
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Optimized FPGA Implementation of Model
Predictive Control for Embedded Systems Using High

Level Synthesis Tool
S. Lucia, Member, IEEE, D. Navarro, O. Lucia, Senior Member, IEEE , P. Zometa, and R. Findeisen

Abstract— Model predictive control is an optimization-based
strategy for high-performance control that is attracting increasing
interest. While model predictive control (MPC) requires the online
solution of an optimization problem, its ability to handle
multivariable systems and constraints makes it a very powerful
control strategy specially for MPC of embedded systems, which
have an ever increasing amount of sensing and computation
capabilities. We argue that the implementation of MPC on field
programmable gate arrays (FPGAs) using automatic tools is
nowadays possible, achieving cost-effective successful applications
on fast or resource-constrained systems. The main burden for the
implementation of MPC on FPGAs is the challenging design of the
necessary algorithms. We outline an approach to achieve a
software-supported optimized implementation of MPC on FPGAs
using high level synthesis tools and automatic code generation. The
proposed strategy exploits the arithmetic operations necessaries to
solve optimization problems to tailor an FPGA design, which allows
a trade-off between energy, memory requirements, cost, and
achievable speed. We show the capabilities and the simplicity of use
of the proposed methodology on two different examples and
illustrate its advantages over a microcontroller implementation.

Index Terms- Field programmable gate array, model predictive
control, high level synthesis.

I. INTRODUCTION

The amount of required and available sensing and
computation capabilities of existing and newly designed systems
is growing rapidly. In this paper, we focus on model predictive
control (MPC) [1], which is an optimization-based, advanced
control strategy that uses a mathematical model to predict the
future behavior of a system. The predictions are used to obtain a
sequence of control inputs that minimize a desired performance
criterion and result in satisfaction of the required constraints.
Fig. 1 shows the central idea of MPC, in which the predictions
of the model states (xk) at each sampling time k are used to obtain
a sequence of control input vectors (uk) that minimizes a desired
performance criterion and result in satisfaction of the required

constraints. The application of MPC demands the real-time
solution of a numerical optimization problem. Therefore, its
applications are traditionally limited to slow systems, e.g.
chemical plants or petrochemical systems.

However, due to the significant advances in tailored
algorithms and hardware, MPC is increasingly becoming of
interest for very fast embedded and resource-limited systems.
Some examples include industrial electronics applications [2, 3]
such as inverters [4-6], rectifiers [7], matrix converters [8], or
engine control [9].

New hardware architectures have been studied for the
implementation of MPC [10], including programmable logic
controllers (PLCs) [11], low-cost microcontrollers [12, 13],
field programmable gate arrays (FPGAs) [14, 15] [16], and
application specific integrated circuits (ASICs) [17]. The choice
of hardware architecture is often a trade-off between cost,
energy consumption and required performance.

Advances in FPGA technology have led to inexpensive
devices with increasing digital resources. This opens
significantly the spectrum of potential applications. Moreover,
FPGA technology enables the optimized use of parallel
calculations as well as ad-hoc digital hardware development,
increasing the performance to levels that are not achievable
using any other fixed architecture implementation. As a result of
the technology development, FPGA technology has become an
alternative for MPC controllers implementation [18-20] due to
its high performance and cost-effectiveness, enabling
applications at MHz rates. For cost-efficient solutions, the

Fig. 1. Model predictive control.

Manuscript received February 4th, 2017; revised April 25th, 2017; accepted, June 15th,
2017.

Copyright © 2017 IEEE. Personal use of this material is permitted. However, permission
to use this material for any other purposes must be obtained from the IEEE by sending a
request to pubs-permissions@ieee.org.

This work was partly supported by the Spanish MINECO under Project TEC2016-78358
and by the DGA-FSE.

S. Lucia is with the Laboratory of Internet of Things for Smart Buildings, Technische
Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany and the Einstein Center
Digital Future, Wilhelmstr. 67, 10117 Berlin, Germany (e-mail: sergio.lucia@tu-berlin.de).
O. Lucia and D. Navarro are with the Department of Electronic Engineering and
Communications, University of Zaragoza, SPAIN (phone: +34976761000, e-mail:
olucia@unizar.es). P. Zometa and R. Findeisen are with the Laboratory for Systems Theory
and Automatic Control, Otto-von-Guericke University Magdeburg, Universitätsplatz 2,
39106, Magdeburg, Germany.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

system can be ported to an application-specific integrated circuit
(ASIC).

Although theoretical issues of MPC control have been deeply
studied [21], there are still many challenges for the fast and
economically viable implementation and use of MPC. Among
those, the effort to design, optimize and implement such
controller is one of the most relevant challenges. In order to
enable a rapid and economic FPGA implementation, this paper
proposes a design and optimization procedure using high level
synthesis (HLS) [22, 23] which has proved to be an effective
way to implement industrial controllers [24, 25]. In comparison
to [26], which also presents the use of HLS tools for embedded
optimization, we present explicitly how to tailor and optimize
the FPGA implementation paying special attention to the
arithmetic operations of MPC controllers. This allows to
consider different trade-offs between energy, speed, and
memory requirements, and to provide several guidelines for
designers. The main benefits of the proposed design workflow
are the fast testing of different designs, which enable a time-
effective way to analyze a large set of FPGA implementations,
which cannot be done manually.

We focus here on the software-supported implementation of
predictive controllers on FPGAs, mainly because of its high-
performance, cost effectiveness and flexibility. Currently, there
are tools for the implementation of MPC that generate simple
code that can be used e.g. on microcontrollers, see CVXGEN
[27] or ECOS/QCML [28]. The use of FPGAs for efficient MPC
implementations has been presented, e.g., in [29]. However,
there the FPGA design is performed manually. While a toolbox
for FPGA prototyping is presented in [26], there are currently no
available tools to automatically design and optimize an FPGA
implementation of MPC starting from a high-level description
of the control problem, enabling the application of MPC
techniques to non-experts in the field. This represents the main
challenge for an optimized use of MPC on FPGAs. This
challenge can be efficiently overcome as it is shown in this
paper.

This paper is organized as follows. Section II gives a brief
overview of the MPC problem formulation and the basic
algorithms that are studied for implementation. Section III
details the proposed workflow for an efficient and cost-efficient
MPC FPGA implementation using HLS as well as the
optimization procedure used. Section IV presents a design
example including its formulation, implementation and
optimization process and the achieved results. Section V
summarizes the main conclusions of the paper.

II. MODEL PREDICTIVE CONTROL PROBLEM

A. Formulation and basic solution algorithms
Model Predictive Control is based on the repeated solution of

an optimization problem at each sampling time. A mathematical
model is used to predict the future behavior of the system until
a given prediction horizon and a sequence of optimal control
inputs is obtained by minimizing the chosen cost function
subject to given constraints (see also Fig. 1). For embedded
systems, usually linear models are considered, which represent
a linear system or a linearization of the actual nonlinear system,
and can be represented as:

 x Ax Bu   (1)

where x ∈ 	Թ௡ೣ denotes the states and ݑ ∈ 	Թ௡ೠ represents the
control inputs.

Usually, a quadratic cost function with positive semidefinite
weight matrices and affine constraints are considered, so that the
optimization problem that needs to be solved at each sampling
time is convex and has the form:

 minimize		

࢞,࢛
∑ ሺݔ௞

௞ݔ்ܳ ൅ ௞ݑ
௞ሻேିଵݑ்ܴ

௞ୀ଴ ൅ 	ேݔே்ܲݔ

subject	to:												ݔ௞ାଵ ൌ ௞ݔܣ ൅ 	௞ݑܤ
																							ܿ௠௜௡ ൑ ௞ݔܨ ൅ ௞ݑܩ ൑ ܿ௠௔௫.

(2)

Here, ܳ, ܴ, ܲ are tuning parameters of the cost function which
penalize state and input deviations. ܨ, ,ܩ ܿ௠௜௡, ܿ௠௔௫	define the
constraints that are considered for the control task, while ܰ is
the prediction horizon. Embedding the initial condition ݔ଴ and
the linear dynamics (1) in the formulation of the cost function
and constraints, the optimization problem can be transformed
into a so-called condensed formulation [30]. The condensed
problem only has the control inputs as optimization variables,
which is beneficial for embedded implementations. The
resulting equivalent formulation of the optimization problem (2)
can be expressed in condensed form as:

minimize
࢛

࢛ܪ்࢛						 ൅ ݃ሺݔ଴ሻ்࢛	

subject	to:							ܸ࢛ െ ଴ሻݔሺݒ ൑ 0.
(3)

Many efficient algorithms have been proposed in the last
years to solve (3). First-order methods for solving the quadratic
program (3) are, e.g., presented in [12, 31]. Second order
approaches are provided in [32, 33]. We focus on the use of a
combination of the fast gradient method (FGM) [34] that can be
used when only input constraints are considered, combined with
the use of an augmented Lagrangian method (ALM), which
allows to handle state constraints as proposed in [31]. We review
this approach in the following.

For simplicity of notation, in the remainder of the paper we
denote the cost function of the considered optimization problem
(3) as ଴݂ሺ࢛, ,଴ሻ and the equality constraints as ௖݂ሺ࢛ݔ ଴ሻݔ ൌ

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

	ܸ࢛ െ ଴ሻ (inequality constraints are transformed intoݔሺݒ
equality constraints by introducing slack variables). As it is
common in the field of numerical optimization [30], the
augmented Lagrangian ࣦሺ⋅ሻ is defined as:

ࣦሺ࢛, ,଴ݔ ሻߣ ൌ ଴݂ሺ࢛, ଴ሻݔ ൅	෍ߣ௟	 ௖݂ሺ࢛, ଴ሻݔ

௡೎

௟ୀଵ

൅
ߤ
2
෍	 ௖݂ଶ	ሺ࢛, ଴ሻݔ

௡೎

௟ୀଵ

.

(4)

Here ߣ௟ is the Lagrange multiplier associated to the constraint ݈,
 is a tuning parameter of the regularization term and ݊௖ denotes ߤ
the number of constraints. The idea of augmented Lagrangian
methods is that solving an unconstrained optimization problem
with ࣦሺ⋅ሻ as cost function and using the optimal value of the
multipliers ߣ௟

⋆ leads to the solution ࢛⋆ of the original
(constrained) optimization problem [30]. In the combined
FGM+ALM method we use the fast gradient method to find the
solution of the unconstrained problem given by the augmented
Lagrangian and we use the ALM method to iteratively update
the values of the Lagrange multipliers to reach its optimal value.

The fast gradient method is a first order iterative method to
efficiently solve input-constrained optimization problems. It is
especially suited for embedded platforms due to its low memory
requirements and high convergence rate. It consists of two main
steps. In the first step, the next candidate of the optimal solution
࢛ାis computed:

࢛ା ൌ 	 ࣯࣪ ቆ࢝ െ
1
ܮ
,௨ࣦሺ࢝ߘ ,଴ݔ .ሻቇߣ

(5)

Here ܮ is a Lipschitz constant that can be calculated from the
problem data, i.e., the system description and the control task
description, and ࣯࣪ denotes a projection onto the set ࣯, which
is defined by the input constraints. In most cases, the inputs are
box-constrained, and such projection is a simple (and
computationally cheap) saturation operation given the minimum
and maximum possible values of the control inputs. The operator
 ௨ሺ⋅ሻ denotes the partial derivative of the augmented Lagrangianߘ
with respect to the vector of control inputs ࢛.

In the second part of the fast gradient method an extra-step is
computed [34]:

࢝ ൌ ࢛ା ൅ ሺ࢛ାߥ െ ࢛ሻ, (6)

where ߥ ൌ ൫√ܮ െ ඥ߶൯൫√ܮ െ ඥ߶൯
ିଵ

. Here, ߶ ൐ 0 is a strong

convexity constant which can be computed offline [31]. The fast
gradient method for a number of iterations ௜݆௡ and a Lagrange
multiplier ߣ is summarized in Algorithm 1.

Table I. Algorithm 1: Fast gradient method (FGM)
Require: initial guess ࢛, multiplier ࣅ, state ࢞૙

1. set ࢝ ൌ ࢛
2. for ࢐ ൌ ૙ until ࢔࢏࢐ െ ૚ do:

3. 			࢛ା ൌ 	चट ൬࢝ െ ૚

ࡸ
,खሺ࢛࢝ࢺ ࢞૙, ሻ൰ࣅ

4. 				࢝ ൌ ࢛ା ൅ ሺ࢛ାࣇ െ ࢛ሻ	
5. end for

Return ࢛ା

If a given optimization problem only has input constraints,

Algorithm 1 is directly able to obtain a solution (the value of the
multiplier ߣ is then irrelevant). In the case of state constraints,
an optimal value of the multiplier has to be found to obtain the
solution of the original (constrained) problem. This is achieved
via an iterative update of the multiplier:

ߣ ← ߣ ൅ ൫ܸ࢛ߤ െ ଴ሻ൯, (7)ݔሺݒ
where ߤ ൐ 0 is a penalty parameter.

When state constraints are present, a combination of the fast
gradient method presented in Algorithm 1 and the multiplier
update in (7) is used. A summary of the ALM + FGM scheme
with ݅௘௫ iterations is given in Algorithm 2.

Table II. Algorithm 2: ALM + FGM

Require: initial guess ࢛, multiplier ࣅ, state ࢞૙	
1. for ࢏ ൌ ૙ until ࢞ࢋ࢏ െ ૚ do:
2. compute ࢛ା using Algorithm 1
ࣅ .3 ← ࣅ ൅ ࢛ࢂ൫ࣆ െ ࢜ሺ࢞૙ሻ൯
4. end for

Return ࢛ା, 	 ࣅ

III. FPGA IMPLEMENTATION OF MPC USING HLS

A. Design workflow
A two-step approach is proposed (Fig. 2(a)) to enable an

optimized yet simple FPGA design for MPC controllers. As a
first step, we use the tailored MPC code generation tools
µAOMPC [35] and included novel extensions to transform a
simple description of the control problem to code that can be
used in a second step by a High Level Synthesis (HLS) tool, such
as Vivado HLS [36]. The required tailored code is automatically
generated by the extended version of µAOMPC, which
implements the ALM+FGM algorithm presented in Table II
relying only on additions and multiplications. The proposed
extended version modifies µAOMPC 0.4.0 by including
definitions of each needed operation (see Table III) with fixed-
size arrays. This is necessary because the Vivado HLS tool does
not allow variable-size array optimization. Variable size arrays
were used in µAOMPC to achieve generated codes of smaller
size. However, the modified version of the code will take
advantage of fixed-size arrays to optimize the FPGA

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

implementation by unrolling and pipelining the digital design,
as it will be explained later.

This approach offers several advantages for computations on
embedded platforms. The HLS tool processes the auto-generated
code taking into account explicitly the particularities of the
optimization algorithms presented in Table I and Table II. The
result of the proposed approach is an automatic and optimized
FPGA design for MPC, which depends on the problem data and
designer requirements. The proposed approach offers several
design alternatives to achieve different trade-offs between
FPGA size and computation time. Alternatively, µAOMPC can
be used to generate C-code that can be directly used on
microcontrollers, without any additional libraries.

The high level synthesis tool workflow to implement the MPC
controller is summarized in Fig. 2(b). Inputs are the C-code
containing the MPC algorithm as well as the required libraries
and additional constrains to be considered by the HLS tool. As
discussed later, these constraints must be designed carefully
taking the MPC problem into account in order to optimize both
the performance and the needed digital resources. The output of

the HLS process is an optimized register transfer level (RTL)
implementation using a hardware description language ready for
both simulation and/or synthesis. One of the main benefits of
this design flow is the fast design process, which enables to
analyze a large set of implementations in a time-effective
manner, which is not possible to address manually. The main
novel contributions of the proposed design flow include the
extension of the tool µAOMPC to generate C-code that can be
directly used by HLS tools, as well as the optimized use of HLS
constraints to take advantage of the arithmetic operations that
are necessary to solve the typical optimization problems that
arise within MPC.
B. Optimization of the FPGA design

 The optimal implementation of model predictive control with
respect to FPGA resources and computational speed depends
strongly on the matrix-vector operations that are necessary to
solve the optimization problem at each sampling time. Table III
summarizes all the necessary operations, as a function of the
number of states (nx), the number of control inputs (nu), and the
prediction horizon (N). These operations and their relation with
the FPGA implementation are key during the design process in
order to optimize the implementation performance and digital
resource usage. The saturate operation is the projection operator
defined in the FGM algorithm for the case of box-constrained
inputs and the scale operation denotes the multiplication of all
elements of a vector by a scalar. A similar analysis can be
performed for the FGM+ALM algorithm. It is omitted here for
simplicity in the presentation.

From Table III, it is clear that the matrix-vector multiplication
inside the loop is the most resource consuming operation. The
optimization analysis will focus on this aspect.

 In order to explore and optimize the design space using high
level synthesis, several design constraints must be carefully
chosen:

i) unrolling permits unrolling a certain loop to compute
arithmetic operations using parallel processing. This
significantly improves the implementation performance at the
cost of additional digital resources.

(a)

(b)

Fig. 2. Design workflow for FPGA implementation of MPC
using HLS: global overview (a) and HLS tool workflow (b).

Table III. Arithmetic operations

Line Algorithm 1 Operation type Dimension

3 A * b (nu * N, nx) ൈ nx
for j = 1 : n_iter - -

3 A * b (nu * N) ൈ nu *N
3 a + b nu * N
3 a - b nu * N
3 saturate(a) nu * N
4 a - b nu * N
4 scale(a) nu * N
4 a + b nu * N

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 3 (a) shows the standard arithmetic operation
implementation, which requires a single multiplier plus an
accumulator which sweeps all matrix elements. This
implementation, however, is the slowest and it can limit real-
time computing with complex problems or large prediction
horizons. In order to improve the performance, the inner loop
can be unrolled (Fig. 3(b)), which requires additional multipliers
plus an adder tree. Depending on the unroll level, a balance
between performance and digital resource usage must be met.

Additionally, several rows of the matrix multiplication can be
computed at the same time. This implies the replication of the
aforementioned structure as many times as the number of rows
to be computed simultaneously (Fig. 3(c)).
Usually, unrolling is chosen to be an even number to take the
most of dual port memories. Finally, if the performance needs to
be further improved, the outer loop can be also unrolled (Fig.
3(d)). This means that partial data set from an iteration can be
used to start computing subsequent iterations, enabling a

(a) (b)

(c)

(d)

Fig. 3. Arithmetic operation implementation: standard implementation (a), unroll inner loop (b), unroll inner loop plus row parallelization
(c), and unroll outer loop (d).

@1 @nu*N+1 @1

@2

@nu*N @nu*N*nx @nu*N

MATRIX A VECTOR b

A*b (i=1..nu*N)

MATRIX A VECTOR b MATRIX A …………. MATRIX A VECTOR b

MUL #1 MUL #2 ADD #N

ADDER TREE

A*b (i=1..nu*N)

MATRIX A VECTOR b MATRIX A …………. MATRIX A VECTOR b

MUL #1 MUL #2 ADD #N

ADDER TREE

A*b (i=1..nu*N)
ROW #2p

MATRIX A VECTOR b MATRIX A …………. MATRIX A VECTOR b

MUL #1 MUL #2 ADD #2k

ADDER TREE

A*b (i=1..nu*N)
ROW 1

ROW 2

FOR j=1.. n_iter

MATRIX A (1) VECTOR b(1)

A*b (i=1..nu*N)
j=1

MATRIX A (1) VECTOR b(2)

A*b (i=1..nu*N)
j=2

MATRIX A (1) VECTOR b(n_iter)

A*b (i=1..nu*N)
j=n_iter

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

significant gain in computing time. It is important to note that
this enhancement, possible using HLS, is in general not feasible
by hand-coding due to the complex arithmetic data paths.

ii)pipelining is a common practice in digital design used to
increase the maximum clock frequency when several arithmetic
operations are performed sequentially. In this case, the
constraint is used to set the target initialization interval as
parameters, enabling an increased throughput and clock
frequency at the cost of additional digital resources. Considering
modern control problems and FPGA technology, this is a
strongly recommended strategy due to the high number of flip-
flops commonly available even in inexpensive devices.

iii) inlining enables cross optimization among different C
functions organized in a hierarchy. Unlike straight-forward
optimization, which considers each function as separate black
boxes, this directive enables further optimization and resource
sharing to increase the performance and decrease the digital
resource usage.

IV. DESIGN EXAMPLES

In order to prove the advantages of the proposed HLS scheme
and to discuss implementation details, this section presents
several representative design examples using HLS for MPC
implementation in FPGA. We discuss two examples, a small dc-
motor problem and a larger chain of masses problem to highlight
the differences in arithmetic complexity and optimization.
A. Considered example problems

i) Dc-Motor: A simple dc-motor can be represented by the
following discrete-time linear system:

ܣ ൌ 	 ൤
1 ௦ݐ
0 1 െ ܶ/௦ݐ

൨ , ܤ ൌ ൤
0

ௌݐ ⋅ ܶ/ܭ
൨,	 (8)

where the time constant ܶ ൌ 0.06, the amplification factor ܭ ൌ
0.15 and the sampling period is equal to ݐ௦ ൌ 4 ms. The states
of the system represent the rotor position and the angular speed.
The input is the PWM voltage, which is constrained to be
between േ100%	of its maximum amplitude. The considered
MPC controller needs to solve at each sampling time the
following optimization problem:

minimize		
࢛

෍ ௞ݔ
௞ݔ்ܳ ൅ ௞ݑ

௞ݑ்ܴ

ேିଵ

௞ୀ଴

൅ 	ேݔே்ܲݔ

subject	to:												x୩ାଵ ൌ ௞ݔܣ ൅ 	௞ݑܤ
																													െ100 ൑ ௞ݑ ൑ 100

(9)

where the tuning matrices in the cost function are:

ܳ ൌ	 ቂ1.1ൈ10
ସ 0

0 2.9ൈ10ଵ
ቃ , ܴ ൌ 2.4ൈ10ିଵ.			

ܲ ൌ ܳ.
(10)

We consider a prediction horizon of ܰ ൌ 40. The same solution
is obtained regardless of the hardware platform used. The
closed-loop performance of the system is shown in Fig. 4. The
sampling time of the controller is the same as the sampling

period of the system (4 ms). As it can be seen, the MPC
controller drives the system to the desired equilibrium point
while respecting the input constraints.
ii) Chain of masses: The second example is a chain of masses
that are linked by a spring [32] representing, e.g., an oscillating
system with no damping. We consider 6 masses (݉௜ ൌ 1 kg) and
spring constants of ݇ ൌ 1 N/m (Fig. 5). The system can be
represented by 12 dynamic states, the first six states describe the
position of the masses and the last 6 its velocities. The forces
between the masses are the three control inputs of the system.
The control task is to drive the system to the origin, where all
masses are at the original position and with no velocity, starting
from a disturbed state. The dynamics of the system with a
sampling period of ݐ௦ ൌ 0.5 s can be described by the following
discrete-time linear system:

ܣ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 0 0 0 0 0 0.5 0 0 0 0 0
0 1 0 0 0 0 0 0.5 0 0 0 0
0 0 1 0 0 0 0 0 0.5 0 0 0
0 0 0 1 0 0 0 0 0 0.5 0 0
0 0 0 0 1 0 0 0 0 0 0.5 0
0 0 0 0 0 1 0 0 0 0 0 0.5
െ1 0.5 0 0 0 0 1 0 0 0 0 0
0.5 െ1 0.5 0 0 0 0 1 0 0 0 0
0 0.5 െ1 0.5 0 0 0 0 1 0 0 0
0 0 0.5 െ1 0.5 0 0 0 0 1 0 0
0 0 0 0.5 െ1 0.5 0 0 0 0 1 0
0 0 0 0 0.5 െ1 0 0 0 0 0 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

Fig. 4. Time response of the dc-motor system with the
implemented control.

Fig. 5. Chain of oscillating masses with control inputs.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

, , 0 0 0

0 0

0.5 0 0

0 0

0 0

0 0.5 0

0.5

0.

0 0

5

.5

0

0

.5

B

 
 
 
 
 
 
 
 
 
   
 
  
 
 
 
 
 

  

We consider constraints on the position and velocity of each
mass and on the inputs of the system. The optimization problem
to be solved at each sampling time is:

1

0

minimize
N

T T T
k k k k N N

k

x Qx u Ru x Px




 u

k 1subject to : x k kAx Bu  
 4 4kx  
 0.5 0.5ku  

(12)

where the tuning matrices in the cost function are chosen as
identity matrices of suitable dimensions,   eye 12Q P  and

  3R eye with a prediction horizon	ܰ ൌ 10. The MPC
algorithm is triggered at each sampling time of the controller,
which is chosen to be 10 ms. Fig. 6 shows that the MPC
controller is also able to drive the system of oscillating mases to
the origin.

B. FPGA implementation and optimization
The MPC controllers for both the dc-motor and chain of

masses examples have been designed and implemented. This
subsection summarizes the main results in the optimal
implementation exploration for the floating-point
implementations, highlighting the main optimization aspects.
The implementations have been made using the VIVADO HLS
tool from Xilinx. The target FPGA is a cost-effective XC7A200.
Tables IV and V summarize the main implementation results for
floating-point implementations, where the microprocessor (µP)
implementation, using a standard STM32F407V µP, has been
included for comparison. Data are obtained from the actual
routed design. All implementations have been made with a target
clock period of 10 ns and power consumption is evaluated with
a vector-less activity propagation methodology [37], which is an
industry-standard probabilistic methodology for power
consumption estimation. The proposed implementations use the
three optimization methods explained in section III-B, i.e.

unrolling, pipelining and inlining. Solutions 1, 2 and 3
implement different unrolling strategies at different loop levels,
either internal or external. All the solutions implement
pipelining, which can be seen in the loop factor or initialization
intervals. Finally, all the solutions implement also inlining to
optimize cross-function optimization.

Solution 0 is the standard implementation with no
optimization, which is a sequential one close to a microprocessor
implementation. Solution 1 consists on unrolling the inner loop
plus pipelining accordingly using different unrolling factor from
1 (only pipelining) to N (completely unrolled). Solution 2
consists on replicating the hardware to compute simultaneously
several rows. For this solution, full unroll and unroll factor 2
have been considered assuming dual port memory since higher
unrolling factor would lead to unacceptable memory resources
usage. The straightforward full unroll option (2.N on tables) has
been included to show that an over-constrained solution leads to
a suboptimal result that does not fit into the selected device.
Finally, Solution 3 consists on pipelining the outer loop. It is
important to note that this optimization cannot be hand-coded in
a feasible way and it provides further optimization at the cost of
additional resources. Moreover, the design space exploration is
mandatory, since the optimum solution cannot be found without
performing the actual hardware implementation. Consequently,
some implementations achieve high performance with a
balanced resources consumption whereas other implementations
achieve reduced performance even with unfeasible resource
usage.
C. Discussion

From the previous results, it is clear that the design space
exploration using HLS for MPC problems enables optimization
of the FPGA design in terms of performance, digital resources
and power consumption. The optimal solution, however, is not
trivial. Too aggressive design constraints result in a solution

Fig. 6. Time response of the chain of oscillating masses system
with the implemented control.

0 5 10 15 20 25 30
-0.5

0

0.5

x

0 5 10 15 20 25 30
time [s]

-0.5

0

0.5

u

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

with less performance and more usage of FPGA area. Whereas
some strategies, such as inner loop unroll directly increases
performance and resource usage, other more complex strategies
such as outer loop unrolling cannot be easily predicted.

Also, it is important to note that the optimal solution depends
highly on the problem and on the digital platform used for
implementation. The proposed combination of automatic code
generation and the use of HLS tools enables a fast optimization
procedure that can be specifically performed for each problem
at a reasonable cost. Once the set of possible results has been
generated, the designer can choose the most suitable for each
specific application.

It is important to note that with the proposed methodology
optimized FPGA implementations of MPC for fast systems are
now possible, opening the design space to new applications.

V. CONCLUSIONS

An optimized, software-supported FPGA implementation of
model predictive control has been proposed. In order to take the
most of modern FPGA technology and provide control engineers
with powerful and simple tools, a design methodology based on
high level synthesis has been presented. Special attention has
been paid to the code and FPGA optimization, providing several
guidelines for designers. Finally, the proposed methodology has
been applied to two design examples, proving the feasibility and
possibilities of the proposed approach. As a conclusion, the

Table IV. Floating-Point FPGA implementations for the chain of masses MPC

Solution Optimization
Power

(W)

Sampling
Frequency

(KHz)
BRAMs DSP48Es FFs LUTs

µP Standard µP implementation - 1.11 - - - -

0 Standard 0.19 0.95 9 5 1764 1913

1.1 Unroll inner loop factor 1 0.19 9.92 9 5 3261 2893

1.2 Unroll inner loop factor N/5 0.27 22 11 25 7553 6621

1.3 Unroll inner loop factor N/10 0.33 28 18 50 13075 13680

1.4 Unroll inner loop factor N 0.55 34.6 46 148 17166 15864

2
Unroll inner loop factor N +

parallel row factor 2
0.96 55.3 96 296 33618 31390

2.N Full Unroll - 139 4 2250 180531 190503

3.1 Initiation interval outer loop 200 0.34 48.8 0 58 14046 18932

3.2 Initiation interval outer loop 100 0.51 93.4 0 69 22380 24796

3.3 Initiation interval outer loop 50 1.3 175 0 315 50334 47008

Table V. Floating-Point FPGA implementations for the dc-motor system MPC

Solution Optimization
Power

(W)

Sampling
Frequency

(KHz)
BRAMs DSP48Es FFs LUTs

µP Standard µP implementation - 0.67 - - - -

0 Standard 0.19 0.565 19 5 1314 1842

1.1 Unroll inner loop factor 1 0.21 4.58 19 5 3197 2973

1.2 Unroll inner loop factor N/5 0.34 11.5 41 25 6378 4943

1.3 Unroll inner loop factor N/10 0.37 14.3 33 50 12402 12275

1.4 Unroll inner loop factor N 0.54 17.7 93 198 21269 18631

2
Unroll inner loop factor N +

parallel row factor 2
1.1 40.4 181 396 43358 36922

2.N Full Unroll - 69.9 9 3232 256931 266127

3.1
Initialization interval outer loop

200
0.29 48.1 9 54 29950 48875

3.2
Initialization interval outer loop

100
0.83 92.9 9 134 39242 64593

3.3
Initialization interval outer loop

80
0.79 114 9 191 48531 75073

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

combination of FPGA technology and high level synthesis is a
promising technique for modern MPC controllers with high
performance, low cost and energy-effective implementations.
Furthermore, it opens the door to strictly verifiable MPC
implementations, as for example required in aerospace
industries.

Future work will include the consideration of model
uncertainty in MPC, as done e.g. in [38]. Additionally,
combinations of software plus ad-hoc digital hardware via hard-
core or soft-core microprocessors opens new possibilities. In this
sense, the so-called software defined system on chip provides
valuable tools for control designers.

REFERENCES
[1] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and

Design: Nob Hill Pub., 2009.
[2] J. Rodriguez, P. Cortes, R. Kennel, and M. P. Kazrnierkowski, "Model

predictive control -- a simple and powerful method to control power
converters," in Power Electronics and Motion Control Conference, 2009.
IPEMC '09. IEEE 6th International, 2009, pp. 41-49.

[3] T. Geyer, G. Papafotiou, and M. Morari, "Model Predictive Direct Torque
Control. Part I: Concept, Algorithm, and Analysis," IEEE Transactions on
Industrial Electronics, vol. 56, pp. 1894-1905, 2009.

[4] C. Xia, M. Wang, Z. Song, and T. Liu, "Robust Model Predictive Current
Control of Three-Phase Voltage Source PWM Rectifier With Online
Disturbance Observation," IEEE Transactions on Industrial Informatics,
vol. 8, pp. 459-471, 2012.

[5] H. Guzman, M. J. Duran, F. Barrero, L. Zarri, B. Bogado, I. G. Prieto, and
M. R. Arahal, "Comparative Study of Predictive and Resonant Controllers
in Fault-Tolerant Five-Phase Induction Motor Drives," IEEE Transactions
on Industrial Electronics, vol. 63, pp. 606-617, 2016.

[6] F. Wang, S. Li, X. Mei, W. Xie, J. Rodr, x00Ed, guez, and R. M. Kennel,
"Model-Based Predictive Direct Control Strategies for Electrical Drives:
An Experimental Evaluation of PTC and PCC Methods," IEEE
Transactions on Industrial Informatics, vol. 11, pp. 671-681, 2015.

[7] Y. Zhang and C. Qu, "Model Predictive Direct Power Control of PWM
Rectifiers Under Unbalanced Network Conditions," IEEE Transactions on
Industrial Electronics, vol. 62, pp. 4011-4022, 2015.

[8] M. Rivera, A. Wilson, C. A. Rojas, J. Rodriguez, J. R. Espinoza, P. W.
Wheeler, and L. Empringham, "A Comparative Assessment of Model
Predictive Current Control and Space Vector Modulation in a Direct
Matrix Converter," IEEE Transactions on Industrial Electronics, vol. 60,
pp. 578-588, 2013.

[9] F. Xu, H. Chen, X. Gong, and Q. Mei, "Fast Nonlinear Model Predictive
Control on FPGA Using Particle Swarm Optimization," IEEE
Transactions on Industrial Electronics, vol. 63, pp. 310-321, 2016.

[10] E. C. Kerrigan, G. A. Constantinides, A. Suardi, A. Picciau, and B.
Khusainov, "Computer architectures to close the loop in real-time
optimization," in 2015 54th IEEE Conference on Decision and Control
(CDC), 2015, pp. 4597-4611.

[11] G. Valencia-Palomo and J. Rossiter, "Efficient suboptimal parametric
solutions to predictive control for PLC applications," Control Engineering
Practice, vol. 19, pp. 732-743, 2011.

[12] S. Richter, C. N. Jones, and M. Morari, "Computational complexity
certification for real-time MPC with input constraints based on the fast
gradient method," Automatic Control, IEEE Transactions on, vol. 57, pp.
1391-1403, 2012.

[13] P. Zometa, M. Kögel, T. Faulwasser, and R. Findeisen, "Implementation
aspects of model predictive control for embedded systems," in Proc.
American Control Conf., 2012, pp. 1205-1210.

[14] J. Sawma, F. Khatounian, E. Monmasson, L. Idkhajine, and R. Ghosn,
"Cascaded Dual Model Predictive Control of an Active Front-End

Rectifier," IEEE Transactions on Industrial Electronics, vol. PP, pp. 1-1,
2016.

[15] L. Gomes, E. Monmasson, M. Cirstea, and J. J. Rodriguez-Andina,
"Industrial electronic control: FPGAs and embedded systems solutions," in
Industrial Electronics Society, IECON 2013 - 39th Annual Conference of
the IEEE, 2013, pp. 60-65.

[16] K.-V. Ling, B. F. F. Wu, and J. M. Maciejowski, "Embedded model
predictive control (MPC) using a FPGA," in Proc. IFAC World Congress,
2008, pp. 15250-15255.

[17] L. G. Bleris, J. Garcia, M. V. Kothare, and M. G. Arnold, "Towards
embedded model predictive control for system-on-a-chip applications,"
Journal of Process Control, vol. 16, pp. 255-264, 2006.

[18] M. Ricco, P. Manganiello, E. Monmasson, G. Petrone, and G. Spagnuolo,
"FPGA-Based Implementation of Dual Kalman Filter for PV MPPT
Applications," IEEE Transactions on Industrial Informatics, vol. PP, pp.
1-1, 2015.

[19] I. Bahri, L. Idkhajine, E. Monmasson, and M. E. A. Benkhelifa,
"Hardware/Software Codesign Guidelines for System on Chip FPGA-
Based Sensorless AC Drive Applications," IEEE Transactions on
Industrial Informatics, vol. 9, pp. 2165-2176, 2013.

[20] E. Monmasson and M. N. Cirstea, "FPGA design methodology for
industrial control systems: a review," IEEE Trans. Ind. Electron., vol. 54,
pp. 1824-1842, August 2007.

[21] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
"Constrained model predictive control: Stability and optimality,"
Automatica, vol. 36, pp. 789-814, 6// 2000.

[22] G. Martin and G. Smith, "High-level synthesis: Past, present, and future,"
IEEE Design & Test of Computers, vol. 26, pp. 18-25, 2009.

[23] J. Cong, L. Bin, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhiru,
"High-level synthesis for FPGAs: From prototyping to deployment," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, pp. 473-491, 2011.

[24] D. Navarro, O. Lucía, L. A. Barragán, I. Urriza, and O. Jiménez, "High-
level synthesis for accelerating the FPGA implementation of
computationally-demanding control algorithms for power converters,"
IEEE Trans. Ind. Informat., vol. 9, pp. 1371-1379, August 2013.

[25] O. Jimenez, O. Lucia, I. Urriza Parroque, L. A. Barragan, D. Navarro, and
V. Dinavahi, "Implementation of an FPGA-based on-line hardware-in-the-
loop emulator using high-level synthesis tools for resonant power
converters applied to induction heating appliances," IEEE Transactions on
Industrial Electronics, vol. 62, pp. 2206-2214, April 2015.

[26] A. Suardi, E. C. Kerrigan, G. A. Constantinides, and R. Findeisen, "Fast
FPGA prototyping toolbox for embedded optimization.," in Proc. of the
European Control Conference, 2015, pp. 2589-2594.

[27] J. Mattingley and S. Boyd, "CVXGEN: A code generator for embedded
convex optimization," Optimization and Engineering, vol. 13, pp. 1-27,
2012.

[28] E. Chu, N. Parikh, A. Domahidi, and S. Boyd, "Code generation for
embedded second-order cone programming," in Proc. European Control
Conf., 2013, pp. 1547-1552.

[29] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, "Embedded online optimization for model predictive
control at megahertz rates," IEEE Transactions on Automatic Control, pp.
3238-3251, 2014.

[30] S. Boyd and L. Vandenberghe, Convex Optimization: Cambridge
University Press, 2004.

[31] M. Kögel and R. Findeisen, "Fast predictive control of linear, time-
invariant systems using an algorithm based on the fast gradient method
and augmented Lagrange multipliers," in Proc. IEEE Conf. Control
Applications, 2011, pp. 780-785.

[32] Y. Wang and S. Boyd, "Fast model predictive control using online
optimization," Control Systems Technology, IEEE Transactions on, vol.
18, pp. 267-278, 2010.

[33] P. Zometa, H. Heinemann, S. Lucia, M. Kögel, and R. Findeisen,
"Efficient Implementation of Stochastic Model Predictive Control for
Embedded Systems Based on Second-Order Cone Programs," in Submitted
to the European Control Conf., 2016.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

[34] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course: Kluwer Academic Publishers, 2004.

[35] P. Zometa, M. Kögel, and R. Findeisen, "muAO-MPC: A free code
generation tool for embedded real-time linear model predictive control," in
Proc. American Control Conf., 2013, pp. 5320-5325.

[36] Xilinx, Introduction to high-level synthesis with Vivado HLS Standalone,
2016.

[37] F. N. Najm, "A survey of power estimation techniques in VLSI circuits,"
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
2, pp. 446-455, 1994.

[38] S. Lucia, T. Finkler, and S. Engell, "Multi-stage nonlinear model
predictive control applied to a semi-batch polymerization reactor under
uncertainty," Journal of Process Control, vol. 23, pp. 1306-1319, 10//
2013.

Sergio Lucia (M’16) obtained his M.Sc. in
Electrical Engineering from the University of
Zaragoza in 2010 and the Dr.-Ing. degree from
TU Dortmund in the field of optimization and
automatic control in 2014. He then joined the
Otto-von-Guericke Universität Magdeburg, and
visited the Massachusetts Institute of
Technology as a Postdoctoral Fellow.

Since May 2017, he is Assistant Professor and holds the chair “Internet
of Things for Smart Buildings” at the TU Berlin and the Einstein Center
Digital Future. His research efforts focus on decision-making under
uncertainty, distributed control, and embedded optimization using
micro-controllers and FPGAs in the framework of the Internet of
Things. Applications of interest include smart buildings and Li-ion
battery systems.

Denis Navarro received the M.Sc. degree in
Microelectronics from the University of
Montpellier, France, and the Ph.D. degree from
the University of Zaragoza in 1987 and 1992,
respectively.
Since September 1988, he has been with the
Department of Electronic Engineering and
Communications at the University of Zaragoza,
where he is an Associate Professor. His current

research interests include CAD for VLSI, low power ASIC design, and
modulation techniques for power converters. He is involved in the
implementation of new applications of integrated circuits. In 1993 Dr.
Navarro designed the first SPARC® microprocessor in Europe.
Dr. Navarro is a member of the Aragon Institute for Engineering
Research (I3A).

Óscar Lucía (S’04, M’11, SM’14) received the
M.Sc. and Ph.D. degrees (with honors) in
Electrical Engineering from the University of
Zaragoza, Spain, in 2006 and 2010,
respectively.
During 2006 and 2007 he held a research
internship at the Bosch and Siemens Home
Appliances Group. Since 2008, he has been with
the Department of Electronic Engineering and

Communications at the University of Zaragoza, Spain, where he is
currently an Associate Professor. During part of 2009 and 2012, he was
a visiting scholar at the Center of Power Electronics Systems (CPES),
Virginia Tech. His main research interests include resonant power
conversion, wide-bandgap devices, and digital control, mainly applied
to contactless energy transfer, induction heating, electric vehicles, and
biomedical applications. In these topics, he has published more than 50
international journal papers and 125 conference papers, and he has filed
more than 25 patents.
Dr. Lucía is a Senior Member of the IEEE and an active member of the
Power Electronics (PELS) and Industrial Electronics (IES) societies.
He was a Guest Associate Editor of the IEEE Transactions on Industrial
Electronics and the IEEE Journal of Emerging and Selected Topics in
Power Electronics in 2013 and 2015, respectively. Currently, he is an
Associate Editor of the IEEE Transactions on Industrial Electronics and
IEEE Transactions on Power Electronics. Dr. Lucía is a member of the
Aragon Institute for Engineering Research (I3A).

Pablo Zometa received the M.Sc. in
mechatronic systems from the University of
Siegen, Germany in 2007. He received his Ph.D.
from the Otto-von-Guericke University
Magdeburg, Germany in 2017. The topic of his
dissertation was automatic code generation for
model predictive control of embedded systems.
Currently he leads the technical development at
his own startup.

Rolf Findeisen is full professor at the Department
of Electrical Engineering and Information
Technology at the Otto-von-Guericke-Universität
Magdeburg. He studied Engineering Cybernetics
(Diploma '97) at the University of Stuttgart,
chemical engineering (M.Sc. '97) at the University
of Wisconsin-Madison, and received his Ph.D.
from the University of Stuttgart ('05). Rolf is
associated editor of the IEEE Transaction on

Control of Networked System, editor of the IEEE Control Systems
Magazin, and heads the workgroup on Internet of Things of the
Network and Communication Systems Technical Commity of the IEEE
Control Systems Society. He has been organiser and chair of several
conferences and is the Co-chair of the International Program
Committee of the IFAC World Congress 2020 in Berlin. Rolfs main
research interests are optimisation based / predictive control and
estimation for uncertain systems, cyberphysical systems and the
interplay of control and IoT. Applications span from mechatronic
systems, batteries, electrical systems to biomedicine and systems
biology.

