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Abstract— Model predictive control is an optimization-based 
strategy for high-performance control that is attracting increasing 
interest. While model predictive control (MPC) requires the online 
solution of an optimization problem, its ability to handle 
multivariable systems and constraints makes it a very powerful 
control strategy specially for MPC of embedded systems, which 
have an ever increasing amount of sensing and computation 
capabilities. We argue that the implementation of MPC on field 
programmable gate arrays (FPGAs) using automatic tools is 
nowadays possible, achieving cost-effective successful applications 
on fast or resource-constrained systems. The main burden for the 
implementation of MPC on FPGAs is the challenging design of the 
necessary algorithms. We outline an approach to achieve a 
software-supported optimized implementation of MPC on FPGAs 
using high level synthesis tools and automatic code generation. The 
proposed strategy exploits the arithmetic operations necessaries to 
solve optimization problems to tailor an FPGA design, which allows 
a trade-off between energy, memory requirements, cost, and 
achievable speed. We show the capabilities and the simplicity of use 
of the proposed methodology on two different examples and 
illustrate its advantages over a microcontroller implementation. 

Index Terms- Field programmable gate array, model predictive 
control, high level synthesis. 

I. INTRODUCTION 

The amount of required and available sensing and 
computation capabilities of existing and newly designed systems 
is growing rapidly. In this paper, we focus on model predictive 
control (MPC) [1], which is an optimization-based, advanced 
control strategy that uses a mathematical model to predict the 
future behavior of a system. The predictions are used to obtain a 
sequence of control inputs that minimize a desired performance 
criterion and result in satisfaction of the required constraints.  
Fig. 1 shows the central idea of MPC, in which the predictions 
of the model states (xk) at each sampling time k are used to obtain 
a sequence of control input vectors (uk) that minimizes a desired 
performance criterion and result in satisfaction of the required 

constraints. The application of MPC demands the real-time 
solution of a numerical optimization problem. Therefore, its 
applications are traditionally limited to slow systems, e.g. 
chemical plants or petrochemical systems. 

However, due to the significant advances in tailored 
algorithms and hardware, MPC is increasingly becoming of 
interest for very fast embedded and resource-limited systems. 
Some examples include industrial electronics applications [2, 3] 
such as inverters [4-6], rectifiers [7], matrix converters [8], or 
engine control [9]. 

New hardware architectures have been studied for the 
implementation of MPC [10], including programmable logic 
controllers (PLCs) [11], low-cost microcontrollers  [12, 13], 
field programmable gate arrays (FPGAs) [14, 15] [16], and 
application specific integrated circuits (ASICs) [17].  The choice 
of hardware architecture is often a trade-off between cost, 
energy consumption and required performance. 

Advances in FPGA technology have led to inexpensive 
devices with increasing digital resources. This opens 
significantly the spectrum of potential applications. Moreover, 
FPGA technology enables the optimized use of parallel 
calculations as well as ad-hoc digital hardware development, 
increasing the performance to levels that are not achievable 
using any other fixed architecture implementation. As a result of 
the technology development, FPGA technology has become an 
alternative for MPC controllers implementation [18-20] due to 
its high performance and cost-effectiveness, enabling 
applications at MHz rates. For cost-efficient solutions, the 

 

Fig. 1. Model predictive control. 
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system can be ported to an application-specific integrated circuit 
(ASIC). 

Although theoretical issues of MPC control have been deeply 
studied [21], there are still many challenges for the fast and 
economically viable implementation and use of MPC. Among 
those, the effort to design, optimize and implement such 
controller is one of the most relevant challenges. In order to 
enable a rapid and economic FPGA implementation, this paper 
proposes a design and optimization procedure using high level 
synthesis (HLS) [22, 23] which has proved to be an effective 
way to implement industrial controllers [24, 25]. In comparison 
to [26], which also presents the use of HLS tools for embedded 
optimization, we present explicitly how to tailor and optimize 
the FPGA implementation paying special attention to the 
arithmetic operations of MPC controllers. This allows to 
consider different trade-offs between energy, speed, and 
memory requirements, and to provide several guidelines for 
designers. The main benefits of the proposed design workflow 
are the fast testing of different designs, which enable a time-
effective way to analyze a large set of FPGA implementations, 
which cannot be done manually. 

We focus here on the software-supported implementation of 
predictive controllers on FPGAs, mainly because of its high-
performance, cost effectiveness and flexibility. Currently, there 
are tools for the implementation of MPC that generate simple 
code that can be used e.g. on microcontrollers, see CVXGEN 
[27] or ECOS/QCML [28]. The use of FPGAs for efficient MPC 
implementations has been presented, e.g., in [29]. However, 
there the FPGA design is performed manually. While a toolbox 
for FPGA prototyping is presented in [26], there are currently no 
available tools to automatically design and optimize an FPGA 
implementation of MPC starting from a high-level description 
of the control problem, enabling the application of MPC 
techniques to non-experts in the field. This represents the main 
challenge for an optimized use of MPC on FPGAs. This 
challenge can be efficiently overcome as it is shown in this 
paper. 

This paper is organized as follows. Section II gives a brief 
overview of the MPC problem formulation and the basic 
algorithms that are studied for implementation. Section III 
details the proposed workflow for an efficient and cost-efficient 
MPC FPGA implementation using HLS as well as the 
optimization procedure used. Section IV presents a design 
example including its formulation, implementation and 
optimization process and the achieved results. Section V 
summarizes the main conclusions of the paper. 

 
 
 

II. MODEL PREDICTIVE CONTROL PROBLEM 

A. Formulation and basic solution algorithms 
Model Predictive Control is based on the repeated solution of 

an optimization problem at each sampling time. A mathematical 
model is used to predict the future behavior of the system until 
a given prediction horizon and a sequence of optimal control 
inputs is obtained by minimizing the chosen cost function 
subject to given constraints (see also Fig. 1). For embedded 
systems, usually linear models are considered, which represent 
a linear system or a linearization of the actual nonlinear system, 
and can be represented as: 

  x Ax Bu     (1) 

where x ∈ 	Թ௡ೣ denotes the states and ݑ ∈ 	Թ௡ೠ  represents the 
control inputs.  

Usually, a quadratic cost function with positive semidefinite 
weight matrices and affine constraints are considered, so that the 
optimization problem that needs to be solved at each sampling 
time is convex and has the form: 

 
 minimize		

࢞,࢛
∑ ሺݔ௞

௞ݔ்ܳ ൅ ௞ݑ
௞ሻேିଵݑ்ܴ

௞ୀ଴ ൅ 	ேݔே்ܲݔ

subject	to:												ݔ௞ାଵ ൌ ௞ݔܣ ൅ 	௞ݑܤ
																							ܿ௠௜௡ ൑ ௞ݔܨ ൅ ௞ݑܩ ൑ ܿ௠௔௫. 

(2) 

Here, ܳ, ܴ, ܲ are tuning parameters of the cost function which 
penalize state and input deviations. ܨ, ,ܩ ܿ௠௜௡, ܿ௠௔௫	define the 
constraints that are considered for the control task, while ܰ is 
the prediction horizon. Embedding the initial condition ݔ଴ and 
the linear dynamics (1) in the formulation of the cost function 
and constraints, the optimization problem can be transformed 
into a so-called condensed formulation [30]. The condensed 
problem only has the control inputs as optimization variables, 
which is beneficial for embedded implementations. The 
resulting equivalent formulation of the optimization problem (2) 
can be expressed in condensed form as:  

minimize
࢛

࢛ܪ்࢛						 ൅ ݃ሺݔ଴ሻ்࢛	

subject	to:							ܸ࢛ െ ଴ሻݔሺݒ ൑ 0. 
(3) 

Many efficient algorithms have been proposed in the last 
years to solve (3). First-order methods for solving the quadratic 
program (3) are, e.g., presented in [12, 31]. Second order 
approaches are provided in [32, 33]. We focus on the use of a 
combination of the fast gradient method (FGM) [34] that can be 
used when only input constraints are considered, combined with 
the use of an augmented Lagrangian method (ALM), which 
allows to handle state constraints as proposed in [31]. We review 
this approach in the following. 

For simplicity of notation, in the remainder of the paper we 
denote the cost function of the considered optimization problem 
(3) as ଴݂ሺ࢛, ,଴ሻ and the equality constraints as ௖݂ሺ࢛ݔ ଴ሻݔ ൌ
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	ܸ࢛ െ  ଴ሻ (inequality constraints are transformed intoݔሺݒ
equality constraints by introducing slack variables). As it is 
common in the field of numerical optimization [30], the 
augmented Lagrangian ࣦሺ⋅ሻ is defined as: 

ࣦሺ࢛, ,଴ݔ ሻߣ ൌ ଴݂ሺ࢛, ଴ሻݔ ൅	෍ߣ௟	 ௖݂ሺ࢛, ଴ሻݔ

௡೎

௟ୀଵ

൅
ߤ
2
෍	 ௖݂ଶ	ሺ࢛, ଴ሻݔ

௡೎

௟ୀଵ

. 

(4) 

Here ߣ௟ is the Lagrange multiplier associated to the constraint ݈, 
 is a tuning parameter of the regularization term and ݊௖ denotes ߤ
the number of constraints. The idea of augmented Lagrangian 
methods is that solving an unconstrained optimization problem 
with ࣦሺ⋅ሻ as cost function and using the optimal value of the 
multipliers ߣ௟

⋆ leads to the solution ࢛⋆ of the original 
(constrained) optimization problem [30]. In the combined 
FGM+ALM method we use the fast gradient method to find the 
solution of the unconstrained problem given by the augmented 
Lagrangian and we use the ALM method to iteratively update 
the values of the Lagrange multipliers to reach its optimal value. 

The fast gradient method is a first order iterative method to 
efficiently solve input-constrained optimization problems. It is 
especially suited for embedded platforms due to its low memory 
requirements and high convergence rate. It consists of two main 
steps. In the first step, the next candidate of the optimal solution 
࢛ାis computed: 

࢛ା ൌ 	 ࣯࣪ ቆ࢝ െ
1
ܮ
,௨ࣦሺ࢝ߘ ,଴ݔ  .ሻቇߣ

(5) 
 
 

Here ܮ is a Lipschitz constant that can be calculated from the 
problem data, i.e., the system description and the control task 
description, and ࣯࣪ denotes a projection onto the set ࣯, which 
is defined by the input constraints. In most cases, the inputs are 
box-constrained, and such projection is a simple (and 
computationally cheap) saturation operation given the minimum 
and maximum possible values of the control inputs. The operator 
 ௨ሺ⋅ሻ denotes the partial derivative of the augmented Lagrangianߘ
with respect to the vector of control inputs ࢛. 

In the second part of the fast gradient method an extra-step is 
computed [34]: 

 

࢝ ൌ ࢛ା ൅ ሺ࢛ାߥ െ ࢛ሻ, (6) 

  

where ߥ ൌ ൫√ܮ െ ඥ߶൯൫√ܮ െ ඥ߶൯
ିଵ

. Here, ߶ ൐ 0 is a strong 

convexity constant which can be computed offline [31]. The fast 
gradient method for a number of iterations ௜݆௡ and a Lagrange 
multiplier ߣ is summarized in Algorithm 1. 

Table I. Algorithm 1: Fast gradient method (FGM) 
Require: initial guess ࢛, multiplier ࣅ, state ࢞૙ 

1. set ࢝ ൌ ࢛ 
2. for ࢐ ൌ ૙ until ࢔࢏࢐ െ ૚ do: 

3.   			࢛ା ൌ 	चट ൬࢝ െ ૚

ࡸ
,खሺ࢛࢝ࢺ ࢞૙,  ሻ൰ࣅ

4.  				࢝ ൌ ࢛ା ൅ ሺ࢛ାࣇ െ ࢛ሻ	 
5. end for 

Return ࢛ା 
 
If a given optimization problem only has input constraints, 

Algorithm 1 is directly able to obtain a solution (the value of the 
multiplier ߣ is then irrelevant). In the case of state constraints, 
an optimal value of the multiplier has to be found to obtain the 
solution of the original (constrained) problem. This is achieved 
via an iterative update of the multiplier: 

ߣ ← ߣ ൅ ൫ܸ࢛ߤ െ  ଴ሻ൯, (7)ݔሺݒ
where ߤ ൐ 0 is a penalty parameter.  

When state constraints are present, a combination of the fast 
gradient method presented in Algorithm 1 and the multiplier 
update in (7) is used. A summary of the ALM + FGM scheme 
with ݅௘௫ iterations is given in Algorithm 2. 

 
Table II. Algorithm 2: ALM + FGM 

Require: initial guess ࢛, multiplier ࣅ, state ࢞૙	 
1. for ࢏ ൌ ૙ until ࢞ࢋ࢏ െ ૚ do: 
2.       compute ࢛ା using Algorithm 1 
ࣅ       .3 ← ࣅ ൅ ࢛ࢂ൫ࣆ െ ࢜ሺ࢞૙ሻ൯ 
4. end for 

Return ࢛ା,  	 ࣅ

III. FPGA IMPLEMENTATION OF MPC USING HLS 

A. Design workflow 
A two-step approach is proposed (Fig. 2(a)) to enable an 

optimized yet simple FPGA design for MPC controllers. As a 
first step, we use the tailored MPC code generation tools 
µAOMPC [35] and included novel extensions to transform a 
simple description of the control problem to code that can be 
used in a second step by a High Level Synthesis (HLS) tool, such 
as Vivado HLS [36]. The required tailored code is automatically 
generated by the extended version of µAOMPC, which 
implements the ALM+FGM algorithm presented in Table II 
relying only on additions and multiplications. The proposed 
extended version modifies µAOMPC 0.4.0 by including 
definitions of each needed operation (see Table III) with fixed-
size arrays. This is necessary because the Vivado HLS tool does 
not allow variable-size array optimization. Variable size arrays 
were used in µAOMPC to achieve generated codes of smaller 
size. However, the modified version of the code will take 
advantage of fixed-size arrays to optimize the FPGA 
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implementation by unrolling and pipelining the digital design, 
as it will be explained later.  

This approach offers several advantages for computations on 
embedded platforms. The HLS tool processes the auto-generated 
code taking into account explicitly the particularities of the 
optimization algorithms presented in Table I and Table II. The 
result of the proposed approach is an automatic and optimized 
FPGA design for MPC, which depends on the problem data and 
designer requirements. The proposed approach offers several 
design alternatives to achieve different trade-offs between 
FPGA size and computation time. Alternatively, µAOMPC can 
be used to generate C-code that can be directly used on 
microcontrollers, without any additional libraries. 

The high level synthesis tool workflow to implement the MPC 
controller is summarized in Fig. 2(b). Inputs are the C-code 
containing the MPC algorithm as well as the required libraries 
and additional constrains to be considered by the HLS tool. As 
discussed later, these constraints must be designed carefully 
taking the MPC problem into account in order to optimize both 
the performance and the needed digital resources. The output of 

the HLS process is an optimized register transfer level (RTL) 
implementation using a hardware description language ready for 
both  simulation and/or synthesis. One of the main benefits of 
this design flow is the fast design process, which enables to 
analyze a large set of implementations in a time-effective 
manner, which is not possible to address manually. The main 
novel contributions of the proposed design flow include the 
extension of the tool µAOMPC to generate C-code that can be 
directly used by HLS tools, as well as the optimized use of HLS 
constraints to take advantage of the arithmetic operations that 
are necessary to solve the typical optimization problems that 
arise within MPC. 
B. Optimization of the FPGA design 

 The optimal implementation of model predictive control with 
respect to FPGA resources and computational speed depends 
strongly on the matrix-vector operations that are necessary to 
solve the optimization problem at each sampling time. Table III 
summarizes all the necessary operations, as a function of the 
number of states (nx), the number of control inputs (nu), and the 
prediction horizon (N). These operations and their relation with 
the FPGA implementation are key during the design process in 
order to optimize the implementation performance and digital 
resource usage. The saturate operation is the projection operator 
defined in the FGM algorithm for the case of box-constrained 
inputs and the scale operation denotes the multiplication of all 
elements of a vector by a scalar. A similar analysis can be 
performed for the FGM+ALM algorithm. It is omitted here for 
simplicity in the presentation. 

From Table III, it is clear that the matrix-vector multiplication 
inside the loop is the most resource consuming operation. The 
optimization analysis will focus on this aspect.  

 In order to explore and optimize the design space using high 
level synthesis, several design constraints must be carefully 
chosen: 

i) unrolling permits unrolling a certain loop to compute 
arithmetic operations using parallel processing. This 
significantly improves the implementation performance at the 
cost of additional digital resources. 

 

(a) 

 
(b) 

Fig. 2. Design workflow for FPGA implementation of MPC 
using HLS: global overview (a) and HLS tool workflow (b). 

Table III. Arithmetic operations 

Line Algorithm 1 Operation type Dimension 

3 A * b (nu * N, nx) ൈ nx 
for j  = 1 : n_iter - - 

3 A * b (nu * N) ൈ nu *N 
3 a + b nu * N 
3 a - b nu * N 
3 saturate(a) nu * N 
4 a - b nu * N 
4 scale(a) nu * N 
4 a + b nu * N 
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Fig. 3 (a) shows the standard arithmetic operation 
implementation, which requires a single multiplier plus an 
accumulator which sweeps all matrix elements. This 
implementation, however, is the slowest and it can limit real-
time computing with complex problems or large prediction 
horizons. In order to improve the performance, the inner loop 
can be unrolled (Fig. 3(b)), which requires additional multipliers 
plus an adder tree. Depending on the unroll level, a balance 
between performance and digital resource usage must be met. 

Additionally, several rows of the matrix multiplication can be 
computed at the same time. This implies the replication of the 
aforementioned structure as many times as the number of rows 
to be computed simultaneously (Fig. 3(c)). 
Usually, unrolling is chosen to be an even number to take the 
most of dual port memories. Finally, if the performance needs to 
be further improved, the outer loop can be also unrolled (Fig. 
3(d)). This means that partial data set from an iteration can be 
used to start computing subsequent iterations, enabling a 

  

(a) (b) 

(c) 

 
(d) 

Fig. 3. Arithmetic operation implementation: standard implementation (a), unroll inner loop (b), unroll inner loop plus row parallelization 
(c), and unroll outer loop (d). 

@1            @nu*N+1                                                      @1           

@2

@nu*N @nu*N*nx @nu*N  

MATRIX A                                                   VECTOR b

A*b (i=1..nu*N)

MATRIX A                      VECTOR b                      MATRIX A               ………….               MATRIX A               VECTOR b

MUL #1                           MUL #2                                                                                      ADD #N

ADDER TREE

A*b (i=1..nu*N)

MATRIX A                      VECTOR b                      MATRIX A               ………….               MATRIX A               VECTOR b

MUL #1                           MUL #2                                                                                      ADD #N

ADDER TREE

A*b (i=1..nu*N)
ROW #2p

MATRIX A                      VECTOR b                      MATRIX A               ………….               MATRIX A               VECTOR b

MUL #1                           MUL #2                                                                                      ADD #2k

ADDER TREE

A*b (i=1..nu*N)
ROW 1

ROW 2

FOR j=1.. n_iter

MATRIX A (1)                       VECTOR b(1)

A*b (i=1..nu*N)
j=1

MATRIX A (1)                        VECTOR b(2)

A*b (i=1..nu*N)
j=2

MATRIX A (1)               VECTOR b(n_iter)

A*b (i=1..nu*N)
j=n_iter
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significant gain in computing time. It is important to note that 
this enhancement, possible using HLS, is in general not feasible 
by hand-coding due to the complex arithmetic data paths. 

ii)pipelining is a common practice in digital design used to 
increase the maximum clock frequency when several arithmetic 
operations are performed sequentially. In this case, the 
constraint is used to set the target initialization interval as 
parameters, enabling an increased throughput and clock 
frequency at the cost of additional digital resources. Considering 
modern control problems and FPGA technology, this is a 
strongly recommended strategy due to the high number of flip-
flops commonly available even in inexpensive devices. 

iii) inlining enables cross optimization among different C 
functions organized in a hierarchy. Unlike straight-forward 
optimization, which considers each function as separate black 
boxes, this directive enables further optimization and resource 
sharing to increase the performance and decrease the digital 
resource usage. 

IV. DESIGN EXAMPLES 

In order to prove the advantages of the proposed HLS scheme 
and to discuss implementation details, this section presents 
several representative design examples using HLS for MPC 
implementation in FPGA. We discuss two examples, a small dc-
motor problem and a larger chain of masses problem to highlight 
the differences in arithmetic complexity and optimization.  
A. Considered example problems 

i) Dc-Motor: A simple dc-motor can be represented by the 
following discrete-time linear system: 

ܣ ൌ 	 ൤
1 ௦ݐ
0 1 െ ܶ/௦ݐ

൨ , ܤ ൌ ൤
0

ௌݐ ⋅ ܶ/ܭ
൨,	 (8) 

where the time constant ܶ ൌ 0.06, the amplification factor ܭ ൌ
0.15 and the sampling period is equal to ݐ௦ ൌ 4 ms. The states 
of the system represent the rotor position and the angular speed. 
The input is the PWM voltage, which is constrained to be 
between േ100%	of its maximum amplitude. The considered 
MPC controller needs to solve at each sampling time the 
following optimization problem: 

minimize		
࢛

෍ ௞ݔ
௞ݔ்ܳ ൅ ௞ݑ

௞ݑ்ܴ

ேିଵ

௞ୀ଴

൅ 	ேݔே்ܲݔ

subject	to:												x୩ାଵ ൌ ௞ݔܣ ൅ 	௞ݑܤ
																													െ100 ൑ ௞ݑ ൑ 100 

(9) 

where the tuning matrices in the cost function are: 

ܳ ൌ	 ቂ1.1ൈ10
ସ 0

0 2.9ൈ10ଵ
ቃ , ܴ ൌ 2.4ൈ10ିଵ.			 

ܲ ൌ ܳ. 
(10) 

We consider a prediction horizon of ܰ ൌ 40. The same solution 
is obtained regardless of the hardware platform used. The 
closed-loop performance of the system is shown in Fig. 4. The 
sampling time of the controller is the same as the sampling 

period of the system (4 ms). As it can be seen, the MPC 
controller drives the system to the desired equilibrium point 
while respecting the input constraints. 
ii) Chain of masses: The second example is a chain of masses 
that are linked by a spring [32] representing, e.g., an oscillating 
system with no damping. We consider 6 masses (݉௜ ൌ 1 kg) and 
spring constants of ݇ ൌ 1 N/m (Fig. 5). The system can be 
represented by 12 dynamic states, the first six states describe the 
position of the masses and the last 6 its velocities. The forces 
between the masses are the three control inputs of the system. 
The control task is to drive the system to the origin, where all 
masses are at the original position and with no velocity, starting 
from a disturbed state. The dynamics of the system with a 
sampling period of ݐ௦ ൌ 0.5 s can be described by the following 
discrete-time linear system: 

ܣ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
1 0 0 0 0 0 0.5 0 0 0 0 0
0 1 0 0 0 0 0 0.5 0 0 0 0
0 0 1 0 0 0 0 0 0.5 0 0 0
0 0 0 1 0 0 0 0 0 0.5 0 0
0 0 0 0 1 0 0 0 0 0 0.5 0
0 0 0 0 0 1 0 0 0 0 0 0.5
െ1 0.5 0 0 0 0 1 0 0 0 0 0
0.5 െ1 0.5 0 0 0 0 1 0 0 0 0
0 0.5 െ1 0.5 0 0 0 0 1 0 0 0
0 0 0.5 െ1 0.5 0 0 0 0 1 0 0
0 0 0 0.5 െ1 0.5 0 0 0 0 1 0
0 0 0 0 0.5 െ1 0 0 0 0 0 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Fig. 4. Time response of the dc-motor system with the 
implemented control. 

Fig. 5. Chain of oscillating masses with control inputs. 
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We consider constraints on the position and velocity of each 
mass and on the inputs of the system. The optimization problem 
to be solved at each sampling time is: 

1

0

minimize  
N

T T T
k k k k N N

k

x Qx u Ru x Px




 u

k 1subject to :             x k kAx Bu  
                             4 4kx    
                          0.5 0.5ku    

(12) 

where the tuning matrices in the cost function are chosen as 
identity matrices of suitable dimensions,      eye 12Q P   and 

  3R eye  with a prediction horizon	ܰ ൌ 10.  The MPC 
algorithm is triggered at each sampling time of the controller, 
which is chosen to be 10 ms. Fig. 6 shows that the MPC 
controller is also able to drive the system of oscillating mases to 
the origin.  

B.  FPGA implementation and optimization 
The MPC controllers for both the dc-motor and chain of 

masses examples have been designed and implemented. This 
subsection summarizes the main results in the optimal 
implementation exploration for the floating-point 
implementations, highlighting the main optimization aspects. 
The implementations have been made using the VIVADO HLS 
tool from Xilinx. The target FPGA is a cost-effective XC7A200. 
Tables IV and V summarize the main implementation results for 
floating-point implementations, where the microprocessor (µP) 
implementation, using a standard STM32F407V µP, has been 
included for comparison. Data are obtained from the actual 
routed design. All implementations have been made with a target 
clock period of 10 ns and power consumption is evaluated with 
a vector-less activity propagation methodology [37], which is an 
industry-standard probabilistic methodology for power 
consumption estimation. The proposed implementations use the 
three optimization methods explained in section III-B, i.e. 

unrolling, pipelining and inlining. Solutions 1, 2 and 3 
implement different unrolling strategies at different loop levels, 
either internal or external. All the solutions implement 
pipelining, which can be seen in the loop factor or initialization 
intervals. Finally, all the solutions implement also inlining to 
optimize cross-function optimization.  

Solution 0 is the standard implementation with no 
optimization, which is a sequential one close to a microprocessor 
implementation. Solution 1 consists on unrolling the inner loop 
plus pipelining accordingly using different unrolling factor from 
1 (only pipelining) to N (completely unrolled). Solution 2 
consists on replicating the hardware to compute simultaneously 
several rows. For this solution, full unroll and unroll factor 2 
have been considered assuming dual port memory since higher 
unrolling factor would lead to unacceptable memory resources 
usage. The straightforward full unroll option (2.N on tables) has 
been included to show that an over-constrained solution leads to 
a suboptimal result that does not fit into the selected device. 
Finally, Solution 3 consists on pipelining the outer loop. It is 
important to note that this optimization cannot be hand-coded in 
a feasible way and it provides further optimization at the cost of 
additional resources. Moreover, the design space exploration is 
mandatory, since the optimum solution cannot be found without 
performing the actual hardware implementation. Consequently, 
some implementations achieve high performance with a 
balanced resources consumption whereas other implementations 
achieve reduced performance even with unfeasible resource 
usage. 
C. Discussion 

From the previous results, it is clear that the design space 
exploration using HLS for MPC problems enables optimization 
of the FPGA design in terms of performance, digital resources 
and power consumption. The optimal solution, however, is not 
trivial. Too aggressive design constraints result in a solution 

 
Fig. 6. Time response of the chain of oscillating masses system 
with the implemented control. 
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with less performance and more usage of FPGA area. Whereas 
some strategies, such as inner loop unroll directly increases 
performance and resource usage, other more complex strategies 
such as outer loop unrolling cannot be easily predicted. 

Also, it is important to note that the optimal solution depends 
highly on the problem and on the digital platform used for 
implementation. The proposed combination of automatic code 
generation and the use of HLS tools enables a fast optimization 
procedure that can be specifically performed for each problem 
at a reasonable cost. Once the set of possible results has been 
generated, the designer can choose the most suitable for each 
specific application. 

It is important to note that with the proposed methodology 
optimized FPGA implementations of MPC for fast systems are 
now possible, opening the design space to new applications. 

V. CONCLUSIONS 

An optimized, software-supported FPGA implementation of 
model predictive control has been proposed. In order to take the 
most of modern FPGA technology and provide control engineers 
with powerful and simple tools, a design methodology based on 
high level synthesis has been presented. Special attention has 
been paid to the code and FPGA optimization, providing several 
guidelines for designers. Finally, the proposed methodology has 
been applied to two design examples, proving the feasibility and 
possibilities of the proposed approach. As a conclusion, the 

Table IV. Floating-Point FPGA implementations for the chain of masses MPC   

Solution Optimization 
Power 

(W) 

Sampling 
Frequency 

(KHz) 
BRAMs DSP48Es FFs LUTs 

µP Standard µP implementation - 1.11 - - - - 

0 Standard 0.19 0.95 9 5 1764 1913 

1.1 Unroll inner loop factor 1 0.19 9.92 9 5 3261 2893 

1.2 Unroll inner loop factor N/5 0.27 22 11 25 7553 6621 

1.3 Unroll inner loop factor N/10 0.33 28 18 50 13075 13680 

1.4 Unroll inner loop factor N 0.55 34.6 46 148 17166 15864 

2 
Unroll inner loop factor N + 

parallel row factor 2 
0.96 55.3 96 296 33618 31390 

2.N Full Unroll - 139 4 2250 180531 190503 

3.1 Initiation interval outer loop 200 0.34 48.8 0 58 14046 18932 

3.2 Initiation interval outer loop 100 0.51 93.4 0 69 22380 24796 

3.3 Initiation interval outer loop 50 1.3 175 0 315 50334 47008 
 

Table V. Floating-Point FPGA implementations for the dc-motor system MPC 

Solution Optimization 
Power 

(W) 

Sampling 
Frequency 

(KHz) 
BRAMs DSP48Es FFs LUTs 

µP Standard µP implementation - 0.67 - - - - 

0 Standard 0.19 0.565 19 5 1314 1842 

1.1 Unroll inner loop factor 1 0.21 4.58 19 5 3197 2973 

1.2 Unroll inner loop factor N/5 0.34 11.5 41 25 6378 4943 

1.3 Unroll inner loop factor N/10 0.37 14.3 33 50 12402 12275 

1.4 Unroll inner loop factor N 0.54 17.7 93 198 21269 18631 

2 
Unroll inner loop factor N + 

parallel row factor 2  
1.1 40.4 181 396 43358 36922 

2.N Full Unroll  - 69.9 9 3232 256931 266127 

3.1 
Initialization interval outer loop 

200 
0.29 48.1 9 54 29950 48875 

3.2 
Initialization interval outer loop  

100  
0.83 92.9 9 134 39242 64593 

3.3 
Initialization interval outer loop  

80 
0.79 114 9 191 48531 75073 
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combination of FPGA technology and high level synthesis is a 
promising technique for modern MPC controllers with high 
performance, low cost and energy-effective implementations. 
Furthermore, it opens the door to strictly verifiable MPC 
implementations, as for example required in aerospace 
industries. 

Future work will include the consideration of model 
uncertainty in MPC, as done e.g. in [38]. Additionally, 
combinations of software plus ad-hoc digital hardware via hard-
core or soft-core microprocessors opens new possibilities. In this 
sense, the so-called software defined system on chip provides 
valuable tools for control designers. 
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