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Optimized flocking of autonomous drones in
confined environments

Gábor Vásárhelyi1,2*, Csaba Virágh2, Gergő Somorjai1,2, Tamás Nepusz3,

Agoston E. Eiben4, Tamás Vicsek1,2

We address a fundamental issue of collectivemotion of aerial robots: how to ensure that large flocks of autonomous
drones seamlessly navigate in confined spaces. The numerous existing flocking models are rarely tested on actual
hardware because they typically neglect some crucial aspects of multirobot systems. Constrained motion and com-
munication capabilities, delays, perturbations, or the presence of barriers should bemodeled and treated explicitly
because they have large effects on collective behavior during the cooperation of real agents. Handling these issues
properly results in additional model complexity and a natural increase in the number of tunable parameters, which
calls for appropriate optimization methods to be coupled tightly to model development. In this paper, we propose
such a flocking model for real drones incorporating an evolutionary optimization framework with carefully chosen
order parameters and fitness functions. We numerically demonstrated that the induced swarm behavior remained
stable under realistic conditions for large flock sizes and notably for large velocities. We showed that coherent and
realistic collective motion patterns persisted even around perturbing obstacles. Furthermore, we validated our
model on real hardware, carrying out field experiments with a self-organized swarm of 30 drones. This is the largest
of such aerial outdoor systems without central control reported to date exhibiting flocking with collective collision
andobject avoidance. The results confirmed the adequacy of our approach. Successfully controllingdozens of quad-
copters will enable substantially more efficient task management in various contexts involving drones.

INTRODUCTION

Groups of gregarious animals often display an interesting and spectac-
ular collective pattern (1): They establish ordered structureswithout col-
lisions in a limited amount of time (2, 3). They can also react extremely
fast to environmental changes, such as the sudden appearance of a
predator or an obstacle (4, 5). Although these systems are enormously
complex, they are also perfectly optimized, and thus, their expressed
motion patterns remain gracefully natural (6).When these systems are
modeled, one tends to focus on the replication of the smooth optimal
motion patterns bymaking idealistic assumptions about the underlying
complexity. This simultaneous simplification of the “input” and
“output” explains why so many different statistical physical models
of swarm behavior can be efficient in reproducing the same natural
collective motion patterns with abstract mathematical formalism.

According to early microscopic agent-based models (7), establish-
ing andmaintaining collision-free cohesive flocking require only three
simple interactions between idealistic agents: repulsion in short range,
velocity alignment in middle range, and attraction in long range. On
the basis of these general rules, hundreds of models have emerged to
describe the synchronized collective motion of animals, humans, or
even migrating cells (8–10). We call these systems self-organized be-
cause interactions in them are local and decisions are made by the
agents themselves.

One of the recent applications of self-organizing flockingmodels is
in collective robotics (11, 12), where decentralized control algorithms
for groups of autonomous drones can be developed on the basis of
these interactions, as a prerequisite for safe operation. Driving the be-
havior of such systems toward some desirable pattern is highly non-

trivial. First, the agents (robots and drones) are autonomous and
imperfect. That is, every agent has (i) its own onboard computer for
performing the calculations needed for controlling its own actions,
(ii) its own sensor system for measuring relative positions and velo-
cities, and (iii) its own communication device for data exchange with
neighboring agents. These features reflect the current definition of sen-
sory and reactive autonomy described in (13). Second, these systems
should work without central control. That is, although agents can ob-
serve each other andmay exchange information, they do not send and
receive direct control commands because there is no leader within the
group, nor is there an external supervisor such as a base station or hu-
man overseer.

In developing decentralized control algorithms for swarms of fly-
ing robots in stochastic environments where communication outages
and delays are common, one soon faces a set of severe challenges that
are rarely targeted by previous idealistic agent-based models. As an
example, 32 representative microscopic flocking models were selected
and compared out of more than 100 (9). Fine and Shell state that
“there is no consensus on the precise details of the motions needed
to produce rich flocking motions under realistic sensingmodels, actu-
ation, and dynamics constraints”; most works lack completeness and
precision in terms of repeatable modeling and validation; only a few
included motion constraints and collision avoidance [e.g., (7, 14, 15)];
and none handled motion constraints explicitly. Finally, only one in-
vestigated bounded space with obstacles (16).

While aiming for a stable and scalable flockingmodel for real flying
robots, some serious design challenges need to be addressed:

(1) Reality gap. Flockingmodels that are stable in simulation under
idealistic conditions tend to oscillate and destabilize quickly under
real-life conditions when delays, uncertainties, and kinematic con-
straints are present (17–21).

(2) Adaptivity. Flocking models developed for open space or pe-
riodic boundary conditions do not necessarily work in confined spaces
and with obstacles in the way (9, 22).
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(3) Scalability. Flocking models that are developed for a specific
speed or group size might not be scalable; that is, for higher velocities
or larger groups, motion patterns may become unstable (16, 23, 24).

(4) High dimensionality. Flockingmodels thatworkwell in real life
generally have a substantial number of parameters with complex non-
linear interactions that need to be tuned for a wide range of conditions
in reasonable time (6).

The largest drone swarms so far were developed for show busi-
ness by Intel (25) and by Ehang (26) with more than 1000 drones
each; however, these drones were individually programmed for pre-
defined trajectories or were centrally controlled and did not satisfy
the above criteria of autonomy. The music band Metallica recently
included dozens of drones in their concerts that seemed to exhibit
some kind of partially autonomous swarming behavior by using a
dedicated indoor positioning system and central control mechan-
isms (27). The U.S. military is also experimenting with fixed-wing
drone swarms called Perdix (28). The press release stated that the
system of 103 autonomous drones performed adaptive formation
flying. The published video suggests that the drones received a set of
predefined targets, chose one with a collective decision, and followed
that individually. Drones also loitered around a common point, al-
though at different heights. Unfortunately, there are no public details
about the controlmechanism, the communication scheme, or possible
collision avoidance behavior for a reliable assessment of the work.

Autonomous drone swarms also appear in the scientific litera-
ture, using indoor motion capture–based (29, 30), outdoor Global
Positioning System (GPS)–based (24, 31–33), or even vision-assisted
(34, 35) navigation. These systems typically have a much smaller
flock size than preprogrammed drone swarms. Although motion
capture–based indoor systems (with 20 minidrones and 49 nano-
drones in the mentioned citations) are remarkably accurate and dy-
namic, they represent a very different type of system because they do
not have to tolerate profound imperfections such as meter-level
positioning, external wind turbulence, or long-range communica-
tion decay. The mentioned GPS-based outdoor swarms consisted
of no more than 10 drones, except for (32), where 50 fixed-wing un-
manned aerial vehicles (UAVs) were flown but at different altitudes,
without any explicit collision avoidance mechanism. Vision-based
solutions have used only a few drones as the state of the art.

In this article, we build on our previous results (24), where an out-
door drone swarm of 10 agents were presented as a proof of concept
with flocking and formation flight capabilities. Although the previous
work included preliminary results of closed-area flocking, trajectories
were quite oscillatory even though they were executed in the simplest
arena: a circular one that actually helped to develop smooth turns.
Furthermore, the system—due to the improper treatment of acceler-
ation limits—was not scalable to speeds higher than 4 m/s.

Creating a large decentralized outdoor drone swarm with syn-
chronized flocking behavior using autonomous collision and object
avoidance in a bounded area is as yet an unresolved task. We filled
this gap by presenting real flights of 30 autonomous quadcopters
performing tight and stable flocking in a bounded and cluttered en-
vironment. To achieve this goal we used a scalable, optimized control
framework, based on realistic dynamic modeling and the explicit
treatment of motion constraints in the flocking equations.

The overall descriptors that specified a given setup of our system
were the number of drones and the predefined flocking speed. The
desired swarm behavior was defined as being collision-free and coher-
ent, that is, with strongly correlated velocity values of the individual

drones, and exhibiting a velocity close to the flocking speed. Further-
more, we aimed for stable swarm behavior with persistent global collec-
tivemotion patterns resembling those of natural systems with collective
intelligence.

The explicit treatment ofmotion constraints was based on a special
concept for the velocity alignment interaction. The key idea was to
abandon the generally used fixed spatial boundaries of the local inter-
actions. Instead, the alignment interaction range (andmagnitude) was
determined dynamically, based on the expected optimal relation be-
tween distance and velocity difference. Because the acceleration of
agents is limited, they need time and space to brake and avoid colli-
sions. Consequently, the amount of allowed velocity difference must
be distance-dependent: Close agents should align perfectly, whereas
distant agents are allowed to have larger velocity difference up to a
certain limit. To find the upper bound of velocity difference for a
given distance, we used an acceleration-limited braking curve. The
goal of the alignment was thus to reduce velocity difference below
this distance-dependent threshold. This workflow was easy to calcu-
late and provided optimal foundations of scalability in the velocity
domain because it took into account the limited acceleration of
agents, the source of many undesired oscillations.

The model has many independent parameters with which a broad
range of emerging behaviors and visually pleasing collective patterns
could be generated. However, our requirements of stability and coher-
ence provide quantifiable criteria for the instantiation of the general
model with suitable parameter values. This implies a highly nontrivial
optimization problem because of the large number of parameters,
their complex nonlinear interactions, and the noisy relations between
parameter values and collective motion patterns.

An important element of our approach is the focus on model in-
stances, that is, onmodels together with specific values of their param-
eters. The rationale is grounded in our interest in system behavior.
Having a model is not enough to generate and study motion patterns;
to make a model executable, it must be instantiated by parameter
values. Blatantly disregarding theoretical benefits of models, we could
say that anymodel is worth as much as its best instance. Therefore, we
considered optimizing the parameter setup as an essential part of the
model generation.

This view is missing from current flocking models and the realiza-
tion of the corresponding robotic swarms, although it stands to reason
that natural systems operate at the optimal values of their “tunable”
parameters (in the spirit of the Darwinian theory). As the complexity
of artificial intelligence increases, we will be forced to include more
and more optimization into model design.

To solve the optimization problem, we used evolutionary algo-
rithms, population-based stochastic searchmethods inspired by natural
evolution that have proven competitive in solving hard problems in the
face of challenging characteristics such as nondifferentiability, disconti-
nuities, multiple local optima, noise, and nonlinear interactions among
the variables (36). The family of evolutionary algorithms contains sev-
eral variants of the main principles, including genetic algorithms, evo-
lution strategies, differential evolution, and particle swarm optimization
(37). Evolution strategies, particularly the covariance matrix adaptation
evolution strategy (CMA-ES) (38), are considered to be excellent opti-
mizers in continuous parameter spaces; therefore, we used this al-
gorithm to find good settings for our model.

The main contributions of this paper are (i) a flocking model that
explicitly treats motion constraints by maintaining an improved bal-
ance between distance and velocity difference; (ii) a method to design
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individual drone controllers by optimizing self-organized group-level
behavior in a complex, noisy, real-world system; (iii) simulations of this
system for presenting its scalability for wide velocity ranges and group
sizes; and (iv) the demonstration of the framework with a fleet of 30
quadcopters, performing fully autonomous, synchronizedoutdoor flights
with collective collision and obstacle avoidance in a confined space.

RESULTS

Flocking model instantiation through
evolutionary optimization
Our generic flocking model included proper evaluation metrics, that
is, order parameters and fitness functions (see Materials andMethods
for detailed equations). The model was instantiated with proper
parameter values first in simulation. Evolutionary optimization has
been used to find parameter values that maximize flock coherence
and speedwhile minimizing collisions. First, we optimized the param-
eters under conditions suitable for real experiments: using a square-
shaped obstacle-free arena with a side length of Larena = 250 m and
three different flocking speed (v flock) values: 4, 6, and 8 m/s. The
corresponding values for the maximum allowed speed (vmax) were
6, 8, and 10m/s, respectively.We examined the behavior of 100 simu-
lated agents in all cases. For each of the v flock values, we performed at
least three independent, randomly initialized optimization processes
to identify possible multiple local optima in the parameter space but
found very similar solutions and convergence in the alternative evo-
lutionary runs. Therefore, below, we will only refer to the best (highest
fitness) evolutionary run for each flocking speed.

The populations in our evolutionary algorithm consisted of pa-
rameter vectors whose fitness was determined by a 10-min-long rea-
listic simulation of the system. In all runs, we used a population size
of 100 and terminated after 150 generations. The 15,000 fitness eva-
luations turned out to be sufficient in all cases. The optimization was
performed on the Atlasz supercomputer cluster of Eötvös University,

Budapest, Hungary (39); the overall execution time of a single evo-
lutionary run varied between 2 and 6 days.

The evaluation of the phenotypeswas based on a single fitness value
that was created as the product of six independent normalized partial
fitness values (corresponding to minimized collision risk, minimized
collision with walls, maximized velocity correlation, velocity magni-
tude as close as possible to flocking speed, maximized cluster size,
and minimized number of disconnected agents). Each partial fitness,
as well as the final fitness value, takes values between 0 (worst case) and
1 (ideal case).

The final fitness of the best solutions after optimization converged
to 0.92, 0.87, and 0.8 for v flock = 4, 6, and 8 m/s, respectively. In these
best stochastic simulation instances, four of the six partial fitnesses
were exactly 1 (corresponding to a perfectly collisionless and fully
connected flock), and only the velocity correlation and the average ve-
locity reduced the overall fitness. This is a natural and inevitable ten-
dency because hitting the wall in a bounded area requires the flock to
change direction, and this cannot be performed without temporarily
reducing the speed and velocity correlation. It is worth noting that
these high fitness values have been reached under harsh realistic con-
ditions with a 1-s communication delay and substantial noise, which
generally act against perfect synchronization. Optimized parameter
values are given in table S1.

The stability of the optimized models was investigated next by ex-
ecuting 100 parallel stochastic simulations for each speed. Detailed
results about the statistical evaluations can be found in table S2. The
average fitnesses naturally became somewhat lower than the max-
ima: 0.812 ± 0.101 (SD), 0.776 ± 0.086, and 0.728 ± 0.075 for v flock =
4, 6, and 8 m/s, respectively, with the appearance of occasional colli-
sions. Note that in simulation, the partial fitness of collisions must be
a continuous and not-too-steep function; otherwise, the optimizer
cannot find the direction of gradients from suboptimal solutions.
This means that having a few collisions can be banned only with a
limited decrease of fitness, and the optimizer will not devote a special

Fig. 1. Comparing previous simulation work with current study. Sample timelines of two order parameters (right, velocity correlation at top and normalized
velocity magnitude at bottom) from our previous work (40) (algorithm A) and our novel flocking model (algorithm B). Trajectories corresponding to the gray sections
of the timelines are shown for both models on the left, with color mapped to time. Corresponding motion can be seen in movies S1 and S2. Algorithm B performs much
better and has a lower transient time. We used the following interaction parameter set for algorithm A: C frict = 30 m2, r frictmin ¼ 5m, r rep0 ¼ 20m, and prep = 1 s−1 [for details
on parameters, see (40)]. For algorithm B, we used the optimized parameter set for v flock = 4 m/s. Using an average from 10 simulations with the same parameter setup,
the order parameters averaged over time were fcorrA ¼ 0:63 ± 0:07 and fvelA ¼ 3:37 ± 0:15 m/s for algorithm A and fcorrB ¼ 0:92 ± 0:002 and fvelB ¼ 3:83 ± 0:005 m/s for
algorithm B.

SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

Vásárhelyi et al., Sci. Robot. 3, eaat3536 (2018) 18 July 2018 3 of 13

 b
y
 g

u
e
s
t o

n
 N

o
v
e
m

b
e
r 1

3
, 2

0
2
0

h
ttp

://ro
b
o
tic

s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://robotics.sciencemag.org/


priority to entirely collisionless solutions; it will aim for a maximally
dense flock implicitly to increase connectedness and velocity corre-
lation, which narrows that stability range with regard to collisions.
On the other hand, in reality, collisions have to be eliminated com-
pletely at all times as a first rule. Several workarounds exist for this
problem: (i) running the optimizer with a larger radius of collision or
a larger communication delay to optimize to a solution where mini-
mum interagent distances become larger and (ii) increasing interagent
distance (repulsion) manually after optimization with the harmless
compromise of reducing overall velocity correlation in the enlarged
flock. This time, we chose the second method because, in real flights,
one needs to start from an oversecured parameter setup anyways, com-
paredwith the optimumwith highest possible fitness but lower stability.

Evolutionary optimization produced a huge number of stochastic
fitness evaluations, which also contain precious information about
the reasonable parameter ranges where fitness is expected to be high.
These working ranges are summarized in table S1 to provide tuning
information for real drones as well. We also listed all model param-
eters in table S3 with a detailed explanation on meaning and usage.

Finally, let us note a surprising benefit of evolving parameter set-
tings. The evolutionary algorithm found unexpected parameter set-
tings in both the repulsive and alignment interactions between agents:

(1) Instead of a strong hard-core repulsion (as expected intuitively),
a spatiallymore extended and smoother repulsion is preferable accord-
ing to the evolutionary optimization.

(2) The velocity alignment between close-by agents should be
maximal and mostly distance-independent, allowing only a certain,
relatively small velocity difference slack, mainly to speed up the col-
lective turning process.

Overall, we achieved our first goal: The general model could be
instantiated well with suitable parameter values in simulation; the
optimized setup displayed a stable and efficient flock in the investi-
gated velocity regime, which can serve as the basis for the real field
experiments. Comparing our new results to our previous work (40),
we can see a substantial increase in flock stability and coherence (see
Fig. 1). Movies S1 and S2 show correspondingmotion of old and new
simulations at 4 m/s.

Scalability in velocity
The most important feature of the acceleration-limited velocity align-
ment term in the agent-agent andwall-agent interactions is its inherent
scalability in the velocity regime. To demonstrate this, we performed

further optimizationswith higher flocking speed values: 16 and 32m/s,
beyond most bird migration speeds (41). We changed two parameters
in the environmental setup: We increased the communication range
from 80 to 160 and 320 m and the size of the arena from 250 to 500
and 1000 m for the two speed values, respectively. The first change
was needed because the communication delay remained at 1 s, which
created a much larger positional uncertainty and braking distance at
higher speeds. This can be compensated only if agents have information
about each other at higher distances. The second change was a conse-
quence of the first: With such a large communication delay and speed,
the interagent distances became larger, and thus, the flock could not fit
into a smaller arena with enough freedom for nice flocking behavior.

The optimized solutions obtained a high fitness again, with a max-
imumof 0.91 and 0.89 and a statistical average of 0.79 ± 0.12 and 0.63 ±
0.23 for 16 and 32 m/s, respectively. Detailed fitness values of the sta-
tistical evaluations are summarized in table S2.Note that for the highest
speed of 32m/s, the lower average of the fitness is mostly a result of the
slightly increased number of collisions (3.53 ± 3.61). We investigated
the role of communication range and delay in this case and found that
collisions disappeared when we reduced the delay below 1 s, assuming
that the communication range was large enough (see Fig. 2 for details).
The first part of movie S3 shows the optimized and stable flocking be-
havior of 100 agents in simulation for 16 m/s.

Scalability in agent number with collective
obstacle avoidance
Because of the locality of the communication and the interactions, the
proposed flocking model provides the foundations of scalability in
agent number. However, when more agents synchronize in such a
nonequilibrium system, the overall momentum of the flock also scales
with flock size, which creates increased “pressure” of agents when the
flock bumps into walls. In similar situations, human crowds are prone
to injuries or even death during panic events (16) or, for example,
around mosh pits at heavy metal concerts (42). To provide collision-
less solutions with higher agent numbers, one needs to prevent accu-
mulating pressure of agents, for example, using obstacles inside the
arena. Obstacles can be introduced with the same type of interactions
as surrounding walls (see Materials and Methods for details).

Without going into statistical details, movie S3 shows some
examples of the realistic simulation with flock sizes between 30 and
1000 and flocking speeds between 4 and 32 m/s, with different types
of obstacles in the way. Overall, we see that the presented flocking

Fig. 2. Distribution of the number of collisions and the average closest-neighbor distance as a function of communication range and delay. Every bin is the
average of 20 simulations with the optimized parameter setup for a flocking speed of 32 m/s. As can be seen, safe flocking can be achieved with small enough delay
(<1 s) and large enough communication range (>240 m) for this setup.
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model can be used as a general framework to handle flocking-typemo-
tion in a confined area, with a large number of agents, large flocking
speeds, and obstacles.

Experimental results with outdoor flying robots
We implemented the describedmodel in our custom-builtmultidrone
framework as a control algorithm. Details of the drone setup are given
in Materials and Methods.

We performed two-dimensional experimentswith 30 drones flock-
ing at the same altitude, with a horizontal speed of v flock=4, 6, and 8m/s
and Larena = 200 to 260 m. Parameter values were initialized mostly
within the working range of the corresponding evolutionary optimized
results (table S1) with some notable changes from simulation optima
based on the following precautious and preventive safety considera-
tions: (i) repulsion strength was somewhat increased (larger gain) to
minimize the chance of collisions (compromise: sparser flock); (ii) co-
efficient of alignment was increased to reduce possible oscillations
(compromise: more sluggish motion); (iii) shill interaction strength
was reduced (smaller shill velocity), but range was extended (larger dis-
tance offset) to avoid very high interaction terms at walls while main-
tainingoverall strength.The final parameter values used in the experiments
and detailed comments on their possible changes from simulation optima
are summarized in table S4.

To assess the quality of the flights, we calculated a set of order pa-
rameters that describe different aspects of the motion. We calculated
the cluster-dependent velocity correlation (fcorr), the average velocity

(fvel), the average and minimum of interagent distances (minrij and
�rmin
ij ), and the average normalized velocity expressed in local angle
polar (LAP) coordinates (43):

fLAP ¼
vyrx � vxry

vflock
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2x þ r2y

q ð1Þ

where rx and ry represent the average position of agents in the hori-
zontal plane relative to the center of the arena and vx and vy are the
average velocity components of the agents in the horizontal plane.
f
LAP is a simple descriptor of rotational behavior: An instantaneous
value of zeromeans no correlatedmotion tangentially, whereas a value
of 1 or −1 represents correlated circular flight in the counterclockwise
and clockwise directions, respectively.

Figure 3 shows the order parameters as a function of time for a
selection of full 10- to 15-min stable flights (flight time depended on
battery and wind conditions, with a maximum tolerated wind of about
40 km/hour). Flights were selected to represent the most common
emerging collective patterns, namely, repetitive circular and diagonal
flights in an obstacle-free arena and a lively random collective flight
with obstacles. Note that the emergent rotational pattern is a universal
one (44), appearing in a large variety of flocking systems ranging from
elongated rods (45) through locusts (2) and fish (5) to humans (46, 47).
A 10-min part of the trajectories from the same flights can be seen
in Fig. 4, a long-exposure photo of a shorter section is shown in Fig. 5,

A B

C

Fig. 3. Order parameters as a function of time for different v flock values during real experiments with 30 drones. fcorr is the cluster-dependent velocity cor-
relation, fvel/v flock is the average normalized velocity, and�rmin

ij represents the average of the closest neighbors, whereas min(rij) is the minimum of the closest neighbors.
The depicted region corresponds to the middle 5 min of Fig. 4. There are two typical, mostly stable behaviors in a square-shaped arena without obstacles: (A) shows
mostly linear motion along the main diagonals with a cyclic expansion and shrinking of the flock (cyclic red and orange curves) and sudden turns at corners (blue and
green curves dropping to zero), whereas (C) shows circular motion within the boundaries (nearly constant order parameters at all times). (B) The repetitive, trivial
patterns were broken and became livelier due to obstacles in the way. Correspondingly, velocity correlation and average velocity magnitude drops, whereas minimal
interagent distance remains the same, showing the stability of the flight even in this obstructed case.
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whereas movies S4 to S6 show the corresponding dynamic flight log
visualizations for the three selected flights. Finally, movie S7 shows a
summary of the results including actual footage of the flights, too.

As can be seen from the experiments, real drones performed well
within the whole tested flocking speed regime. Namely, there are no
critical oscillations or collisions with each other, with the wall, or with
obstacles. Furthermore, motion is smooth and lively during collective
turns when the flock hits the walls, flies into the right-angled corner of
the arena, or splits when obstacles are in the way.On the basis of Fig. 3,
we can see that, for the flocking speed regime of 4 to 8m/s, the average
closest-neighbor distance varied between 12 and 30 m and the

minimum interagent distance remained between about 5 and 15 m.
With Global Navigation Satellite System (GNSS) positioning errors in
the range of 2 and 3mandpossible communication outages in the order
of 1 s, we believe that these results show a tight and stable flock.

DISCUSSION

Wehave presented a tunable distributed flockingmodel for a large group
of autonomous flying robotswithwhich theywere capable ofmaintaining
stable, collision-free collective motion in a closed space with or without
obstacles, within a large velocity regime. The solution is based on the

Fig. 4. Multidrone flight trajectories and corresponding order parameters. Ten-minute trajectory sections of 30 drones in the horizontal plane for (A) 4 m/s, (B) 6 m/s
and (C) 8 m/s flights, representing a selection of typical flight patterns. Blue squares show the boundaries of the virtual arena. (A) The trajectories show diagonal linear
motion of the flock, bouncing back from the right-angled corners. Trajectory colors represent speed in the horizontal plane, whereas a random single trajectory is
highlighted in gray scale. (B) The motion is still locally correlated, but the obstacles (red shapes) induce a very rich dynamic pattern, resembling lively flocks of birds or
other animals. (C) The trajectories show a highly correlated close-to-circular flight. Colors and line styles are mapped to individual drones here; black dots show terminal
positions of drones. (D) Comparison of the three qualitatively different behaviors of (A) to (C) with the timeline of a dedicated order parameter: the average normalized
velocity, expressed in local angle polar coordinates (fLAP).
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simplest force-based rules presented by the earliest self-propelled
particle models, repulsion and alignment, but uses a form of alignment
that takes into account the desired acceleration regime of agents. The
model works in a noisy environment, with inaccurate sensors and
short-range communication devices, and in the presence of substantial
communication delay andwith possible local communication outages—
these are usual features of current outdoormultidrone experimental set-
ups. Themodel produces a very rich dynamic ofmotion, especially in an
obstructed space, with a variety of emergent collective motion patterns,
resembling lively natural flocks.

The model has 11 tunable parameters that call for automated and
efficient optimization methods, such as the CMA-ES. With the intro-
duced single-objective fitness function taking into account several
important order parameters, we could instantiate our model to find
working ranges and optimal parameter setups for a wide range of
velocities. Both our optimized simulation results with 30 to 1000 drones
and 4 to 32 m/s flocking speeds and our real experiments on 30 drones
and 4 to 8m/s flocking speeds showed stable flocking behavior of agents.

Because of the concept behind the new alignment term, we believe
that much higher velocity regimes can be targeted with the same ap-
proach, if needed. For this, one would need to have larger interagent
distances, larger radii of interactions, and thus proper large-distance
communication methods.

Limitations of the general usage of the model could arise from
further scaling in the velocity regime and in the number of drones.
With 30 drones, we demonstrated an order-of-magnitude scalability
relative to the smallest drone swarms of only a few agents; however,
further scaling in numbers also implies an increase in emergent pres-
sure among frontal agents facing walls and obstacles, such as that in
human crowds, resulting in smaller, possibly dangerous interagent
distances. This issue has to be solved in systemswith a very highnumber
of agents. A related limiting factor is the large number of necessary param-
eters that need to be optimized for every system separately. Although we
have selected the parameters with special care to have independent
meaning and significance, in such a complex system, a deep under-
standing of the rich dynamic behavior and substantial experience is
needed before safely applying the results to other vehicles with differ-
ent characteristics. A final shortcoming of the present study is the lack
of rigorousquantitative analysis of stability, because it is not straightforward

to do in such a high-dimensional parameter space. We avoided this by
analyzing the fitness evaluations statistically and gave approximate,
independent ranges for the parameters above which fitness is expected
to be high. For certain applications, though, a more sophisticated anal-
ysis would bemore appropriate. Despite these limitations, we believe
that the presented concept of velocity alignment, the model in general,
together with the fitness evaluation method, can be used optimally in a
wide range of multidrone scenarios requiring sophisticated cooperation
and/or collaboration.

MATERIALS AND METHODS

A tunable self-propelled flocking model
On the basis of statistical-physical methods, a basic flocking model was
introduced in (40) and (24). This is a minimal realistic approach of
flocking behavior that was demonstrated to work with up to 10 flying
robots with amaximum flocking speed of 4m/s. In thismodel, the three
interaction terms yield a momentary desired velocity vector vd, which
has to be achieved by the agents. Of course, maintaining the desired
velocity is generally hard due to several robot-specific deficiencies such
as communication delays and reaction times, inaccuracy of the onboard
sensors, effects of wind, sensor signal outages, inertia etc. The question
we examine here is whether there are interactions that can guarantee
more stable behavior than previously published attempts under these
conditions for larger flocking speeds and also in confined spaces. In
the subsections below, we present the exact mathematical formulation
of our novel generic flocking model, taking into account the realistic
limitations of autonomous flying agents with the explicit treatment of
motion constraints in the equations.

Repulsion
For local repulsion, we choose a simple half-springmodel, that is, a linear
distance-dependent central velocity term with a cutoff at a maximum
interaction range,r

rep
0 , under which agents start to repulse each other:

v
rep
ij ¼

prep⋅ðr
rep
0 � rijÞ⋅

ri � rj

rij
if rij < r

rep
0

0 otherwise

(

ð2Þ

Fig. 5. Long-exposure photo of a flight with multiple drones. [Credit: Zsolt Bézsenyi]
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In the equation above, prep is the linear gain of the pairwise repulsion
and rij= |ri− rj| is the distance between agents i and j. The total repulsion
term calculated for agent i with respect to the other agents is

v
rep
i ¼ ∑

j≠i
v
rep
ij ð3Þ

where j is iterated for all other agents. Note that we have experimented
with more complex repulsion functions in the v(r) plane (40, 48), but
according to our experience, the half-springmodel is sufficiently simple
and effective at the same time.

Velocity alignment
Pairwise velocity alignment can be obtained with a velocity term that
depends on the difference of the velocity vectors of nearby agents.
Previous works typically used a power law of the velocity difference of
the interacting agents decaying in space asymptotically to zero (49, 50).
These models work fine in some specific conditions, within a lower
velocity regime. However, our objectives regarding the velocity align-
ment are complex. It is the very term that synchronizes motion to
achieve collective flocking behavior, but it also has to serve as a damping
medium, reducing self-excited oscillations emerging due to the delayed
and noisy response to for example, repulsion. It has to be local, but it
also has to be scalable for large velocities (and therefore large possible
velocity differences) at the same time. This last condition implies that if
the acceleration of the agents is limited, large velocity differences should
be relaxed at larger distances to avoid collisions.

To fulfill all the requirements above, as a theoretical basis for the
velocity alignment term, we have chosen an ideal braking curve, that
is, a smooth velocity decay function in space [denoted by D(.)], with
constant acceleration at high speeds and exponential approach in
time at low speeds (51):

Dðr; a; pÞ ¼
0 if r ≤ 0
rp if 0 < rp < a=p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ar � a2=p2
p

otherwise

8

<

:

ð4Þ

where r is the distance between an agent and an expected stopping
point, a is the preferred acceleration, and p is a linear gain also deter-
mining the crossover point between the two phases of deceleration.

The rationale behind our velocity alignment term is to prohibit two
agents having a larger velocity difference at a given distance than what
is allowed by this ideal braking curve and, thus, to serve as kind of a
motion planning term in the otherwise momentary force-based
equations (see Fig. 6 for a visual representation):

vfrictmax
ij ¼ max

�

vfrict;Dðrij � rfrict0 ; africt; pfrictÞ

�

; ð5Þ

vfrictij ¼
Cfrictðvij � vfrictmax

ij Þ⋅
vi � vj

vij
if vij > vfrictmax

ij

0 otherwise

(

ð6Þ

In the equations above, Cfrict is a linear coefficient of the velocity
alignment error reduction, vfrict is a velocity slack to allow for certain
amount of velocity difference independently of interagent distance,
rfrict0 is the distance of the stopping point for agent i relative to and in

front of agent j, pfrict and africt are the linear gain and the acceleration
parameters of the pairwise alignment, and vij = |vi − vj| is the amplitude
of the velocity difference between agents i and j. The total velocity alig-
nment term calculated for agent i with respect to the other agents—
similarly to the repulsion term—is

v
frict
i ¼ ∑

j≠i
v
frict
ij ð7Þ

where j is iterated for all other agents. Note that the superscript “frict”
comes from the concept that velocity alignment should be a strong local
velocity-damping term, analogous to viscous friction (24).

In addition, the locality condition of the velocity alignment in this
form is only implicitly included: The interaction range is upper
bounded by the distance where D(.) = 2vmax. On the other hand, this
solution allows for flexible scalability in the velocity domain. If the flock-
ing speed ismuchhigher, then it is obviously preferable to start reducing
velocity difference at amuch larger distance (as an analogy, compare the
deceleration behavior and braking distances of a toy drone against an
object and a large manned aircraft reaching its destination).

Interaction with walls and obstacles
Long-range attraction (7) is not explicitly part of our flocking system.
To keep agents together, we instead define a bounded flight arena for
the agents surrounded with soft repulsive virtual walls. One of the ideal
ways to define such repulsion is to define virtual “shill” agents near the
arena walls (52). These virtual agents are heading toward the arena with
a certain speed, vshill. The real agents close to the walls should relax their
velocity to the velocity of the shill agents. We do this here with the ve-
locity alignment term introduced before:

vshillmax
is ¼ Dðris � rshill0 ; ashill; pshillÞ ð8Þ

v
wall
is ¼ v

frict
is ðC � 1Þ

¼
ðvis � vshillmax

is Þ⋅
vi � vs

vis
if vis > vshillmax

is

0 otherwise

(

ð9Þ

Fig. 6. Visual explanation of the interaction terms. The blue line depicts repulsion
between agents as a function of interagent distance. The green line is the maximum
allowed velocity difference between agents as a function of interagent distance. The
velocity alignment term is proportional to the difference between this and the actual
velocity difference between agents (red dashed line). All exemplary parameter values
are in SI units.
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These equations are very similar to Eqs. 5 and 6, with two simplifica-
tions: We do not allow velocity slack for the wall and keep the error
proportional term (Cshill) at 1 to have the strongest shill alignment
possible. In the equations above, the index s refers to the shill agents
defined for all wall polygon edges separately; ris = |ri − rs|, where rs is
the position of the shill agent, located at the closest point of the given
edge of an arbitrarily shaped convex wall polygon relative to agent
i; vis = |vi − vs|, where vs is the velocity of the shill agent, pointing
perpendicularly to the wall polygon edge inward the arena, with
magnitude vshill.

Convex obstacles inside the arena can be avoided with the same
concept, but with shill agents moving outward from the obstacle, not
inward, as described above for the arena. Another difference is that,
whereas all wall polygon edges generate a separate shill agent inside
the arena, obstacles are represented with a single shill agent located at
the closest point of the obstacle polygon relative to the agent. Thus, for
every agent i and obstacle s, we can define a velocity component vobstacleis

similarly to Eq. 9, using the same shill parameters as for the wall.

Self-propelling term
Besides the agent-agent and agent-wall interactions introduced above, a
simple self-propelling term is added to the desired velocity of the agents.
For the ith agent, this term is parallel with the actual velocity vector, vi,
and has a certain constant magnitude, vflock.

Final equation of desired velocity
To calculate the desired velocity, we take the vectorial sum of all the
interaction terms introduced before:

~vi
d ¼

vi

jvij
vflock þ v

rep
i þ v

frict
i þ ∑

s
v
wall
is þ∑

s
v
obstacle
is ð10Þ

After this superposition, we also introduced a cutoff at vmax, keeping the
direction of the desired velocity but reducing its magnitude if it is over
the limit:

v
d
i ¼

~v
d
i

j~vdi j
⋅min j~vdi j; v

max
n o

ð11Þ

In the flocking model above, we have introduced a substantial num-
ber of parameters to give the necessary degree of freedom to the general
model. To help readers understand complex model behavior, we
provide an overview of the parameters with detailed descriptions
on meaning and usage (table S3).

Tuning the above model means that we choose an optimal set of
parameters for a fixed flocking speed vflock and maximal speed vmax

for a given arena with characteristic size Larena. The other parameters
(namely,r

rep
0 , prep,rfrict0 , Cfrict, vfrict, pfrict, africt,rshill0 , vshill, pshill, and ashill) have

to be optimized. Note that the parameter space is 11-dimensional;
therefore, manual tuning, global optimization methods, or parameter
sweeping would be generally too time-consuming.

General model of a flying robot
For testing any flocking algorithm in a realistic environment before
actual flights, we used a simulation framework, which was originally
developed for modeling special features of flying robots based on
second-order ordinary differential equations. In this subsection, we

present only the main features of this framework, without details. For
further details, see (40) or download the simulation framework from
https://github.com/csviragh/robotsim. The following general features
of flying robots can be taken into account with our framework:

(1) Communication delay. The position and velocity data received
by an agent from neighboring agents are old due to the necessary time
for data transmission and processing. In the simplest case, we modeled
this effect with a constant time delay tdel.

(2) Inertia. A flying robot cannot change its velocity immediately
because of its mass, aerodynamic effects, and specific features of its low-
level control algorithm. We assumed that the real velocity vi converges
to the desired velocity vdi exponentially with a characteristic time tCTRL.
A maximal acceleration of the units (amax) is also assumed.

(3) Refresh rate of the sensors. The agents cannot update their sensory
data continuously, onlywithanonzero timeperiod ts. For simplicity, in the
simulation framework, this parameter is constant anduniformfor all agents.

(4) Locality of the communication. If two agents are too far from
each other, they cannot exchange messages; that is, they do not see
each other. This is a common feature of any decentralized, radio-based
communication device. For modeling this effect, a maximum commu-
nication range rc is defined in our approach.

(5) Inaccuracy of the onboard sensors. We also had to model the
fluctuating behavior ofmeasured positions and velocities. This behavior
can be described as a stochastic process. For the ith agent, this process can
be chosen as a fictive Langevin equationwith aGaussian noise term and a
parabolic potential centered at ri. The noise can be characterized by its SDs

s.
(6) Outer noises. To take into account the environmental effects

such as wind compensation of the low-level control algorithm, we added
a delta-correlated Gaussian noise term with SD s to the acceleration
of the robots.

According to the list above, one can define a simulated realistic homo-
geneousmultirobot systemby giving certain values to all elements of the
set {tdel, tCTRL,amax, rc, ts,ss,s}.Wepresented the optimization through a
realistic example based on measurements performed with quadcopters
[for further details, see (24, 40)]; we chose the values listed in table S5.

Note that we prefer and tend to overestimate the errors compared
with their real mean value to simulate worst-case scenarios. This makes
model selection and optimization harder, but once a proper solution is
found, it will ensure a larger stability range in real experiments.

Order parameters
In this subsection, the quantitative requirements of stability and coherence
of a flock will be discussed. To this end, we used three measures:
coherence, collision avoidance, and obstacle avoidance. Coherence is
frequently described by the spatial velocity correlation, which is a
commonly accepted order parameter of collective motion. However,
on a large area, correlated subflock clusters without global coherence
can also be treated as a reasonably good solution for flocking. Therefore,
it is practical tomeasure the correlation function only within connected
clusters. To define clusters, we defined a communication graph that
contains the agents as nodes. An edge exists between two nodes if the
agents referred by the nodes are closer to each other than a given rcluster,
typically defined by the range of interactions. We used the value

rcluster ¼ max

�

r
rep
0 ; rfrict0 þ ~DðvflockafrictpfrictÞ

�

ð12Þ

where ~Dðv; a; pÞ is the braking distance r for which D(r, a, p) = v.
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Let N be the number of agents, Ni be the number of agents in the
cluster that contains the ith agent, and let Ji refer to the set of indices of
agents that are in the same cluster as the ith agent. On the basis of these
notations, the expression of cluster-dependent velocity correlation takes
the following form:

fcorr ¼
1

T

1

N
∫
T

0 ∑
N

i¼1

1

N i � 1
∑
j∈J i

vi⋅vj

jvijjvjj
dt ð13Þ

This value needs to be maximized. Besides high velocity correlation
inside clusters, one can characterize the flock with properties of the
communication graph itself. For example, the number of disconnected
points (Ndisc, referring to agents that cannot communicate with any
other agents) can bemeasured, or aminimum cluster size (Nmin) can be
defined as an error threshold for avoiding the situation where only very
small groups of agents are present in the system.Of course, theminimum
cluster size should depend on the total number of agents. For intuitive
reasons, we choseNmin >N/5 as an experimentally good lower threshold.

The next important requirement is collision-free motion. We
defined a characteristic distance rcoll = 3m, which refers to a dangerous
zone around agents. If two agents are closer to each other than rcoll, a
dangerous situation (collision) occurs. During algorithm tuning, the
number of collisions should beminimized, which is similar tominimiz-
ing the following parameter, the so-called collision risk:

fcoll ¼
1

T

1

NðN � 1Þ
∫
T

0 ∑
N

i¼1
∑
j≠i
QðrijðtÞ � rcollÞdt ð14Þ

where Q(.) is the Heaviside step function.
With the wall-agent interaction velocity term defined as Eq. 9, one

can restrict the motion of the flocking agents into a closed space, which
can be viewed as a method for maintaining the cohesiveness of the
group (this is a general criterion of flocking behavior) but also can be
treated as a general approach of obstacle avoidance, which is a common
task in collective robotics. Below, we define an order parameter for
calculating the possible collisions with thewalls of the arena or obstacles
(this parameter has to be minimized):

fwall ¼
∫
T

0∑
N

i¼1Qð~r isðtÞÞ~r isðtÞdt

∫T0∑
N

i¼1Qð~r isðtÞÞdt
ð15Þ

where~r is is the signed form of ris, taking a positive value outside, and a
negative value inside, the arena (and the opposite for obstacles),
assuring that the calculation of the average is performed only at the
points where the agents are outside of the arena (or inside obstacles).

With the parameters presented above, one can define a quantitative
criterion for safe flocking behavior for the simulated (or real) robots,
namely, fcorr → 1, fcoll → 0, fwall → 0, and Nmin > N/5.

Finally, we also require the flock tomovewith a certain flocking speed:

fvel :¼
1

T

1

N
∫
T

0 ∑
N

i¼1
jviðtÞjdt→vflock ð16Þ

Fitness function
Instead of parameter sweeping or any relatively slow global optimization
method, the search for the optimal values of the 11model parameters

(r
rep
0 , prep, rfrict0 , Cfrict, vfrict, pfrict, africt, rshill0 , vshill, pshill, and ashill) is

known to be much more efficient by using evolutionary optimization.
Within such a framework with the defined set of order parameters, one
can choose between single- or multiobjective evolutionary algorithms.
We chose using a single-valued fitness function that contains several
criteria about the order parameters presented in the previous sub-
section. According to these assumptions, a global fitness function can
be defined using three different types of transfer functions (the value of
these functions should be between 0 and 1.

The first type is a monotonically growing function, F1(f), which
converges to 1 with increasing f:

F1ðf; f0; dÞ ¼ 1� Sðf; f0; dÞ ð17Þ

where S(x, x0, d) is a sigmoid function with a smooth sinusoidal decay
from x0 − d to x0:

Sðx; x0; dÞ ¼

1 if x < x0 � d;
1

2

�

1� cos
p

d
ðx � x0Þ

� �

�

if x0 � d < x < x0

0 otherwise

8

>

>

<

>

>

:

ð18Þ

The second transfer function is derived from the probability density of
the normal distribution, with a single maximum at f = 0 and a smooth
decay around it:

F2ðf; sÞ ¼ exp �
f2

s2

� �

ð19Þ

Finally, the third transfer function is a sharp peak, which gives a harsh
constraint to the fitness around f = 0:

F3ðf; aÞ ¼
a2

ðfþ aÞ2
ð20Þ

A visual illustration of the shape of the three transfer functions is given
in Fig. 7. With these transfer functions, we can construct a single-
objective fitness function that takes into account all necessary re-
quirements of safe flocking behavior:

F ¼ Fspeed⋅Fcoll⋅Fdisc⋅Fcluster⋅Fwall⋅Fcorr ð21Þ

where

Fspeed ¼ F1ðf
vel; vflock; vtolÞ;

Fcoll ¼ F3ðf
coll; atolÞ;

Fdisc ¼ F3ðN
disc;N=5Þ;

Fcluster ¼ F3ðN
min;N=5;N=5Þ;

Fwall ¼ F2ðf
wall; rtolÞ;

Fcorr ¼ QðfcorrÞfcorr

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð22Þ

and vtol, atol, and rtol are tolerance values for speed, collision risk, and
collisions with walls and obstacles, respectively. These tolerance
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values can be chosen arbitrarily, depending on the absolute and re-
lative importance of the partial fitness components in the optimization.
We chosevtol ¼ 1:5

4 vflockm/s, atol= 0.00003, and rtol=2m,which gave a
balanced weighting to the overall fitness function. Note that the order
parameter fcorr is present in the fitness function only as a multiplicative
termwith a cutoff at 0 because its values are originally between −1 and 1.

With this method, we created a single-objective optimization
scenario, which can be solved using state-of-the-art evolutionary

algorithms such as the CMA-ES (38, 53). To perform this task,
we used an open-source Python library (54), with default settings
(see table S6). Parameters were initialized at mid-value, with an ini-
tial SD of one-sixth of their allowed range.

Drone setup
Our quadcopters use the Pixhawk autopilot (55) for controlling the
rotors with a slightly modified ArduPilot controller [see our open-
source code that runs on the Pixhawk system at (56)]. We also used
an onboard, Linux-based companion minicomputer (Odroid C1+)
through which we gave desired velocity commands at 20 Hz to the
autopilot. The desired velocity was calculated onboard using the
flocking model presented above as the control algorithm.

We used two independent, parallel wireless modules for interagent
communication in the 2.4-GHz range, both broadcasting the same
status packets. One is an XBee module broadcasting through its
own proprietary protocol at 1 Hz; the other one is a small universal
serial bus (USB) wifi dongle (Odroid Wifi Module 0) transmitting
user datagram protocol (UDP) packets through a local ad hoc wire-
less network at 10 Hz. The two modules are complementary in
bandwidth and range (XBee being small bandwidth and longer range
and Wifi being large bandwidth but shorter range). Packets con-
tained an absolute time stamp, geodetic position, and velocity princi-
pally measured by onboard GNSS receivers and other safety-related
status info about the actual state of the drone that was not relevant to
themain control algorithm.Relative position andvelocitywere calculated
by the differences of GNSS-based absolute measurements. The net
payload size of a status packet was 46 bytes.

Because of the properties of the wireless media and the broadcasting
transport protocols, packet delivery was unreliable; at a transmission

Fig. 8. Probability distribution of the communication outages as a function of distance. The database was gathered from a 5-min section of a general flight with
32 drones in a remote open-air setting. Each drone logged a 5-Hz sampling of the elapsed time since the reception of the last status packet from all other drones. This value
[we call it timeout for simplicity but it actually also contains a small (<0.2 s) processing delay] wasmatched later with the position of the drones recorded accurately by each
drone onboard. The distribution shows logs from all drones (1,349,490 data points in total), and it is normalized for each row (distance) separately. Color indicates timeout
probability in each bin for a given distance. Average timeouts with SD andwith the number of data points are indicated on the right for 50-m distance binning, whereas the
black line on the plot indicates average and SD of timeout for each distance bin of 10 m. Database is very sparse and thus less accurate above 150 m, but as a general
tendency, communication is most stable between close-by drones, whereas outages were more frequent and longer with increasing distance.

Fig. 7. Three different types of transfer functions with a codomain of [0,1]. A
global single-objective fitness value can be defined as the multiplication of sev-
eral partial fitness functions based on these transfer functions.
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frequency of 10 + 1 status packets sent per second per UAV, typically
only around 40 to 80% of them were received by close-by peers on
average in a general flight with 30 drones, where the reception rate was
dependent on many factors, such as the bandwidth usage of other
nearbywireless solutions or the details of the surrounding environment.
Because signal power decays quickly with space [ideally at 1/r2 in open
space (57)], reception from nearby agents (<20 m) was nearly perfect,
whereas large communication outages started to occur at larger
distances (>50 m). As an illustration of the actual communication
characteristics, a detailed log of the distance dependence of the recep-
tion quality from a 5-min sample flight with 32 drones can be seen in
Fig. 8. Note that the observed spatial decay fits naturally into our tar-
geted distributed communication approach for two reasons: (i) themost
critical information comes from the closest agents, which is always the
most reliable, and (ii) the communication network naturally becomes
scalable with flock size as the bandwidth overlap decays with distance.

There is a trivial reality gap in the communication aspects: Simula-
tions contain constant delay and communication range, whereas the
real setup was more stochastic and distance-dependent. Furthermore,
in the real setup, we compensated for communication outages to some
extent with linearly extrapolating neighboring drone positions using the
global time stamps and velocity. With this approach, our overall aim
was to have the safest real system possible and an underestimated com-
munication quality through themodel design phase to be prepared for a
worst-case communication scenario. As a result, with this setup, we did
not experience any mission-critical communication outage so far.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/3/20/eaat3536/DC1
Movie S1. Simulation of the old flocking model (algorithm A) with 100 agents.
Movie S2. Simulation of the new flocking model (algorithm B) after evolutionary optimization
with 100 agents.
Movie S3. Simulation of flocking for different speeds (4 to 32 m/s), flock sizes (30 to
1000 agents), and scenarios.
Movie S4. Flight log visualization of 30 drones at 4 m/s in a diagonal flight pattern.
Movie S5. Flight log visualization of 30 drones at 6 m/s with obstacles.
Movie S6. Flight log visualization of 30 drones at 8 m/s in a circular flight pattern.
Movie S7. Summarizing documentary with simulation, flight log visualization, and footage on
real flights.
Table S1. Optimized model parameter values and working ranges in simulation.
Table S2. Statistic evaluation of optimized simulations.
Table S3. Explanation of flocking model parameters.
Table S4. Model parameter values used on real drones.
Table S5. Environmental parameters of the realistic setup.
Table S6. Parameter settings of the evolutionary optimization.
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