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Abstract Various tasks in geodesy, geophysics, and related
geosciences require precise information on the impact of
mass distributions on gravity field-related quantities, such as
the gravitational potential and its partial derivatives. Using
forward modeling based on Newton’s integral, mass distri-
butions are generally decomposed into regular elementary
bodies. In classical approaches, prisms or point mass approx-
imations are mostly utilized. Considering the effect of the
sphericity of the Earth, alternative mass modeling methods
based on tesseroid bodies (spherical prisms) should be taken
into account, particularly in regional and global applications.
Expressions for the gravitational field of a point mass are
relatively simple when formulated in Cartesian coordinates.
In the case of integrating over a tesseroid volume bounded
by geocentric spherical coordinates, it will be shown that
it is also beneficial to represent the integral kernel in terms
of Cartesian coordinates. This considerably simplifies the
determination of the tesseroid’s potential derivatives in com-
parison with previously published methodologies that make
use of integral kernels expressed in spherical coordinates.
Based on this idea, optimized formulas for the gravitational
potential of a homogeneous tesseroid and its derivatives up to
second-order are elaborated in this paper. These new formu-
las do not suffer from the polar singularity of the spherical
coordinate system and can, therefore, be evaluated for any
position on the globe. Since integrals over tesseroid volumes
cannot be solved analytically, the numerical evaluation is
achieved by means of expanding the integral kernel in a Tay-
lor series with fourth-order error in the spatial coordinates of
the integration point. As the structure of the Cartesian inte-
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gral kernel is substantially simplified, Taylor coefficients can
be represented in a compact and computationally attractive
form. Thus, the use of the optimized tesseroid formulas par-
ticularly benefits from a significant decrease in computation
time by about 45% compared to previously used algorithms.
In order to show the computational efficiency and to validate
the mathematical derivations, the new tesseroid formulas
are applied to two realistic numerical experiments and are
compared to previously published tesseroid methods and the
conventional prism approach.

Keywords Forward modeling · Tesseroid · Gravitational
field · Newton’s integral

1 Introduction

Modeling the impact of mass distributions on the gravita-
tional potential and its derivatives is a central issue in geodesy
and geophysics. In physical geodesy, the most important ap-
plication is the determination of mass reductions for gravity
field observations, e.g. topographic reductions obtained from
digital terrain models. In the classical Stokes problem, topo-
graphic (and isostatic) reductions are used to get mass-free
boundary values at geoid level (Heiskanen and Moritz, 1967,
Chap. 3). Moreover, these mass reductions can also be inte-
grated into modern methods of gravity field modeling, such
as the Remove–Compute–Restore technique (Forsberg, 1984,
Chap. 4) or Residual Terrain modeling (Forsberg and Tsch-
erning, 1997; Hirt et al, 2010). In this context, the main
purpose is to smooth the signal content of gravity data in
order to improve the numerical stability for interpolation or
prediction tasks as well as field transformations. Such a pro-
cedure has been proposed for different kinds of quantities
like terrestrial, airborne or satellite-based gravity field obser-
vations (e.g. Novák et al, 2003; Makhloof and Ilk, 2008; Wild
and Heck, 2008; Janák et al, 2012; Grombein et al, 2013).
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Furthermore, there are lots of interdisciplinary applica-
tions in the field of solid earth research implicating the prob-
lem of mass modeling. For instance, this includes the con-
struction of a synthetic Earth model (Kuhn and Featherstone,
2005), investigations of structures and density anomalies in
the Earth’s crust (Braitenberg and Ebbing, 2009; Álvarez
et al, 2012), as well as detection of ice mass loss (Baur and
Sneeuw, 2011) or hydrological mass variations (Heck and
Seitz, 2008; Grombein et al, 2012).

All of the described applications can be considered in
the context of forward (or inverse) modeling which is based
on the evaluation of Newton’s integral for the gravitational
potential of a solid body Ω ⊂ R3 (Heiskanen and Moritz,
1967, p. 3):

V (x1,x2,x3) = G
∫∫∫

Ω

ρ(x′1,x
′
2,x
′
3)

`
dΩ , (1)

where G denotes Newton’s gravitational constant, ρ the lo-
cation-dependent density, and ` the Euclidean distance be-
tween the (attracted) computation point P(x1,x2,x3) ∈ R3

and the running integration (mass) point Q(x′1,x
′
2,x
′
3) ∈ Ω .

In principle, the volume integral in Eq. (1) can either be
evaluated in the space domain by direct integration methods
or in the frequency domain by spherical harmonic approaches
(cf. Kuhn and Seitz, 2005; Wild-Pfeiffer and Heck, 2007). In
both cases, information on the geometry of the mass distri-
bution as well as the density function ρ(x′1,x

′
2,x
′
3) inside the

masses is required. However, in most practical applications
the geometry and the density are only available in discrete
form, e.g. represented by a grid with a specific resolution.
To this end, numerical evaluations of Eq. (1) in the space
domain rely on a mass discretization, where the integration
domain Ω is decomposed into elementary geometrical bodies
Ωi ⊂Ω assuming a constant density value ρi. By applying
the superposition principle, the effect of the whole mass dis-
tribution can be approximated by the sum of the impact over
all individual mass bodies:

V (x1,x2,x3)≈∑
i

Gρi

∫∫∫
Ωi

1
`

dΩ , Ω =
⋃

i

Ωi. (2)

According to the requirements of the specific application, the
decomposition can be carried out using different types of
mass bodies.

In most of the classical approaches prismatic bodies with
rectangular form are utilized. Although the respective volume
integrals in Eq. (1) can be solved analytically in the case of
prisms (Mader, 1951; Nagy et al, 2000, 2002), the calcula-
tion is very time consuming due to several logarithmic and
arctan functions that have to be evaluated. A significant re-
duction of computation time can be achieved by applying fast
Fourier transform techniques (cf. Forsberg, 1985; Schwarz
et al, 1990; Klose and Ilk, 1993). The price to be paid is a

decreasing accuracy when the bounding surface is too rough.
An alternative is provided by approximate solutions of the
prism integrals, such as MacMillan’s formulas based on a
Taylor series expansion of the integral kernel (MacMillan,
1930), or the use of Gauss–Legendre cubature (e.g. Ku, 1977;
Von Frese et al, 1981).

Using prisms is especially beneficial for local applica-
tions, where height information is generally related to pla-
nar Cartesian coordinates referenced to a map projection.
For larger application areas the curvature of the Earth has
to be taken into account by a vertical shift of the prisms
as implemented in the widely used TC software (Forsberg,
1984, p. 111), or additional coordinate transformations (e.g.
Grombein et al, 2010, p. 30) which increases the computation
time even more. Furthermore, the use of prisms with curved
surfaces, e.g. topped by a bilinear surface (Smith et al, 2001;
Tsoulis et al, 2003), as well as general polyhedral bodies
(Petrović, 1996; Tsoulis, 2012; D’Urso, 2013) have been
proposed to improve the rough approximation of classical
rectangular prisms.

Particularly in regional and global applications, it is ad-
vantageous to apply mass bodies that are directly linked to
the curvature of the Earth. According to Anderson (1976,
p. 48ff), mass elements bounded by geographical grid lines
(B,L) and surfaces of constant ellipsoidal heights h are called
tesseroids. Usually, these ellipsoidal bodies are approximated
by corresponding spherical ones, which are bounded by geo-
centric spherical coordinates (r,ϕ,λ ). Even though spherical
tesseroids are considered in the following, the Earth’s ellip-
ticity can be taken into account by fixing these bodies on an
ellipsoidal reference surface with a latitude-dependent Earth
radius (cf. Heck and Seitz, 2007).

In contrast to prisms, Newton’s integral in Eq. (1) can-
not be solved analytically in the case of tesseroids (e.g.
Grüninger, 1990, p. 76). Instead of this, approximate so-
lutions have to be applied. Analogous to the idea of MacMil-
lan’s formulas for the prism, Heck and Seitz (2007) derived
a third-order approximation which applies a Taylor series ex-
pansion of the integral kernels. While Heck and Seitz (2007)
originally derived formulas for the tesseroid potential and the
first radial derivative, Wild-Pfeiffer (2007, 2008) extended
the approach to all components of first- and second-order
derivatives. Furthermore, also Gauss–Legendre cubature can
be applied as proposed by Asgharzadeh et al (2007) and Wild-
Pfeiffer (2007, 2008). For global computations, another alter-
native consists of analytically solving the one-dimensional in-
tegral with respect to the geocentric distance r and calculating
the remaining two-dimensional surface integral numerically
(cf. Martinec, 1998; Heck and Seitz, 2007).

Detailed comparisons of using different mass discretiza-
tions and evaluation techniques in forward modeling are
provided by Heck and Seitz (2007), Wild-Pfeiffer (2008),
and Grombein et al (2010, Chap. 7). In terms of precision
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and computation time, these investigations have verified the
numerical efficiency when using tesseroids instead of conven-
tional prisms. However, practical computations often rely on
a combination of different methods by subdividing the total
integration domain into a near and a far zone with respect to
the distance from the computation point. Since the impact of
distant masses on the gravitational potential diminishes with
increasing distance, the calculation procedure for remote bod-
ies in the far zone can be substantially simplified. Assuming
local mass conservation, suitable approximations are based
on mass layers, mass lines, or point mass approximations
(e.g. Grüninger, 1990; Tsoulis, 1999; Wild-Pfeiffer, 2008).

As forward and inverse modeling is generally a time
consuming task, this paper focuses on the development of
optimized formulas for the gravitational field of a homoge-
neous tesseroid. In contrast to previously published tesseroid
formulas that rely on the use of spherical integral kernels, al-
ternative expressions based on the Cartesian integral kernels
are derived. Using these new formulas allows an efficient
numerical evaluation with a significantly reduced runtime.

The paper is organized as follows: in Sect. 2, theoretical
basics are presented that are needed further on in this paper.
Section 3 focuses on the mathematical elaboration of the
optimized tesseroid formulas based on Cartesian integral ker-
nels, whereas in Sect. 4 the consistency with formulas based
on spherical integral kernels is shown. Numerical evaluation
rules for an efficient implementation of the new tesseroid
formulas are presented in Sect. 5. Furthermore, remarks on
the validity and accuracy of the derived formulas, as well as
limitations for the very near zone are indicated. The benefit
of the optimized tesseroid formulas is shown by two numer-
ical examples presented in Sect. 6. Finally, conclusions as
well as an outlook to ongoing and further research work are
provided in Sect. 7.

2 Theoretical preliminaries

In Sect. 2.1 the tesseroid potential is introduced, while Sect.
2.2 focuses on the definition of the partial derivatives as used
in this paper.

2.1 Gravitational potential of a tesseroid

Tesseroids are bounded by three pairs of surfaces: A pair
of concentric spheres (r1 = const., r2 = const.), a pair of
meridional planes (λ1 = const., λ2 = const.), and a pair of
coaxial circular cones defined by the parallels ϕ1 = const.,
ϕ2 = const. (see Fig. 1). On the basis of Newton’s integral
in Eq. (1), the gravitational potential V ∗of a tesseroid with a
constant mass density ρ can be specified by introducing the
integration domain Ω ∗ := [r1,r2]× [ϕ1,ϕ2]× [λ1,λ2] ⊂ R3

Fig. 1 Geometry of a spherical tesseroid (Heck and Seitz, 2007); the
spherical coordinates are referred to the geocentric Earth-fixed equato-
rial reference system defined by the base vectors e1, e2, e3

and the spherical volume element dΩ = r′2 cosϕ ′dr′dϕ ′dλ ′:

V ∗(r,ϕ,λ ) = Gρ

∫∫∫
Ω∗

1
`

dΩ

= Gρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 cosϕ ′

`
dr′dϕ

′dλ
′, (3)

where

`= `(P,Q) =
√

r2 + r′2−2rr′ cosψ (4)

denotes the Euclidean distance function between the com-
putation point P(r,ϕ,λ ) ∈ R3 and the running integration
point Q(r′,ϕ ′,λ ′) ∈Ω ∗. The spherical distance ψ between
the position vectors of P and Q is defined by

cosψ(P,Q) := sinϕ sinϕ
′+ cosϕ cosϕ

′ cos
(
λ
′−λ

)
. (5)

As the integration with respect to λ ′ and ϕ ′ comprises ellip-
tical integrals (cf. Bronstein et al, 2008, p. 430ff), Eq. (3)
cannot be solved in closed analytical form. In order to cal-
culate the tesseroid potential, methods of numerical analysis
based on the evaluation of the integral kernel

K(P,Q) :=
r′2 cosϕ ′√

r2 + r′2−2rr′ cosψ
(6)

are applied, which will be discussed in Sect. 5.
As useful for most practical applications, the computa-

tion point P is restricted to be situated outside the tesseroid
domain, i.e. P /∈ Ω ∗. It will be shown later on in Sect. 5.3
that this restriction should be attenuated in some cases by
P /∈Ω ∗\∂Ω ∗, where ∂Ω ∗ denotes the boundary surface of
the tesseroid.
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2.2 Definition of partial derivatives

Beside the gravitational potential of a tesseroid the first- and
second-order derivatives are considered in this paper. These
derivatives are usually defined in a local topocentric Cartesian
coordinate system (f1, f2, f3) with respect to the computation
point P. The f1-axis of the left-handed system as used in
the following points north, the f2-axis points east, and the
f3-axis points upwards in the geocentric radial direction. The
position vector of an arbitrary point in this local Cartesian
coordinate system is denoted as

x = x1 · f1 + x2 · f2 + x3 · f3 = xi · fi, (7)

where fi are the unit vectors in the direction of the coordinate
axes as described above. In Eq. (7) and further on the Einstein
summation convention is used.

The first-order partial derivatives of the gravitational po-
tential V of any massive body compose the vector field

a = gradV = ∇V = ai · fi, (8)

where

ai :=
∂V (x1,x2,x3)

∂xi
(9)

are the physical components of the gravitational acceleration
with respect to the basis fi.

The second-order derivatives, known as gravitational gra-
dients, compose a rank two tensor field that is arranged in
the so-called Marussi tensor

M = (∇⊗∇)V = Mi j · (fi⊗ f j) , (10)

where the operator ⊗ denotes the tensor product and

Mi j :=
∂ 2V (x1,x2,x3)

∂xi ∂x j
(11)

are the physical components of this tensor with respect to
the basis fi. Since the gravitational field is irrotational, i.e.
∇ × (∇V ) = 0, and the potential V is a harmonic function
outside the masses, the Marussi tensor M is symmetric and
trace-free due to the Laplace equation, i.e.

∆V =
3

∑
k=1

Mkk = 0. (12)

3 Optimized tesseroid formulas based on Cartesian
integral kernels

As it can be considered from Fig. 2, the Cartesian coordinate
differences between the computation point P and the running
integration point Q can be expressed by

∆x1 = r′ sinψ cosα,

∆x2 = r′ sinψ sinα,

∆x3 = r′ cosψ− r, (13)

Fig. 2 Visualization of the coordinate differences ∆x1, ∆x2, and ∆x3
between the computation point P and the running integration point Q.
The geocentric Cartesian and related spherical coordinate systems are
indicated by the black axes ei, the topocentric local Cartesian coordinate
system is represented by the red axes fi

where α denotes the azimuth angle at P in direction to Q.
Note that (∆x1,∆x2,∆x3) in Eq. (13) can also be interpreted
as the Cartesian coordinates of Q with respect to the topocen-
tric system at the computation point P.

Inserting well-known relations of spherical trigonometry
(cf. Heiskanen and Moritz, 1967, p. 113)

sinψ cosα = cosϕ sinϕ
′− sinϕ cosϕ

′ cosδλ ,

sinψ sinα = cosϕ
′ sinδλ (14)

into Eq. (13) results in

∆x1 = r′
(
cosϕ sinϕ

′− sinϕ cosϕ
′ cosδλ

)
,

∆x2 = r′ cosϕ
′ sinδλ ,

∆x3 = r′ cosψ− r, (15)

where δλ := λ ′−λ .
By making use of the derived functional relations in

Eq. (15) the Euclidean distance between P and Q can be
expressed in the local Cartesian system by

`(P,Q) =

√
∆x1

2 +∆x2
2 +∆x3

2 =
√

∆xi∆xi. (16)

Inserting Eq. (16) into Eq. (3) results in

V ∗(r,ϕ,λ ) = Gρ

∫∫∫
Ω∗

1√
∆x1

2 +∆x2
2 +∆x3

2
dΩ (17)

for the tesseroid potential that is now based on an integral
kernel in Cartesian coordinates.
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Since the integral kernel in Eq. (17) is an analytical func-
tion if P /∈ Ω ∗, differentiation and integration can be inter-
changed according to the Leibniz integral rule (e.g. Kellogg,
1929, p. 152). For example, this implies

∂V ∗

∂x1
= Gρ

∂

∂x1

∫∫∫
Ω∗

1
`

dΩ = Gρ

∫∫∫
Ω∗

∂

∂x1

1
`

dΩ . (18)

Analogous to expressions for the prism or the point mass
approximation (e.g. Heck and Seitz, 2007; Wild-Pfeiffer,
2008), the partial derivatives of the Cartesian integral kernel
result in

∂

∂xi

(
1
`

)
=

∆xi

`3 , (19)

∂ 2

∂xi∂x j

(
1
`

)
=

(
3∆xi∆x j

`5 −
δi j

`3

)
, (20)

where i, j ∈ {1,2,3} and δi j denotes the Kronecker delta,
i.e. δi j = 1 if i = j and δi j = 0 otherwise.

The gravitational potential, the gravitational acceleration,
and the Marussi tensor caused by a tesseroid with a homo-
geneous mass density ρ can therefore be described by using
the general formula

V ∗(r,ϕ,λ )

a∗i (r,ϕ,λ )

M∗i j(r,ϕ,λ )

= Gρ

∫∫∫
Ω∗

1
`3


∆xi∆xi

∆xi

3∆xi∆x j
`2 −δi j

dΩ , (21)

where ∆xi∆xi = `2.
Although the integral kernels in Eq. (21) are expressed in

Cartesian coordinates, it is worthwhile to mention that the in-
tegration domain is still bounded by spherical coordinates ex-
tending over the domain of a tesseroid, where Ω ∗ = [r1,r2]×
[ϕ1,ϕ2]× [λ1,λ2] and dΩ = r′2 cosϕ ′dr′dϕ ′dλ ′. Thus, also
these formulas comprise elliptic integrals that have to be
evaluated numerically (see Sect. 5).

4 Comparison to tesseroid formulas based on spherical
integral kernels

Considering previously published tesseroid methods based
on integral kernels expressed in spherical coordinates, the
consistency with the elaborated optimized formulas is demon-
strated in this section. Moreover, this comparison outlines
some numerical advantages of the new formulas.

Following Wild-Pfeiffer (2007, 2008), the basic idea of
tesseroid formulas based on spherical integral kernels is a
conversion of spherical to Cartesian derivatives. To this end,
the first- and second-order spherical derivatives of the tess-
eroid potential are determined and converted into the moving

triad of the local Cartesian coordinate system by making use
of the functional relationships (e.g. Tscherning, 1976)

a∗1 =
1
r

∂V ∗

∂ϕ
, a∗2 =

1
r cosϕ

∂V ∗

∂λ
, a∗3 =

∂V ∗

∂ r
, (22)

and

M∗11 =
1
r2

(
∂ 2V ∗

∂ϕ2 + r
∂V ∗

∂ r

)
,

M∗22 =
1

r2 cos2 ϕ

(
∂ 2V ∗

∂λ 2 − cosϕ sinϕ
∂V ∗

∂ϕ

+r cos2
ϕ

∂V ∗

∂ r

)
,

M∗33 =
∂ 2V ∗

∂ r2 ,

M∗12 =
1

r2 cosϕ

(
∂ 2V ∗

∂ϕ ∂λ
+ tanϕ

∂V ∗

∂λ

)
= M∗21,

M∗13 =
1
r

(
∂ 2V ∗

∂ϕ ∂ r
− 1

r
∂V ∗

∂ϕ

)
= M∗31,

M∗23 =
1

r cosϕ

(
∂ 2V ∗

∂λ ∂ r
− 1

r
∂V ∗

∂λ

)
= M∗32. (23)

In this case the elements a∗i and M∗i j can be considered as
the physical coordinates of the tensors of first- and second-
orders (covariant derivatives) represented in the topocentric
reference frame with the orthonormal base vectors

fi =
1
|gi|
·gi, (24)

where

g1 :=
∂x
∂ϕ

, g2 :=
∂x
∂λ

, g3 :=
∂x
∂ r

, (25)

are the unnormalized vectors pointing in the direction of the
increasing spherical coordinate lines (r,ϕ,λ ).

By applying the Leibniz integral rule to the expression
for the tesseroid potential in Eq. (3), the required first- and
second-order spherical derivatives result in

∂V ∗

∂ϕ
= Gρ

∫∫∫
Ω∗

rr′Cϕ

`3 dΩ ,

∂V ∗

∂λ
= Gρ

∫∫∫
Ω∗

rr′Cλ

`3 dΩ ,

∂V ∗

∂ r
= Gρ

∫∫∫
Ω∗

(r′ cosψ− r)
`3 dΩ , (26)
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and

∂ 2V ∗

∂ϕ2 = Gρ

∫∫∫
Ω∗

rr′

`3

(
3rr′C2

ϕ

`2 − cosψ

)
dΩ ,

∂ 2V ∗

∂λ 2 = Gρ

∫∫∫
Ω∗

rr′

`3

(
3rr′C2

λ

`2 − cosϕ
′ cosϕ cosδλ

)
dΩ ,

∂ 2V ∗

∂ r2 = Gρ

∫∫∫
Ω∗

1
`3

[
3(r′ cosψ− r)2

`2 −1

]
dΩ ,

∂ 2V ∗

∂ϕ∂λ
= Gρ

∫∫∫
Ω∗

rr′ cosϕ ′ sinδλ

`3

·
(

3rr′Cϕ cosϕ

`2 − sinϕ

)
dΩ ,

∂ 2V ∗

∂ϕ∂ r
= Gρ

∫∫∫
Ω∗

r′Cϕ

`3

[
3r (r′ cosψ− r)

`2 +1
]

dΩ ,

∂ 2V ∗

∂λ∂ r
= Gρ

∫∫∫
Ω∗

r′Cλ

`3

[
3r (r′ cosψ− r)

`2 +1
]

dΩ , (27)

where

Cϕ :=
∂ cosψ

∂ϕ
= cosϕ sinϕ

′− sinϕ cosϕ
′ cosδλ ,

Cλ :=
∂ cosψ

∂λ
= cosϕ cosϕ

′ sinδλ . (28)

As the volume integrals in Eqs. (26) and (27) cannot be
solved analytically, Wild-Pfeiffer (2007, 2008) suggested a
formalism based on a two-step sequence:

1. Numerical evaluation of the spherical derivatives in Eqs.
(26) and (27),

2. Conversion of the resulting numerical values into the
local frame by applying the functional relations according
to Eqs. (22) and (23), respectively.

Due to the explicit evaluation of Eqs. (22) and (23), this
procedure suffers from the polar singularity which is in-
duced by the spherical coordinate system. As a consequence,
this approach causes indeterminate values for the first- and
second-order derivatives in Eqs. (9) and (11) in the case of
the computation point P being located on the polar axis, i.e.
ϕ =±90◦.

In contrast, the elaborated optimized tesseroid formu-
las in Eq. (21) provide direct expressions for the potential
derivatives in the local Cartesian system that avoid an ad-
ditional transformation and can therefore be used for any
position on the globe. However, the mathematical consis-
tency of both tesseroid approaches can be shown. To this
end, the analytical expressions for the spherical derivatives
in Eqs. (26) and (27) are inserted into the functional relation-
ships in Eqs. (22) and (23). As the volume integrals extend
over the same domain Ω ∗ they remain purely additive and

can be combined. After elementary operations, elaborated
exemplarily for the M∗23 component in Appendix A1, the
components of the first- and second-order derivatives of the
tesseroid potential can be expressed by

a∗1 = Gρ

∫∫∫
Ω∗

r′Cϕ

`3 dΩ ,

a∗2 = Gρ

∫∫∫
Ω∗

r′ cosϕ ′ sinδλ

`3 dΩ ,

a∗3 = Gρ

∫∫∫
Ω∗

r′ cosψ− r
`3 dΩ , (29)

and

M∗11 = Gρ

∫∫∫
Ω∗

(
3r′2C2

ϕ

`5 − 1
`3

)
dΩ ,

M∗22 = Gρ

∫∫∫
Ω∗

[
3(r′ cosϕ ′ sinδλ )2

`5 − 1
`3

]
dΩ ,

M∗33 = Gρ

∫∫∫
Ω∗

[
3(r′ cosψ− r)2

`5 − 1
`3

]
dΩ ,

M∗12 = Gρ

∫∫∫
Ω∗

3r′2Cϕ cosϕ ′ sinδλ

`5 dΩ ,

M∗13 = Gρ

∫∫∫
Ω∗

3r′Cϕ (r′ cosψ− r)
`5 dΩ ,

M∗23 = Gρ

∫∫∫
Ω∗

3r′ cosϕ ′ sinδλ (r′ cosψ− r)
`5 dΩ . (30)

By applying the substitutions ∆x1,∆x2 and ∆x3 in Eq. (13)
it becomes obvious that Eqs. (29) and (30) are consistent
with the optimized tesseroid formulas in Eq. (21).

5 Aspects of numerical evaluation

While there are quite few approaches for the numerical eval-
uation of elliptic volume integrals, as aforementioned in
Sect. 1, this paper applies a Taylor series approach as pre-
sented in Heck and Seitz (2007). In this approach the in-
tegration is achieved by means of expanding the integral
kernel in a Taylor series with fourth-order error in the spatial
coordinates of the integration point.

In Sect. 5.1 the main idea of this method is briefly recapit-
ulated and then adapted to the optimized tesseroid formulas
in Sect. 5.2. Remarks concerning the validity and the accu-
racy of the evaluation rules as well as limitations are indicated
in Sect. 5.3.
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5.1 Idea of the Taylor series approach

Following Heck and Seitz (2007), the Taylor expansion of the
spherical integral kernel in Eq. (6) at the point Q0 (r0,ϕ0,λ0)

can be expressed by

K(P,Q) = ∑
i, j,k

Ki jk(P,Q0)

(i+ j+ k)!
(
r′− r0

)i (
ϕ
′−ϕ0

) j (
λ
′−λ0

)k
,

(31)

where

Ki jk(P,Q0) :=
∂ i+ j+kK(P,Q)

∂ r′i∂ϕ ′ j∂λ ′k

∣∣∣∣∣ r′ = r0
ϕ ′ = ϕ0
λ ′ = λ0

(32)

are the partial derivatives of the integral kernel K evaluated at
Q0. When integrating the Taylor series in Eq. (31), maximum
efficiency is achieved by fixing the Taylor point Q0 at a point
of symmetry, e.g. at the tesseroid’s geometrical center

r0 =
r1 + r2

2
, ϕ0 =

ϕ1 +ϕ2

2
, λ0 =

λ1 +λ2

2
. (33)

By inserting Eq. (31) into Eq. (3), the integration with
respect to each coordinate (r′,ϕ ′,λ ′) can be performed by
a simple substitution (see Heck and Seitz, 2007), e.g. in the
case of r′ follows

r2∫
r1

(
r′− r0

)i dr′ =

+∆r/2∫
−∆r/2

(r∗)i dr∗

=
1− (−1)i+1

(i+1)2i+1 (∆r)i+1

=

{
0 if i odd
(∆r)i+1 /

[
(i+1)2i

]
if i even,

(34)

where

∆r = r2− r1, ∆ϕ = ϕ2−ϕ1, ∆λ = λ2−λ1 (35)

denote the dimensions of the tesseroid. Consequently, terms
with any odd-order i, j, or k in the Taylor series in Eq. (31)
cancel out after a subsequent integration and only terms with
even-order remain.

Thus, the gravitational potential of a homogeneous tess-
eroid can be approximated by

V ∗(r,ϕ,λ ) = Gρ∆r∆ϕ∆λ

[
K000 +

1
24

(
K200∆r2

+K020∆ϕ
2 +K002∆λ

2
)
+O(∆ 4/`5

0)
]
, (36)

where the Landau symbol O(∆ 4/`5
0) indicates that the omit-

ted Taylor residual has a magnitude of fourth-order, scaled
with a negative power of `0 which is the Euclidean distance

between P and Q0. In this case ∆ should be considered sym-
bolically, e.g. in metrical units it would be ∆r = r2 − r1,
∆ϕ ∼ r0(ϕ2 − ϕ1), and ∆λ ∼ r0 cosϕ0(λ2 − λ1). Further-
more, it is worthwhile mentioning that `0 > 0 is strictly finite
if an exterior computation point P is considered, as presumed
in Sect. 2.1, i.e. P /∈ Ω ∗ implies `0 > ∆/2.

The zero-order term in Eq. (36) corresponds to the poten-
tial of a point mass that concentrates the mass

m0 = ρr2
0 cosϕ0∆r∆ϕ∆λ (37)

at the Taylor point Q0. This is consistent with the zero-order
approximation of the total tesseroid mass (e.g. Grüninger,
1990, p. 79):

m∗ = ρ

λ2∫
λ1

ϕ2∫
ϕ1

r2∫
r1

r′2 cosϕ
′dr′dϕ

′dλ
′

=
1
3

ρ
(
r3

2− r3
1
)
(sinϕ2− sinϕ1)(λ2−λ1)≈ m0. (38)

For the evaluation of Eq. (36) the zero- and second-order
coefficients according to Eq. (32) are explicitly provided in
Heck and Seitz (2007). Analogously, Wild-Pfeiffer (2008)
presented corresponding zero- and second-order coefficients
for the numerical evaluation of the first- and second-order
spherical derivatives of the tesseroid potential. They can be
utilized in combination with the relationships in Eqs. (22) and
(23) in order to calculate the components of the gravitational
acceleration and the Marussi tensor.

5.2 Adaption of the Taylor series approach

Analogously to the procedure in Eq. (36), a numerical solu-
tion of the optimized tesseroid formulas in Eq. (21) can be
supplied by subsequently integrating Taylor series expansions
of the Cartesian integral kernels at the tesseroid’s geometrical
center point Q0 (r0,ϕ0,λ0). To supply a more general nota-
tion that allows an efficient computational implementation,
the substitutions(
ξ
′
1,ξ
′
2,ξ
′
3
)

:=
(
r′,ϕ ′,λ ′

)
(39)

for the coordinates of the integration point Q and

(∆ξ1,∆ξ2,∆ξ3) := (∆r,∆ϕ,∆λ ) (40)

for the dimensions of the tesseroid are used in the following.
Furthermore, based on Eq. (39) the differential operators

∂k :=
∂

∂ξ ′k
, ∂

2
k :=

∂ 2

∂ξ ′k
2 , k ∈ {1,2,3}, (41)

can be defined.



8 T. Grombein et al.

A suitable numerical solution of Eq. (21) with a fourth-
order error in the spatial coordinates of the integration point
is then provided by

V ∗(r,ϕ,λ )

a∗i (r,ϕ,λ )

M∗i j(r,ϕ,λ )

= ω


K(P,Q)

Li(P,Q)

Ni j(P,Q)


∣∣∣∣∣∣∣∣∣ r′ = r0
ϕ ′ = ϕ0
λ ′ = λ0

+
ω

24

3

∑
k=1

∆ξk
2


∂ 2

k K(P,Q)

∂ 2
k Li(P,Q)

∂ 2
k Ni j(P,Q)


∣∣∣∣∣∣∣∣∣ r′ = r0
ϕ ′ = ϕ0
λ ′ = λ0

+


O(∆ 4/`5

0)

O(∆ 4/`6
0)

O(∆ 4/`7
0)

 , (42)

where

ω := Gρ

3

∏
k=1

∆ξk. (43)

In Eq. (42) the Cartesian integral kernels of Eq. (21) are
denoted by

K(P,Q)

Li(P,Q)

Ni j(P,Q)

 :=
1
`3


∆xi∆xi

∆xi

3∆xi∆x j
`2 −δi j

τ, (44)

in which

τ := r′2 cosϕ
′ (45)

factors the spherical volume element dΩ . The Cartesian co-
ordinate differences ∆xi and the Euclidean distance ` can be
calculated using the previous Eqs. (13) and (16), respectively.

The required second-order derivatives in Eq. (44) can be
represented in the general form

∂ 2
k K

∂ 2
k Li

∂ 2
k Ni j

=
1
`3

∂
2
k (τ)


α

αi

αi j

+∂k(τ)


βk

βik

βi jk

+ τ


γk

γik

γi jk


 ,

(46)

where

α := ∆xi∆xi, αi := ∆xi, αi j :=
3∆xi∆x j

`2 −δi j, (47)

βk := 2∂k(`),

βik := 2
[

∂k(∆xi)+
3∆xi∂k(`)

`2

]
,

βi jk :=
6
`2

[
∆xi∂k (∆x j)+∆x j∂k (∆xi)

+
5∆xi∆x j∂k(`)

`2 −δi j∂k(`)

]
, (48)

γk := ∂
2
k (`)+

3(∂k(`))
2

`2 ,

γik := ∂
2
k (∆xi)+

3
`2

{
2∂k(∆xi)∂k(`)

+∆xi

[
∂

2
k (`)+

5(∂k(`))
2

`2

]}
,

γi jk :=
3
`2

{
∆xi∂

2
k (∆x j)+∆x j∂

2
k (∆xi)+2∂k (∆xi)∂k (∆x j)

+
5
`2

[
2∂k(`)

(
∆xi∂k (∆x j)+∂k (∆xi)∆x j

)

+∆xi∆x j

(
∂

2
k (`)+

7(∂k(`))
2

`2

)]

−δi j

[
∂

2
k (`)+

5(∂k(`))
2

`2

]}
, (49)

and

` :=− 1
2
`2 =−1

2
∆xi∆xi. (50)

Particularly, for ξ ′1 = r′ holds:

∂1(τ) = 2r′ cosϕ
′,

∂
2
1 (τ) = 2cosϕ

′,

∂1(`) = r cosψ− r′,

∂
2
1 (`) =−1,

∂1(∆x1) =Cϕ ,

∂1(∆x2) = cosϕ
′ sinδλ ,

∂1(∆x3) = cosψ,

∂
2
1 (∆x1) = 0,

∂
2
1 (∆x2) = 0,

∂
2
1 (∆x3) = 0. (51)
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Particularly, for ξ ′2 = ϕ ′ holds:

∂2(τ) =−r′2 sinϕ
′,

∂
2
2 (τ) =−r′2 cosϕ

′,

∂2(`) =r∂2(∆x3),

∂
2
2 (`) =r∂

2
2 (∆x3),

∂2(∆x1) =r′
[
cosϕ cosϕ

′+ sinϕ sinϕ
′ cosδλ

]
,

∂2(∆x2) =− r′ sinϕ
′ sinδλ ,

∂2(∆x3) =r′
[
sinϕ cosϕ

′− cosϕ sinϕ
′ cosδλ

]
,

∂
2
2 (∆x1) =−∆x1,

∂
2
2 (∆x2) =−∆x2,

∂
2
2 (∆x3) =− r′ cosψ. (52)

Particularly, for ξ ′3 = λ ′ holds:

∂3(τ) = 0,

∂
2
3 (τ) = 0,

∂3(`) =r∂3(∆x3),

∂
2
3 (`) =r∂

2
3 (∆x3),

∂3(∆x1) =∆x2 sinϕ,

∂3(∆x2) =r′ cosϕ
′ cosδλ ,

∂3(∆x3) =−∆x2 cosϕ,

∂
2
3 (∆x1) =∂3(∆x2)sinϕ,

∂
2
3 (∆x2) =−∆x2,

∂
2
3 (∆x3) =−∂3(∆x2)cosϕ. (53)

Note that according to Eq. (42), the analytical expres-
sions of the Cartesian integral kernels in Eq. (44) and its
second-order derivatives in Eq. (46) have to be evaluated at
the Taylor point Q0, i.e. the primed coordinates of the run-
ning integration point (r′,ϕ ′,λ ′) have to be replaced by the
coordinates of the Taylor point (r0,ϕ0,λ0).

5.3 Remarks on the validity and accuracy

From potential theory it is known that the gravitational poten-
tial of a voluminous mass and its first-order derivatives are
defined and continuous in the whole R3, even if the compu-
tation point P is located at the boundary surface or inside a
field generating mass distribution of continuous density (e.g.
Kellogg, 1929, p. 151). The singularity of Newton’s integral
when the computation point P coincides with the integra-
tion point Q, i.e. `= 0, is weak and therefore removable. If
the density function satisfies a Hölder condition, the second-
order derivatives are also defined for interior computation
points P, but generally they are not defined for points on
the boundary surface as it represents an interface of density
discontinuity (cf. Kellogg, 1929, p. 156).

In the context of a homogeneous tesseroid this implies
that values for V ∗, a∗i , and M∗i j in Eq. (21) are well-defined
for interior computation points P, even though the presented
Taylor series approach in Eq. (42) is limited to exterior points
due to the required condition P /∈ Ω ∗. Considering the
limiting behavior of Eq. (21) the restriction can be attenuated
to P /∈Ω ∗\∂Ω ∗ in the case of the gravitational potential and
the elements of the gravitational acceleration. Thus, V ∗ and
a∗i can also be evaluated in the case of a computation point P
placed on the tesseroid surface, which is particularly useful
for terrestrial applications.

Instead of an analytical error analysis of Eq. (42) the
approximation error of the method is estimated by a real-
istic numerical experiment in the following section. Gener-
ally, as mentioned in Heck and Seitz (2007) and Grombein
et al (2010, p. 34), the accuracy of the presented approach is
strongly sensitive to the geometrical shape of the tesseroid,
particularly for small distances between the computation
point P and the Taylor point Q0. Beside the tesseroid dimen-
sions ∆r, ∆ϕ , and ∆λ that can imply for example a flat or
columnar shape, the position of P relative to the tesseroid
also impacts the computation. Due to the meridional conver-
gence of the spherical coordinate system, the geometrical
shape of a tesseroid changes with respect to the latitude of its
position. For instance, the ground surface of a tesseroid lo-
cated near the equator is almost quadratic whereas its surface
degenerates to a triangular shape in the polar region.

As noted in Heck and Seitz (2007), special care should be
taken when applying the Taylor series approach for tesseroids
in the near zone around the computation point P which is
particularly the case for terrestrial applications. Since Heck
and Seitz (2007) found unacceptably large errors, they rec-
ommended to replace tesseroids by equivalent prisms in the
direct vicinity of the computation point. Another possibility
that will be shown in the following section is the horizon-
tal respectively vertical subdivision of the tesseroids in the
near zone. Although numerical investigations on these two
possibilities provide satisfactory results, the origin of the
occurring numerical problems of tesseroids in the very near
zone is the subject of ongoing investigations.

6 Numerical investigations

In order to validate the derived evaluation rules and to show
the computational efficiency, two realistic numerical exper-
iments are presented in this section. The elaborated opti-
mized tesseroid formulas based on Cartesian integral kernels
(cp. Sect. 3) are therefore compared to the previously pub-
lished tesseroid approach based on spherical integral kernels
(cp. Sect. 4), and conventional rectangular prism formulas
(Nagy et al, 2000, 2002). In the following, these approaches
are denoted as tesseroid (Cartesian), tesseroid (spherical),
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and prism, respectively. The software implementation is per-
formed in the programming language C++. The source code
may be made available upon request.

Sect. 6.1 focuses on the required computation time, while
in Sect. 6.2 the approximation error induced by the different
methods is analyzed.

6.1 Comparison of the computation time

In a first experiment, the required computation time of for-
ward modeling based on the different approaches is com-
pared. As a realistic application, topographic reductions are
estimated by utilizing the digital terrain model DTM2006.0
(Pavlis et al, 2007) that provides a 5′ × 5′ global grid of
heights hDTM

i . The topographic information of this model
can be represented by 9,931,200 individual tesseroid bodies
Ω ∗i with the constant horizontal dimensions ∆hor = ∆ϕ =

∆λ = 5′ and the variable vertical dimensions ∆ri = hDTM
i .

According to Eq. (2) the total topographic effect is ap-
proximated by the sum over the impact of all individual
tesseroids, i.e.

V

ai

Mi j

≈


∑V ∗

∑a∗i

∑M∗i j

 . (54)

Note that in the case of the prism formulas the tesseroid
dimensions are converted to equivalent rectangular prisms
under the assumption of the same mass density (cf. Heck and
Seitz, 2007; Grombein et al, 2010, p. 29ff). Furthermore, as
mentioned in Sect. 1, an additional coordinate transformation
has to be performed in the case of prisms in order to take the
curvature of the Earth into account (cf. Grombein et al, 2010,
p. 30).

In Table 1 the required relative computation time for cal-
culating the components V , ai, and Mi j is given with respect
to the applied method. A significant speed-up of computation
time by using the optimized (Cartesian) tesseroid formulas
instead of the spherical ones can be recognized, which in-
creases with the order of the derivatives. Generally, this can
be considered as a consequence of a reduced number of oc-
curring arithmetic operations which are specified in Table 2.
In the case of the elements of the Marussi tensor, the re-
duction is mainly caused by the fact that only six volume
integrals have to be evaluated instead of nine as in former
representations.

In total, when computing V , ai, and Mi j together, only
55% of the run time of the spherical tesseroid methods is
needed for the optimized (Cartesian) approach. In compari-
son to the conventional prism approach the advantage of us-
ing tesseroids for global applications is impressively shown.

Table 1 Comparison of computation times t [%] using tesseroid meth-
ods with spherical and optimized Cartesian integral kernels as well
as prisms to compute the gravitational potential V , the components of
the gravitational acceleration ai and the Marussi tensor Mi j of topo-
graphic masses. All values are specified in percentage relative to the
computation time of the spherical tesseroid method

Tesseroid Tesseroid Prism

(spherical) (Cartesian)

t (V ) 100 80 1,265

t (ai) 100 72 620

t (Mi j) 100 44 125

t (V,ai,Mi j) 100 55 402

Table 2 Comparison of the optimized (Cartesian) tesseroid formulas
with respect to previously published spherical methods in terms of the
number of occurring arithmetic operations n. Note that these are approx-
imate values as they are strongly dependent on the actual computational
implementation

Tesseroid (spherical) Tesseroid (Cartesian)

Operations + / − · / ÷ + / − · / ÷

n(V ∗) 25 80 20 65

n(a∗i ) 70 250 60 200

n
(

M∗i j

)
250 890 160 550

6.2 Comparison of the approximation error

In a second experiment, the approximation error induced by
the different methods is analyzed and compared. In order
to obtain reference values an analytical solution is needed.
Therefore, a spherical shell approximation is considered as
a simple synthetic Earth model, where topographic masses
with a constant thickness h′ and a homogeneous mass density
ρ are fixed on a sphere with a mean Earth radius R. Thus, the
inner radius of the spherical shell is set to R1 = R, the outer
radius to R2 = R+h′.

6.2.1 Analytical solution of a spherical shell

The gravitational potential in the external domain of a spher-
ical shell Ω s with constant density ρ can be determined
analytically from the potential difference between two solid
spheres with radii R1 and R2 (e.g. Vanı́ček et al, 2001):

V s(r) :=
G(m2−m1)

r
, (55)

where

m1 = ρ
4
3

πR3
1, (56)

m2 = ρ
4
3

πR3
2, (57)

r =
√

x2
1 + x2

2 + x2
3. (58)
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By determining the partial derivatives of V s in Eq. (55) the
elements of the gravitational acceleration and the Marussi
tensor result in

as
i (r) = G(m2−m1)

xi

r3 , (59)

Ms
i j(r) = G(m2−m1)

(
3xix j

r5 −
δi j

r3

)
. (60)

Due to the isotropy of the spherical shell, a computation
point P on the polar axis can be considered without loss of
generality, i.e. x1 = 0, x2 = 0, x3 = r ≥ R2. This implies
as

1 = as
2 = Ms

12 = Ms
13 = Ms

23 = 0 and

as
3(r) =

V s(r)
r

, (61)

Ms
11(r) = Ms

22(r) =−
V s(r)

r2 , (62)

Ms
33(r) =

2V s(r)
r2 . (63)

6.2.2 Setting of the experiment

In order to quantify realistic approximation errors, the abso-
lute differences between the exact values (V s, as

i , Ms
i j) of the

analytical solution and the actual values when applying for-
ward modeling based on a mass discretization with tesseroids
are analyzed:

δV

δai

δMi j

 :=

∣∣∣∣∣∣∣∣∣


V s

as
i

Ms
i j

−


∑V ∗

∑a∗i

∑M∗i j


∣∣∣∣∣∣∣∣∣ . (64)

In the experiment a spherical shell with a constant thick-
ness of h′= 1 km is chosen which approximately corresponds
to a mean topographic height. Furthermore, the spherical
shell is defined by the parameters as specified in Table 3. In
the case of the gravitational potential and acceleration, mostly
related to terrestrial applications, the computation point is
placed on the surface of the spherical shell. For the second-
order derivatives of the Marussi tensor, the satellite altitude
of the gravity gradiometry field mission GOCE (Gravity field
and steady-state Ocean Circulation Explorer) is utilized. In
Table 4 the settings of both applications and the resulting
reference values for the spherical shell are indicated, where
1mGal = 10−5ms−2 and 1mE = 10−12s−2.

Table 3 Parameters defining the spherical shell

R1 = R 6,378.137 km

R2 = R+h′ 6,379.137 km

G 6.672 ·10−11 m3 kg−1 s−2

ρ 2,670 kgm−3

Table 4 Setting of the terrestrial and satellite application and resulting
reference values according to Eq. (55) and Eqs. (61) – (63)

Application Terrestrial Satellite

h 1 km 260 km

r = R+h 6,379.137 km 6,638.137 km

V s 14,278.119 m2 s−2 -

as
3 223.825 mGal -

Ms
11 = Ms

22 - -311.383 mE

Ms
33 - 622.765 mE

To get the actual values for the developed method the
spherical shell Ω s is decomposed into individual tesseroid
bodies Ω ∗i bounded by spherical grid lines. The horizontal
dimensions of the tesseroids are again set to ∆hor = ∆ϕ =

∆λ = 5′. According to the thickness of the spherical shell,
the vertical dimension is fixed to ∆r = h′ = 1 km.

In order to improve the accuracy of the tesseroid ap-
proaches in the case of terrestrial applications, a subdivision
of the mass elements located in the near zone around the
computation point P is performed as proposed in Sect. 5.3.
To this end, for tesseroids, whose geometrical center Q0 is
located inside a spherical distance ψc with respect to the
computation point, a 100× 100 horizontal subdivision is
performed. Based on the 5′ × 5′ resolution of the original
tesseroid bodies this implies an increase of the grid resolu-
tion to 3′′ × 3′′ ≈ 100 m × 100 m which is consistent with
current high-resolution global DTMs like SRTM3 (Farr et al,
2007). Different extensions of the near zone are analyzed,
where the spherical distance ψc is set to integer multiples of
the horizontal tesseroid dimension, i.e.

ψc = κ ·∆hor, κ ∈ N0. (65)

For the cases κ = {1, . . . ,5}, Fig. 3 illustrates the numbers
of mass elements in the near zone that are subdivided. Due to
the meridional convergence these numbers are dependent on
the latitude ϕ of the computation point P showing a strong
increase towards the pole. Note again that instead of a subdi-
vision it is also possible to utilize equivalent prisms which has
been shown in the numerical investigations in Heck and Seitz
(2007) and will, therefore, not be presented in this paper. In
the case of satellite applications, no subdivision is performed
as there is a large distance between the computation points
and the spherical shell.

As mentioned in Sect. 5.3 the geographical position of the
tesseroid impacts the accuracy due to a changing geometry
according to the meridional convergence. Concerning the
strong influence of the near zone (cf. Heck and Seitz, 2007),
it can be assumed that the total approximation error may
also depend on the latitude ϕ of the computation point P.
The approximation error in Eq. (64) is therefore evaluated
for different positions on the globe. Due to the spherical
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symmetry, this can be restricted to a computation point P
running along an arbitrary but fixed meridian on the northern
hemisphere. All other cases provide analogous results.

6.2.3 Results for a terrestrial application

In Fig. 4 the estimated approximation error is presented for
the gravitational potential δV on the left panel and the radial
component of the gravitational acceleration δa3 on the right
panel. As indicated in Table 4 the computation point P is
located on top of the spherical shell.

Both tesseroid approaches (green and overlaid red dashed
curve) show the same, nearly constant behavior with respect
to the latitude ϕ . The approximation error δV is in a range of
about 100–10−1 m2 s−2, while the order of magnitude for δa3
is about 102 mGal. This error behavior clearly demonstrates
the above indicated numerical problems of the tesseroid ap-
proach when the computation point P is located in the direct
vicinity of the particular mass bodies. Compared with the
conventional prism approach (blue curve) the approxima-
tion error for tesseroids is inferior by about three orders of
magnitude in the case of δV and two orders of magnitude
in the case of δa3. Furthermore, it can be seen that the ap-
proximation errors for the prism approach show significant
dependencies on the latitude ϕ , particularly in the case of
the potential. In the polar region, where there is the largest
difference in the geometrical shape between a tesseroid and
a rectangular prism, the tesseroid approaches supply slightly
better, but still bad results.

When performing the intended subdivision in the near
zone, it can clearly be seen in Fig. 4 that the approximation
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Fig. 3 Visualization of the number of mass elements in the near zone
as a function of the latitude ϕ of the computation point. According to
Eq. (65) the near zone is bounded by a spherical distance ψc = κ ·∆hor
with respect to the position of the computation point. All values in this
figure refer to a horizontal dimension of ∆hor = 5′

error for the optimized (Cartesian) tesseroid approach in both
cases δV and δa3 can be largely reduced. For increasing val-
ues of κ respectively ψc, the approximation error is rapidly
decreasing. Occurring discontinuities in the approximation
errors can be associated with a changing number of mass
elements in the near zone (cp. Fig. 3). In the case of κ = 3,
the approximation error δV is below 10−3 m2 s−2, which
is consistent with a sub-millimeter error in derived geoid
heights. Similarly, δa3 is below 1µGal, which corresponds
to the accuracy of actual gravimeters. Note that a compara-
ble behavior is provided if the subdivision is applied to the
tesseroid method based on spherical integral kernels. The
corresponding cases are therefore not illustrated in Fig. 4.

To summarize, the achieved accuracy will be sufficient
for most practical terrestrial applications if a subdivision is
performed in the near zone extended by a spherical distance
of ψc ≥ 3 ·∆hor with respect to the computation point. How-
ever, it should be mentioned that the computation time is
increased due to the densification in the very near zone, but
it is still considerably smaller in comparison to conventional
prism formulas (see Table 5).

Table 5 Comparison of computation time t [%] using optimized (Carte-
sian) tesseroid methods and conventional prism formulas to compute
V , ai, and Mi j . The values for the optimized tesseroid method are indi-
cated in relation to the extension of a near zone, in which a 100×100
horizontal subdivision is performed. The near zone is bounded by a
spherical distance of ψc = κ ·∆hor around the computation point. All
values are specified in percentage relative to the computation time of
the spherical tesseroid method with κ = 0

tesseroid tesseroid prism

(spherical) (Cartesian)

κ 0 0 1 2 3 4 5 0

t 100 55 60 67 72 79 88 402

6.2.4 Results for a satellite application

According to Table 4 the approximation errors in the case of
the Marussi tensor are estimated in the context of the satellite
gravity gradiometry mission GOCE, i.e. the computation
point P is fixed at a height of h = 260 km above the sphere of
radius R = R1. In Fig. 5 the approximation errors according
to Eq. (64) for δM11 (upper left panel), δM22 (upper right
panel), and δM33 (lower left panel) are visualized.

For all three components nearly the same behavior is
visible showing a considerable dependency on the latitude ϕ

of the computation point. Generally, the approximation error
rises with increasing latitude, while a rapid increase can be
seen in the polar region at ϕ > 85◦. Due to the logarithmic
scale a change of sign from a positive to a negative approxi-
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Fig. 4 Visualization of the estimated approximation error δV (left panel) and δa3 (right panel) as a function of the latitude ϕ of the computation
point that is located on top of the respective spherical shell, i.e. h = h′ = 1 km. The blue curve is obtained by applying conventional prism formulas.
The green curve represents the use of the spherical tesseroid approach and is completely overlaid by the red dashed curve that indicates the utilization
of the optimized (Cartesian) tesseroid formulas. These three cases are calculated without a special consideration of the near zone, i.e. κ = 0. The
remaining curves represent the use of the optimized (Cartesian) tesseroid formulas by performing an additional 100×100 horizontal subdivision of
mass elements located in the near zone. According to Eq. (65) the cases of κ = {1, . . . ,5} are displayed

mation error induces a behavior as visible in δM11 and δM33
at ϕ ≈ 25◦ in the case of the prism approach.

The approximation error of the conventional prism ap-
proach is in a range of about 100–10−5 mE, while the tess-
eroid approaches comprise significant smaller errors of about
10−5–10−13 mE. Due to the large distance of the computa-
tion points to the tesseroid bodies, it is not necessary to take
special care for the near zone, i.e. κ = 0 can be fixed with-
out any problems. Again the green curve for the spherical
tesseroid approach is mostly overlaid by the red curve of
the optimized (Cartesian) tesseroid approach showing that
both variants provide the same approximation errors. Some
small oscillations can be detected near the equator indicating
the limitation of the numerical stability. Furthermore, it is
worth mentioning that in the case of δM22 a large difference
between the two tesseroid approaches can be detected at the
pole point. This effect clearly illustrates the polar singularity
problem of the spherical tesseroid approach.

As an additional quality characteristic the discrepancy in
the Laplace equation

δ ∆V := ∑

(
3

∑
k=1

M∗kk

)
(66)

is displayed on the lower right panel of Fig. 5 supporting the
findings indicated above.

7 Conclusion and outlook

When using forward (or inverse) modeling based on New-
ton’s integral, tesseroid bodies are the natural mass discretiza-
tion when dealing with data parameterized in geodetic or

geocentric spherical coordinates. In contrast to the conven-
tional prism approach the curvature of the Earth is directly
taken into account by tesseroids which is particularly ben-
eficial for regional and global applications. The respective
volume integrals describing the gravitational potential of a
homogeneous tesseroid and its derivatives comprise ellip-
tical integrals that cannot be solved analytically. Although
approximate solutions have to be applied, various numerical
investigations confirmed the advantages of tesseroids con-
cerning precision and numerical efficiency in comparison
with conventional prisms (cf. Heck and Seitz, 2007; Wild-
Pfeiffer, 2008; Grombein et al, 2010, Chap. 7).

Previously published tesseroid formulas are based on
integral kernels with respect to geocentric spherical coordi-
nates (e.g. Heck and Seitz, 2007; Wild-Pfeiffer, 2007, 2008).
As the elements of the first- and second-order derivatives of
the gravitational potential are usually defined in a moving
Cartesian frame, additional transformations have to be ap-
plied that show polar singularities (cf. Tscherning, 1976). In
contrast to these approaches optimized tesseroid formulas
based on Cartesian integral kernels have been elaborated in
this paper. These formulas avoid the explicit transformation
and therefore allow to represent the required components of
the gravitational acceleration and the Marussi tensor directly
in the local Cartesian frame for any position on the globe.

The consistency of both tesseroid approaches has been
shown analytically and verified numerically. The main bene-
fit of using the optimized tesseroid formulas is a significant
speed-up of the calculation process. In comparison to previ-
ously published tesseroid implementations only 80% of the
computation time for the gravitational potential, 72% for the
gravitational acceleration, and 44 % for the Marussi tensor
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Fig. 5 Visualization of the estimated approximation error δM11 (upper left panel), δM22 (upper right panel), and δM33 (lower left panel) as a
function of the latitude ϕ . The lower right panel illustrates the Laplace condition δ∆V according to Eq. (66). The computation point P is located at
a satellite height of h = 260 km. The blue curve is obtained by using conventional prism formulas, the red dashed curve by applying the optimized
(Cartesian) tesseroid formulas. The green curve represents the use of the spherical tesseroid approach and is overlaid by the red dashed curve in
most cases

are required, which has been shown by a realistic numerical
experiment.

Furthermore, approximation errors have been investi-
gated by a comparison to reference values of an analyti-
cal solution. The volume integrals linked to tesseroids have
been evaluated numerically by a Taylor series approach with
fourth-order error that has been adapted from Heck and Seitz
(2007). Generally, the estimated approximation errors show
a significant dependency on the latitude of the computation
point which is particularly visible in the case of the second-
order derivatives.

The occurrence of numerical problems when utilizing
tesseroids in the very near zone around the computation point,
as mentioned by Heck and Seitz (2007), could be confirmed.
In terrestrial applications two alternatives can be applied:
replacement of tesseroids by equivalent prisms, which was
proposed in Heck and Seitz (2007), or a horizontal subdivi-
sion of mass elements, which was presented in the numerical

investigations of this paper. The near zone around the com-
putation point should be extended by a spherical distance of
at least three times the horizontal tesseroid dimension. Due
to larger distances this is not critical in the case of applica-
tions in satellite altitude. Current ongoing numerical studies
intensively investigate the accuracy of tesseroid formulas
especially in the very near zone.
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Appendix A1

Taking the M∗23 component of the Marussi tensor as an example, the
intermediate steps used for deriving Eqs. (29) and (30) in Sect. 4 are
explicitly provided in the following:
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Inserting the spherical derivatives of Eqs. (26) and (27) into the
relationship for M∗23 in Eq. (23) results in

M∗23 =
1

r cosϕ

{
Gρ

∫∫∫
Ω∗

r′Cλ

`3

[
3r (r′ cosψ− r)

`2 +1
]

dΩ

− 1
r

Gρ

∫∫∫
Ω∗

rr′Cλ

`3 dΩ

}
. (67)

As both volume integrals in Eq. (67) extend over the same domain Ω ∗,
they can be combined, yielding the more simplified expression

M∗23 =
Gρ

r cosϕ

∫∫∫
Ω∗

{
r′Cλ

`3

[
3r (r′ cosψ− r)

`2 +1
]
− r′Cλ

`3

}
dΩ

=
Gρ

r cosϕ

∫∫∫
Ω∗

3rr′Cλ (r′ cosψ− r)
`5 dΩ . (68)

Replacing Cλ by its definition given in Eq. (28) the final representation
is derived

M∗23 = Gρ

∫∫∫
Ω∗

3r′ cosϕ ′ sinδλ (r′ cosψ− r)
`5 dΩ . (69)
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Grüninger W (1990) Zur topographisch-isostatischen Reduktion der
Schwere. PhD thesis, Universität Karlsruhe

Heck B, Seitz K (2007) A comparison of the tesseroid, prism and point-
mass approaches for mass reductions in gravity field modelling. J
Geod 81(2):121–136, doi:10.1007/s00190-006-0094-0

Heck B, Seitz K (2008) Representation of the time variable gravity
field due to hydrological mass variations by surface layer potentials.
General Assembly of the European Geosciences Union 2008, Vienna,
Austria, April 13-18, 2008, Geophysical Research Abstracts, Vol. 10,
EGU2010-4671

Heiskanen WA, Moritz H (1967) Physical Geodesy. W. H. Free-
man & Co., San Francisco, USA

Hirt C, Featherstone WE, Marti U (2010) Combining EGM2008 and
SRTM/DTM2006.0 residual terrain model data to improve quasi-
geoid computations in mountainous areas devoid of gravity data. J
Geod 84(9):557–567, doi:10.1007/s00190-010-0395-1

Janák J, Wild-Pfeiffer F, Heck B (2012) Smoothing the gradiometric
observations using different topographic-isostatic models: a regional
case study. In Sneeuw et al. (eds), Proc. VII Hotine-Marussi Sym-
posium, Rome, Italy, 2009, IAG Symposia, vol. 137, pp. 245–250,
Springer, Berlin, doi:10.1007/978-3-642-22078-4 37

Kellogg OD (1929) Foundations of Potential Theory. Springer, Berlin
Klose U, Ilk K (1993) A solution to the singularity problem occurring

in the terrain correction formula. Manuscr Geod 18(5):263–279
Ku CC (1977) A direct computation of gravity and magnetic anomalies

caused by 2- and 3-dimensional bodies of arbitrary shape and arbi-
trary magnetic polarization by equivalent-point method and a simpli-
fied cubic spline. Geophysics 42(3):610–622, doi:10.1190/1.1440732

Kuhn M, Featherstone WE (2005) Construction of a synthetic Earth
gravity model by forward gravity modelling. In Sansò, F. (ed), A
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Vanı́ček P, Novák P, Martinec Z (2001) Geoid, topography,
and the bouguer plate or shell. J Geod 75(4):210–215,
doi:10.1007/s001900100165

Von Frese RRB, Hinze WJ, Braile LW, Luca AJ (1981) Spherical-
earth gravity and magnetic anomaly modeling by Gauss-Legendre
quadrature integration. J Geophys 49:234–242

Wild F, Heck B (2008) Topographic and isostatic reductions for use
in satellite gravity gradiometry. In Xu et al. (eds), Proc. VI Hotine-
Marussi Symposium, Wuhan, China, 2006, IAG Symposia, vol. 132,
pp. 49–55, Springer, Berlin, doi:10.1007/978-3-540-74584-6 8

Wild-Pfeiffer F (2007) Auswirkungen topographisch-isostatischer
Massen auf die Satellitengradiometrie. C 604, Deutsche Geodätische
Kommission, München

Wild-Pfeiffer F (2008) A comparison of different mass elements for use
in gravity gradiometry. J Geod 82(10):637–653, doi:10.1007/s00190-
008-0219-8

Wild-Pfeiffer F, Heck B (2007) Comparison of the modelling of topo-
graphic and isostatic masses in the space and the frequency domain
for use in satellite gravity gradiometry. In Kiliçoğlu, A., Forsberg,
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