colour Image Database (UCID) constructed by Schaefer and Stich [34]. Our cover images contain a wide

range of outdoor/indoor and daylight/night scenes, including nature (e.g., landscapes, trees, flowers, and

animals), portraits, man-made objects (e.g., ornaments, kitchen tools, architectures, cars, signs, and neon

lights), etc.

2) SSIS stegoimage dataset: Our first stegoimage dataset is generated by the spread-spectrum image

steganography (SSIS) method [5] proposed by Marvel et al. The embedding noise is additive and

approximately Gaussian with variance σ2 = 4. The RNCRs of 1370 SSIS stegoimages range from

−35 dB to −20 dB, and the embedding fraction is γ = 1.

3) LSB stegoimage dataset: Our second stegoimage dataset is generated by full LSB embedding

(γ = 1), which means that about half of the image pixels’ LSBs are flipped. The RNCRs of our 1370

LSB stegoimages range from −44 dB to −29 dB.

4) F5 stegoimage dataset: Our final stegoimage dataset is generated by the steganography software

F5 [35], which embeds information bits in the LSB plane of quantized DCT coefficients and employs

matrix embedding to minimize the number of modified coefficients. We choose F5 because recent

results [31], [36] have shown that F5 is harder to crack than other publicly available steganography

software such as Jsteg [37], Outguess [38], Steghide [39], and Jphide [40]. We choose a JPEG quality

factor of 80 for both cover images and stegoimages. The stegoimages are generated by embedding up to

the maximum payload defined by the F5 software. The RNCRs of our 1370 F5 stegoimages range from

−42 dB to −11 dB.

B. Classifier

We adopt the Fisher linear discriminator (FLD) for training and testing; see [9, Chapter 3.8.2] for

full implementation details. An important step before applying the classifier is to scale the features so

that they have comparable dynamic ranges. The scaling is done as follows. For a feature f , we find its

maximum value fmax and minimum value fmin from all the training images. For any training or test

image, the feature f is extracted and scaled as

f̃ =
f − fmin

fmax − fmin
. (46)
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For all the training images, f̃ ∈ [0, 1]; for most test images, it is expected that f̃ will also be be-

tween 0 and 1. This scaling step prevents features with large numerical ranges from dominating those

with small numerical ranges, avoids numerical ill-conditioning, and dramatically improves classification

accuracy [41].

C. Steganalysis Performance Evaluation

A receiver operating characteristic (ROC) curve displays the detection probability PD (the fraction of

the stegoimages that are correctly classified) in terms of the false alarm probability PFA (the fraction of

the cover images that are misclassified as stegoimages). We use the area under the ROC curve (AUC) [30]

AUC =

∫ 1

0
PD(PFA) dPFA (47)

to measure the overall goodness of the ROC curve. The ideal ROC curve is PD(PFA) = 1 for any

PFA ∈ [0, 1] and has AUC = 1; the worst ROC curve is PD(PFA) = PFA and has AUC = 0.5. The

AUC is connected to Pe, the average probability of error in discrimination between two equally likely

hypotheses, through [30]

1 − AUC ≤ Pe ≤
√

1 − AUC

2
. (48)

The steganalysis performance at low PFA, say less than 0.1, is of particular interest because a steganalyzer

presumably wants to keep the risk of wrongly accusing an innocent low. Thus, we plot ROC curves with

PFA in a logarithmic scale to illustrate the performance at small PFA better.

We randomly choose 700 cover images and their corresponding stegoimages for training, then the

remaining 670 cover images and their corresponding stegoimages for testing.6 If not specified, all the

following reported results are averaged over 30 such random training/testing splits in order to avoid flukes

for any particular split.

D. Best Feature Choice

In this subsection, we compare only the merit of different moments (or normalized moments)—our

proposed M̃
A
n in (21), Harmsen and Pearlman’s M̃

′
n in (22) [11], Goljan et al.’s m̂

A
n in (6) [14], and Farid’s

6Since the Uncompressed Color Image Database by Schaefer and Stich [34] only consists of about 1370 images and we

allocate 700 of them for the training purpose, the data for PFA ≤ 0.005 are not very trustworthy since the number of test cover

images are limited to 670 and PFA can easily fluctuate by 1/670 = 0.0015, give or take one false positive due to systematic

errors (e.g., the limited number of images, the limited range of scenes, etc.). So in Figs. 9-15, we only show the ROC curves

for PFA ≥ 0.005.
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Fig. 9. Test ROC curves of feature choices—our proposed M̃
A
n , Harmsen and Pearlman’s M̃

′

n, Goljan et al.’s m̂
A
n , and Farid’s

m̂n—on the cover and SSIS stegoimage dataset using image representation I1. In all cases, the first three moments, 1 ≤ n ≤ 3,

are used. From the best ROC curve to the worst one, AUC = 0.9904, 0.9875, 0.9166, and 0.5551, respectively.

m̂n in (4) [10]—with all other classifier parameters being equal. Further improvements by our proposed

approach over the image steganalysis methods in [10]–[12] will be reported later in Section V-G.

1) For wavelet subbands in I1 and I2: Fig. 9 shows the test ROC curves when the first three moments

are extracted from each of the 13 wavelet subbands in I1, that is, a total of 39 features.

Our proposed M̃
A
n outperforms Harmsen and Pearlman’s M̃

′
n, which is consistent with Fig. 6 that shows

the empirical Bhattacharyya distance of M̃
A
n being larger than that of M̃

′
n. The difference between M̃

A
n

and M̃
′
n lies with the weighting functions—sinn

(

πk
K

)

and kn (cf. (18) and (16)), respectively—that are

applied to the magnitude of the discrete CF |Φ(k)|. The former emphasizes the midfrequency components

of CFs more than the latter, especially when n is small. Note that weighting functions that lead to more

efficient representations of CFs and better steganalysis performance may exist.

The empirical CF moments M̃
A
n and M̃

′
n are indeed far better than the empirical PDF moments m̂

A
n

and m̂n. For M̃
A
n , M̃

′
n, m̂

A
n , and m̂n, the AUCs are 0.9904, 0.9875, 0.9166, and 0.5551, respectively.

This confirms our conclusion in Section III that in image steganalysis, empirical CF moments are better

feature choices for wavelet subbands than empirical PDF moments.

2) For prediction error subbands in I3: Fig. 10 shows the test ROC curves when the first three moments

are extracted from each of the nine prediction error subbands in I3, that is, a total of 27 features. As

predicted by the empirical Bhattacharyya distance in Fig. 8, the PDF moments m̂n outperform the CF

moments M̃
A
n , contrary to the phenomenon observed for wavelet subbands in I1 and I2.
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Fig. 10. Test ROC curves of feature choices—our proposed M̃
A
n , Farid’s m̂n, and Goljan et al.’s m̂

A
n —on the cover and SSIS

stegoimage dataset using image representation I3. In all cases, the first three moments, 1 ≤ n ≤ 3, are used. From the best

ROC curve to the worst one, AUC = 0.9216, 0.9152, and 0.8069, respectively.

In all subsequent experiments, therefore, we will associate the CF moment M̃
A
n as the best feature

choice with the wavelet subbands in I1 and I2, and the PDF moment m̂n with the prediction error

subbands in I3.

E. Multiresolution Image Representation

This subsection compares the performance obtained using the multiresolution image representations

I1, I1 ∪ I2, I1 ∪ I3, and I1 ∪ I2 ∪ I3 introduced in Section II. We extract M̃
A
n (resp. m̂n), 1 ≤ n ≤ N ,

from every subband in I1 and I2 (resp. I3) as features. Fig. 11 shows test ROC curves in all four cases

when N = 5. The multiresolution representation I1 ∪ I2 ∪ I3 gives the best detection performance with

AUCI1∪I2∪I3
= 0.9917, in comparison to AUCI1∪I2

= 0.9912, AUCI1∪I2
= 0.9902, and AUCI1

=

0.9893. Especially in the low PFA range [0.005, 0.1], using I1 ∪ I2 ∪ I3 improves PD over using I1,

I1 ∪ I2, or I1 ∪ I3.

F. Peaking Effect and Feature Selection

Fig. 12 illustrates the peaking effect (Section IV-B) for a finite set of training images: 700 cover images

and 700 SSIS stegoimages. The features are M̃
A
n from I1 and I2, and m̂n from I3, 1 ≤ n ≤ N . The

feature set size is lN with l = 26 being the number of subbands in I1∪I2∪I3. Steganalysis performance

measured by AUC improves when N increases, peaks at Np = 6 with AUC = 0.9948, and eventually

deteriorates quickly for N ≥ 10.



25

10
−2

10
−1

10
0

0.7

0.75

0.8

0.85

0.9

0.95

1

Test False Alarm Probability

T
e
s
t 
D

e
te

c
ti
o
n
 P

ro
b
a
b
ili

ty
I1

I1 ∪ I2

I1 ∪ I3

I1 ∪ I2 ∪ I3

Fig. 11. Test ROC curves for multiresolution image representations I1, I1 ∪ I2, I1 ∪ I3, and I1 ∪ I2 ∪ I3 on the cover and

SSIS stegoimage dataset. Features are M̃
A
n for I1 and I2, and m̂n for I3, 1 ≤ n ≤ 5. The areas under the ROC curves are

AUCI1∪I2∪I3
= 0.9917, AUCI1∪I2

= 0.9912, AUCI1∪I3
= 0.9902, and AUCI1

= 0.9893, respectively.
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Fig. 12. AUC for the cover and SSIS stegoimage dataset, using the threshold selection procedure. Features are M̃
A
n from I1

and I2, and m̂n from I3, 1 ≤ n ≤ N . The performance peaks at Np = 6 with AUC = 0.9948.

The threshold feature selection algorithm that we proposed in Section IV-B identifies Np and forms

a feature subset F1 that consists of those 26Np = 156 features. Then we use the SFFS algorithm [33]

to search for a smaller feature subset F2 with a possibly larger AUC. Note that the cost function for

optimization of F2 is not limited to the AUC and can be an arbitrary objective, e.g., the detection

probability PD for a fixed false alarm probability PFA. In our example, |F2| = 73 with AUC = 0.994.

The test ROC curves for the feature sets F1 and F2 are shown in Fig. 13. The performance of SFFS

is vastly better in the low PFA range. However, the SFFS algorithm consumes hours, even days, in
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our simulations, in contrast to the minutes taken by the threshold selection approach. Hence, there is a

tradeoff between performance and training time if computational complexity is a concern.
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Fig. 13. Test ROC curves on the cover and SSIS stegoimage dataset. Our proposed method extracts M̃
A
n (resp. m̂n) from I1

and I2 (resp. I3), 1 ≤ n ≤ N . The threshold selection algorithm takes Np = 8, and its feature set F1 has 208 features that

yield AUC = 0.9922; the SFFS algorithm has a feature set F2 ⊂ F1 with 73 features that yield AUC = 0.994. Xuan et al.’s

method [12] extracts 13N features M̃
′

n, 1 ≤ n ≤ N , from I1; N = 3 leads to 39 features and yields AUC = 0.9875. Farid’s

method [10] extracts 18N features m̂n, 1 ≤ n ≤ N , from I3 and all the high-pass subbands in I1; N = 4 leads to 72 features

and yields AUC = 0.9249.

G. Comparison with State-of-the-Art Methods

Finally, we propose a method that combines a multiresolution image representation
⋃3

i=1 Ii, a feature

choice M̃
A
n (resp. m̂n) for I1 and I2 (resp. I3), and a feature selection algorithm such as the threshold

selection and SFFS algorithms. We compare the steganalysis performance of our method to Xuan et al.’s

method7 [12] and Farid’s method [10] on three kinds of steganographic embedding algorithms. Clearly,

from Figs. 13-15, our proposed method consistently outperforms these two state-of-the-art methods.

Fig. 13 shows the test ROC curves for our cover image set and SSIS stegoimage set. From the best

ROC curve to the worst, the AUCs are 0.994 for the SFFS algorithm, 0.9922 for our threshold selection

algorithm, 0.9875 for Xuan et al.’s method, and 0.9249 for Farid’s method. Fixing PFA = 0.01, our

methods with the threshold selection and SFFS algorithms yield PD = 0.81 and PD = 0.895 respectively,

which are significantly better than Xuan et al.’s PD = 0.7 and Farid’s PD = 0.21.

7Xuan et al.’s method [12] is an improved version of Harmsen and Pearlman’s method [11]. The former method uses M̃
′

n’s

with 1 ≤ n ≤ 3 while the latter only uses M̃
′

1.
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Fig. 14. Test ROC curves on the cover and LSB stegoimage dataset. Our proposed threshold selection algorithm extracts 26Np

features: M̃
A
n from I1 ∪ I2 and m̂n from I3, 1 ≤ n ≤ Np; Np = 6 yields a 156-feature set F1 and AUC = 0.9365. The SFFS

algorithm is applied to obtain a feature set F2 ⊂ F1 with 43 features that yield AUC = 0.9483. Xuan et al.’s method [12]

extracts 13N features M̃
′

n, 1 ≤ n ≤ N , from I1; N = 3, AUC = 0.8901. Farid’s method [10] extracts 18N features m̂n,

1 ≤ n ≤ N , from I3 and all the high-pass subbands in I1; N = 4, AUC = 0.7122.
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Fig. 15. Test ROC curves on the cover and F5 stegoimage dataset. Our proposed threshold selection algorithm extracts 26Np

features M̃
A
n , 1 ≤ n ≤ Np, from the multiresolution image representation I1 ∪I2 ∪I3; Np = 10 leads to a 260-feature set F1;

AUC = 0.9591. The SFFS algorithm is applied to obtain a feature set F2 ⊂ F1 with 96 features and yields AUC = 0.9657.

Xuan et al.’s method [12] extracts 13N features M̃
′

n, 1 ≤ n ≤ N , from I1; N = 3, AUC = 0.8132. Farid’s method [10]

extracts 18N features mn, 1 ≤ n ≤ N , from I3 and all the high-pass subbands in I1; N = 4, AUC = 0.7934.
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Fig. 14 shows the steganalysis results of LSB embedding, where the embedding noise is dependent

on the cover image. Again, our steganalysis method with feature selection algorithms outperforms other

methods: fixing PFA = 0.01, we obtain PD = 0.31 using the threshold selection algorithm (Np = 6,

|F1| = 156) and PD = 0.35 using the SFFS algorithm (|F2| = 43), compared to Xuan et al.’s PD = 0.2

and Farid’s PD = 0.03. The AUC is 0.9484 for our method with the SFFS algorithm, 0.9365 for our

method with the threshold selection algorithm, 0.8901 for Xuan et al.’s method, and 0.7122 for Farid’s

method.

Fig. 15 shows the steganalysis results of F5 embedding. Again, our steganalysis method with feature

selection algorithms outperforms other methods: fixing PFA = 0.01, we obtain PD = 0.47 using the

threshold selection algorithm (Np = 10, |F1| = 260) and PD = 0.6 using the SFFS algorithm (|F2| = 96),

compared to Xuan et al.’s PD = 0.09 and Farid’s PD = 0.08. The AUC is 0.9657 for our method with

the SFFS algorithm, 0.9591 for our method with the threshold selection algorithm, 0.8132 for Xuan et

al.’s method, and 0.7934 for Farid’s method.

VI. DISCUSSION

In practice, both the steganographer and steganalyzer have only partial knowledge of the cover signal

statistics. However, the steganalyzer may extract appropriate features and learn their statistics from training

data. The steganalyzer’s success largely depends on the ability to identify the most changed statistics by

embedding and to extract reliable features that are sensitive to these changes. For example, multiresolution

representations of photographic images are sparse, which implies that the PDF of wavelet coefficients

exhibits a sharp peak near zero. In contrast, the embedding noise PDF is smooth for many watermarking

and steganographic algorithms such as spread-spectrum, dithered quantization index modulation, ±k

embedding, etc. Thus, a prominent characteristic of stegoimages is that the marginal PDF of their wavelet

coefficients is smoothed.

We analyzed the statistical effects of additive embedding and explained why empirical characteristic

function moments of wavelet coefficients are better choices than empirical PDF moments in image

steganalysis. We also studied which moment orders, higher or lower, are more suitable features. And, in

light of the inevitable peaking effect caused by the finite training sample size, we explored some feature

selection algorithms to find informative, low-dimensional feature sets. In addition, we proposed a new

multiresolution image representation that is more informative than existing ones. Our image steganalysis

results—on both additive embedding represented by the spread-spectrum method and nonadditive em-

bedding represented by the LSB embedding method and the F5 embedding algorithm—demonstrated the
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effectiveness of our method: it has significantly better performance than methods recently proposed by

Farid [10] and Xuan et al. [12].

Of course, the proposed features and steganalysis methods in this paper are by no means optimal. To

achieve better performance, various improvements can be made. For example, one could look for new

features that are more sensitive to weak-noise embedding, use better classifiers, etc. However, the strategy

of a steganalyzer will remain the same: describe the cover signal statistics as completely as possible and

seek a small number of informative, reliable features as inputs to the classifier.

APPENDIX I

CALCULATION OF m
A
n , M

A
n , rm,n, rM,n, AND An FOR GAUSSIAN COVER SIGNALS

For a Gaussian distributed random variable, S ∼ N (0, σ2), its nth absolute PDF moment m
A
n,S is

given by

m
A
n,S =

∫ ∞

−∞

1√
2πσ2

e−
x2

2σ2 |x|ndx.

Simple calculus yields

m
A
n,S =



















√

2
π σ for n = 1,

√

2
π σn

∏

n−1

2

i=1 2i for odd n > 1,

σn
∏

n

2

i=1(2i − 1) for even n > 1.

(49)

The CF of S ∼ N (0, σ2) is given by

ΦS(t) =

∫ ∞

−∞

1√
2πσ2

e−
x2

2σ2 · ejtxdx

= e−
σ2t2

2 , t ∈ R.

Thus the nth absolute moment of the CF is given by

M
A
n,S =

∫ ∞

−∞
e−

σ2t2

2 |t|ndt.

Similarly, simple calculus yields

M
A
n,S =



















2σ−2 for n = 1,

2σ−(n+1)
∏

n−1

2

i=1 2i for odd n > 1,
√

2π σ−(n+1)
∏

n

2

i=1(2i − 1) for even n > 1.

(50)

For the stegosignal X = S + Zγ , where

Zγ ∼ (1 − γ) δ(0) + γ N (0, RNCR σ2),
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γ ∈ [0, 1], and RNCR ≥ 0, we have

X ∼







N (0, σ2) with probability 1 − γ,

N
(

0, (1 + RNCR)σ2
)

with probability γ.
(51)

The moments m
A
n,X and M

A
n,X are obtained by applying (49) and (50):

m
A
n,X = cn

[

1 − γ + γ(1 + RNCR)
n

2

]

σn

and

M
A
n,X = Cn

[

1 − γ + γ(1 + RNCR)−
n+1

2

]

σ−(n+1),

where cn and Cn are the respective constant terms in (49) and (50).

Therefore, the ratio rm,n defined in (35) is given by

rm,n(γ) =
m

A
n,X

mA
n,S

= 1 − γ + γ(1 + RNCR)
n

2 . (52)

Clearly, rm,n(0) = 1, rm,n(1) = (1 + RNCR)
n

2 , and rm,n(γ) is a monotonically increasing function of

γ. Similarly, the ratio rM,n defined in (36) is given by

rM,n(γ) =
M

A
n,S

MA
n,X

=
1

1 − γ + γ(1 + RNCR)−
n+1

2

. (53)

Clearly, rM,n(0) = 1, rM,n(1) = (1+RNCR)
n+1

2 , and rM,n(γ) is also a monotonically increasing function

of γ.

From (52) and (53), the ratio An(γ)
△
= rM,n

rm,n
is then given by

An(γ) =

[

1 − γ + γ(1 + RNCR)−
n+1

2

]−1

[

1 − γ + γ(1 + RNCR)
n

2

] , (54)

for which An(0) = 1 and An(1) = (1 + RNCR)
1

2 ≥ 1. The denominator of An(γ), or A−1
n (γ) in this

case, is a quadratic function of γ. Therefore An(γ) = 1 only if γ = 0 or

γ = γ1
△
= 1 − (1 + RNCR)

n+1

2 − (1 + RNCR)
n

2

[

(1 + RNCR)
n

2 − 1
] [

(1 + RNCR)
n+1

2 − 1
] .

Clearly, γ1 ≤ 1 when RNCR > 0. Simple algebra shows that γ1 < 0 if and only if

(1 + RNCR)−
n+1

2 + (1 + RNCR)
n

2 < 2.

The second derivative of A−1
n (γ) is given by

d2A−1
n (γ)

dγ2
= 2[(1 + RNCR)

n

2 − 1][(1 + RNCR)−
n+1

2 − 1], (55)
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which is negative when RNCR > 0. Hence, A−1
n (γ) is a concave quadratic function of γ, with A−1

n (γ) = 1

at γ = 0 and γ1. It follows that the function An(γ) is convex, and if γ > max(0, γ1), An(γ) is greater

than 1 and monotonically increasing with γ.
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