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A B S T R A C T

The determination of the tire-rim interface loadings is a difficult but key task for the aircraft wheel

designer to predict the wheel service life. In conjunction with an optimal parameterization of these

loadings previously defined by the authors, the optimal sensor placement problem is considered to

identify the loading parameters at best. An optimization procedure of the wheel instrumentation,

which consists of several strain gauges, is thus proposed to minimize the uncertainties of the sought

parameters during the identification process. Two criteria are reviewed, namely, the determinant and

the lowest eigenvalue of the Fisher information matrix, and different optimization procedures are

assessed. The effectiveness of the method is proven considering the identification of an inflation case.

The optimized instrumentations lead to drastically reduced uncertainties of the loading parameters

and thus ensure reliable inverse identifications.

Nomenclature

[A] matrix describing the relationship

between loading parameters and measurands

[C] covariance matrix of the uncertainties

affecting the loading parameter estimates

[D] diagonal matrix whose elements d
i

are the information matrix eigenvalues

e
i
({x

j
}) strain obtained at point {x

j
} in the gauge

direction for a unit application of the i-th

loading degree of freedom

f figure of merit

[] Fisher information matrix


'

lowest eigenvalue of the information matrix


�

cost function measuring the gap

between measured and computed strains

M number of strain gauges

N number of degrees of freedom

describing tire-rim interface loading

{n} strain gauge measurement direction

q
i

amplitude of the i-th tire-rim interface static

eigenmode

[R] correlation matrix of the loading parameters

 surface over which potential strain gauges

may be positioned

[V ] matrix whose columns are the eigen vactors of

the information matrix

W elastic strain energy

v({x
i
}) variance of the predicted quantity at point {x

i
}

{x
j
} generalized 3D coordinates of the j-th strain

gauge location

z
j

j-th strain gauge measurement

� orientation angle of a strain gauge

∗
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2
�

variance of the strain measurement noise

� strain tensor

!
j

weight associated with the j-th strain gauge

⊤ matrix transpose

† Moore-Penrose pseudo-inverse

1. Introduction

One of the key challenges to obtain predictive numeri-

cal simulations for aircraft wheel design is the knowledge

of the boundary conditions prescribed by the tire during

ground maneuvering. Tire-ground loads are transmitted to

the wheel through the tire at the tire-rim interface. How-

ever, aircraft wheel manufacturers do not control the tire,

which is a complex intermediate component. Hence, as-

sumptions on its deformation are to be made to determine

the actual loading applied to the wheel and many experi-

ments are often required to evaluate the structural response

of the wheel (Federal Aviation Administration, 2008; Eu-

ropean Aviation Safety Agency, 2010). The knowledge of

tire-rim interface loadings would thus provide an invaluable

help to optimize design processes of aircraft wheels.

In recent decades, three major research topics have been

proposed to tackle this challenge. First, various experi-

mental attempts have been performed to directly measure

contact pressure distributions at tire-rim interfaces using

strain gauges, magnetostrictive transducers or flexible pres-

sure sensitive films (Zaharov, 1957; Balabin and Zubarev,

1964; Walter and Kiminecz, 1975; Sherwood et al., 1995b;

Wan et al., 2017). However, the intrusive nature of these

measurement techniques, the fragility of the sensors and

their delicate calibration raise questions about the reliability

of such approaches. Second, other authors dealt with ana-

lytical (Biderman et al., 1969; Curtiss, 1973; Stearns et al.,

2006; Nguyen et al., 2012; Ballo et al., 2017) or numeri-

cal (Chen, 1982; Tseng et al., 1989; Jeusette and Theves,

1992; Pelle, 1994; Chiang et al., 2000; Meng et al., 2012;
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Wan et al., 2016; Ballo et al., 2015, 2018) models of the

tire. These studies are highly dependent on the material

properties used for the tire model, but often consider a to-

tally rigid wheel. For aircraft wheel manufacturers, the

problem is opposite. The material properties and geome-

try of the wheel have to be designed, optimized and certi-

fied to sustain loads that are applied by the tire, irrespective

of their specific material formulation, since different brands

can be mounted on the wheel. Last, some investigations

moved toward non-intrusive measurements outside the tire-

rim contact area (e.g., strains at gauge locations, displace-

ments obtained via holographic interferometry) to identify

loadings using inverse methods and showed promising re-

sults (Spencer et al., 1993; Kirkner et al., 1993; Schudt et al.,

1994; Kandarpa et al., 1994; Spencer et al., 1995; Sherwood

et al., 1995b,a; Rupp et al., 2002; Heinrietz et al., 2003).

In line with the latter research topic, the authors have pro-

posed an inverse identification procedure of tire-rim load-

ings (Gras et al., 2015b; Cosseron et al., 2018) for several

cases (e.g., inflation, vertical loading and cornering). The

aim is to determine the loadings applied by a tire on an air-

craft wheel via the measurement of the wheel deformation

(e.g., displacement fields obtained by Multiview Correla-

tion, strains at gauge locations). The underlying tasks are

to define an objective parameterization of tire-rim loadings,

which is as robust and compact as possible, and to choose

appropriate measurements to be able to calibrate the loading

parameters. A Finite Element Model Updating (FEMU) al-

gorithm will then be used to solve this inverse problem (Ka-

vanagh and Clough, 1971; Roux and Hild, 2020). An op-

timal parameterization of tire-rim interaction for aircraft

wheels has been previously proposed using model reduction

techniques (Cosseron et al., 2019). The static eigenmodes

of the wheel stiffness matrix that is condensed at the tire-

rim interface are used to approximate any loading applied

to the rim and cyclic symmetry properties proved to be use-

ful to compute them. Moreover, the selection of the domi-

nant tire-rim interface static eigenmodes, based on the elastic

strain energy conservation, allowed those with the strongest

impact on the structural response of the wheel to be selected.

However, the identification success relies also on the mea-

surand sensitivity to the loading parameters. A variation of

the sought parameters should lead to a distinguishable vari-

ation of the measurands (i.e., greater than measurement un-

certainties) in order to calibrate them accurately. Starting

with a well-defined parameterization, the challenge is thus

to design the experiment in such a way that the highest sen-

sitivity to the chosen parameters is achieved.

Theoretical and practical aspects governing the general

design of an experiment have been originally summarized

by Fisher (1935). The author’s work has been subsequently

developed in the field of statistics and the concept of “op-

timal design of experiments” has gradually appeared in the

scientific literature (Kiefer, 1959) until the reference book

of Fedorov (1972). In the context of mechanical parameter

identification, the optimization of an experiment consists in

defining the experimental conditions to get the most accurate

estimates of the unknown parameters. The optimization may

deal with the loading applied during the experiment (Mehra,

1974; Morelli and Klein, 1990) as well as the placement of

different types of sensors (Kammer, 1991; Wickham et al.,

1995) or the geometry of the tested specimen (Schmaltz and

Willner, 2014; Bertin et al., 2016). In all cases, the aim is

to find the test configuration that minimizes the uncertain-

ties of the sought parameters (Kirkegaard, 1991). Within

the context of the present study, the test instrumentation is

of particular interest and the aim is thus to determine the

type, position and number of sensors required to get the best

estimates of the sought parameters (Masroor and Zachary,

1991). However, the number of sensors is usually restricted

(e.g., cost constraints, acquisition system limitations) and

some sensitive areas of the structure may be inaccessible.

Moreover, the addition of sensors may potentially modify

the structure mechanical behavior. Taking these constraints

into account, the optimization of the instrumentation is nec-

essary to ensure a priori that the test will allow the sought

parameters to be calibrated at best.

Although this kind of optimization problem has been

largely addressed in the literature (e.g., (Kammer, 1991;

Kammer and Tinker, 2004; Meo and Zumpano, 2005; Gupta

and Dhingra, 2013; Tamarozzi et al., 2016)), tire-rim inter-

face loading identifications are usually performed with sen-

sors located at critical stress locations on the wheel and the

loading parameter uncertainties are rarely mentioned (Kan-

darpa et al., 1994; Heinrietz et al., 2003). Some authors have

tried different configurations of strain gauges located in the

immediate vicinity of the bead seat area to determine tire-

rim loadings (described using Fourier series), but no clear

optimization procedure has been defined yet (Spencer et al.,

1993; Kirkner et al., 1993; Schudt et al., 1994; Kandarpa

et al., 1994; Spencer et al., 1995). This paper thus focuses on

optimal sensor placement to extract maximum information

about the loading parameters (i.e., tire-rim interface static

eigenmode amplitudes) from experimental data and an op-

timization procedure is proposed to find the instrumenta-

tion that yields their most accurate estimates. The choice

has been made to only deal with strain gauge measurements

but the proposed framework can be easily extended to other

types of sensor (e.g., camera positions for Digital Image Cor-

relation (Vitse et al., 2020)). In conjunction with the op-

timal parameterization of tire-rim loadings previously de-

fined (Cosseron et al., 2019), this approach will provide a

complete answer to the problem of tire-rim loading identifi-

cation.

The paper is organized as follows. Section 2 is devoted

to the problem setting. The inverse problem to solve to de-

termine tire-rim interface loadings from experimental strain

measurements is presented and the challenge concerning the

sensor placement is introduced. In Section 3, optimization

criteria and procedures are proposed to determine an opti-

mal instrumentation. The identification of an inflation case

is then studied in Section 4 as a proof of concept. Consid-

ering a two-dimensional (2D) axisymmetric Finite Element

Model (FEM) of the wheel, virtual tests are performed with

K. Cosseron et al.: Preprint submitted to Elsevier Page 2 of 18
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two different tires and identification results obtained with a

standard instrumentation are presented as a starting point.

Finally, the instrumentation is optimized to minimize the

loading parameter uncertainties.

2. Problem setting

A linear FEM of an aircraft wheel is considered. The

loading applied by a tire on the wheel is described by N

degrees of freedom corresponding to the amplitudes of the

dominant static eigenmodes of the wheel at the tire-rim inter-

face (Cosseron et al., 2019). It is proposed to calibrate these

loading parameters using only a few experimental strains

measured by a set of gauges wisely positioned on the wheel.

For each loading parameter, a unit amplitude gives rise to a

strain field that is known (say from prior numerical simula-

tion) over a surface  on which potential gauges may be po-

sitioned. It is considered that an elementary gauge, centered

at a point x, measures the strain along one specific direction

n (characterized on the free surface by an orientation angle

�)

e = n ⋅ � ⋅ n (1)

where � is the 2D strain tensor at point x. The strain can thus

be seen as a scalar function e of the three-dimensional (3D)

coordinates (x, �). For the sake of simplicity, these 3D gen-

eralized coordinates will be denoted by a vector {x} in the

following. Therefore, it is assumed that for each degree of

freedom i = 1, ..., N , the scalar strain field e
i
({x}) is known

over the surface ⊕[0, �]. Similarly, considering a unit am-

plitude of other potential loadings applied to the wheel (e.g.,

tie bolt tightening, axle nut tightening or nitrogen pressure),

elementary strain fields associated with these loadings are

available. According to the principle of superposition for a

linear FEM, the strains induced on the wheel by a particular

loading can thus be approximated using a linear combination

of these elementary strain fields.

In order to measure the amplitudes of the N degrees of

freedom describing the loading applied by the tire at the tire-

rim interface, M gauges are positioned over the surface  at

generalized positions {x
j
}with j = 1,… ,M . Each gauge is

affected by a uniform uncorrelated Gaussian noise (of vari-

ance 
2
�

), so that the identification of the static eigenmode

amplitudes gathered in the vector {q} = {q1… q
N
}
⊤

are

obtained from the minimization of the cost function 
�

de-

fined by


�
=

1


2
�
M

×

M∑

j=1

(
z
j
−

N∑

i=1

q
i
e
i
({x

j
})

)2

(2)

and hence a set of N equations is obtained by setting the

gradient to zero (∀k ∈ [1, N])

M∑

j=1

N∑

i=1

q
i
e
i
({x

j
})e

k
({x

j
}) =

M∑

j=1

z
j
e
k
({x

j
}) (3)

where z
j

is the j-th gauge measurement from which the

known contributions of tightenings and nitrogen pressure

have been subtracted. Introducing the matrix [A] such that

A
ji
= e

i
({x

j
}), Equation (3) is inverted

{q} = [A]
†
{z} (4)

with

[A]
†
=
(
[A]

⊤
[A]

)−1

[A]
⊤

(5)

the Moore-Penrose pseudo-inverse matrix.

The covariance matrix of the uncertainties affecting the

estimatesC
ij
= ⟨�q

i
�q

j
⟩ as induced by white Gaussian noise

on the gauge measurement is thus independent of the values

of the identified parameters in the linear case, and reads

[C] = 
2
�
[A]

†
(
[A]

†
)⊤

= 
2
�

(
[A]

⊤
[A]

)−1

(6)

Solving the inverse problem previously described allows

the amplitudes of the static eigenmodes of the tire-rim in-

terface to be determined from experimental strain measure-

ments and their associated uncertainties to be estimated with

the covariance matrix [C]. It is worth noting that the pro-

posed framework can easily be extended to other types of

sensor and uncertainty of the measurements. In addition,

one may ask the following questions. For a given number

of gauges where (including their orientation) should one put

them to get the best estimates of the sought parameters {q}

(i.e., with the lowest uncertainties)? What is the optimal

number of sensors allowing enough information about these

parameters to be obtained?

3. Optimal gauge placement

The optimal sensor placement problem is based on

the minimization of the unknown parameter uncertainties

(Kirkegaard, 1991). Considering only one parameter, the

problem consists in determining the sensor positions that

minimize its variance. However, solving an inverse prob-

lem generally involves several parameters. Therefore, the

mathematical expectation of the parameter estimates is a

vector and the (co)variances are characterized by a matrix.

The covariance matrix of estimated parameters is particu-

larly relevant in that context because it deals with all facets of

the inverse problem (i.e., the geometry of the studied struc-

ture, the chosen parameterization and identification meth-

ods, the boundary conditions, the measurement uncertain-

ties). It provides an estimate of the quality of the identified

parameters through their uncertainties and gives a handle

on how to optimize the test (Schmaltz and Willner, 2014;

Bertin et al., 2016). The minimization of the parameter un-

certainties thus consists in "minimizing" the related covari-

ance matrix. However, because the latter involves multiple

dimensions, optimization criteria should be defined to re-

cast the multi-dimensional criterion into a scalar expression

that condenses the information contained in the covariance

matrix (Atkinson, 1982). In this section, some optimization

criteria and procedures are proposed.

K. Cosseron et al.: Preprint submitted to Elsevier Page 3 of 18



Optimized gauging for tire-rim loading identification

3.1. Uncertainty minimization criteria
The uncertainties of the identified parameters are charac-

terized by the covariance matrix defined by Equation (6), and

are independent of the parameter levels in linear cases. For

a given variance 
2
�

on the measurements, their minimiza-

tion consists in modifying the matrix [A], which describes

the relationship between the sought parameters and the mea-

surands, to minimize a criterion based on the inverse of the

Hessian of the least squares fit
(
[A]

⊤
[A]

)−1

. The work can

also be equivalently carried out considering the inverse of

the covariance matrix for convenience (i.e., the Fisher in-

formation matrix or Hessian). The aim is thus to maximize

the information contained in the matrix [], which itself will

simply be

[] ≡ [A]
⊤
[A] (7)

or


ij
=

M∑

k=1

e
i
({x

k
})e

j
({x

k
}) (8)

As a reminder, an easy way to check the relevance of a

given sensor is to consider its sensitivity to the sought pa-

rameters. One may give a weight !
i

to each gauge i (similar

to the inverse uncertainty) and write


ij
=

M∑

k=1

!
k
e
i
({x

k
})e

j
({x

k
}) (9)

The sensitivity of the i-th gauge is thus probed as

[s
i
] =

)[]

)!
i

(10)

with

)
ij

)!
k

= e
i
({x

k
})e

j
({x

k
}) (11)

Various criteria have been proposed to condense the in-

formation contained in the matrix [] using synthetic statis-

tics (Atkinson, 1982). Most of them are invariants of the

information matrix (or its inverse) and expressed as a lin-

ear combination of its eigenvalues. For example, Mitchell

(1974) used the determinant of the information matrix to

minimize the volume of the uncertainties associated with

the sought parameters, whereas Masroor and Zachary (1991)

have chosen to study the condition number of the covariance

matrix. Other authors have based their optimization on the

trace of either of these matrices (Shah and Udwadia, 1977),

which is equivalent to the mean variance of the identified

parameters, or on the eigenvalue characterizing the direc-

tion of highest uncertainty (Bertin et al., 2016). However,

the choice of the optimization criterion is difficult and varies

depending on the problem being considered. In the follow-

ing, two criteria are reviewed, namely, the determinant and

the direction of highest uncertainty.

3.1.1. Determinant

One of the most used criteria is the maximization of the

information matrix determinant (Mitchell, 1974). It is thus

equivalent to minimizing the determinant of the covariance

matrix, which represents the volume of the ellipsoid asso-

ciated with parameter uncertainties. By diagonalizing the

matrix [] such that

[] = [V ][D][V ]
⊤

(12)

where [D] is a diagonal matrix gathering the eigenvalues

(d1,… , d
N
), and [V ] the matrix of the associated eigenvec-

tors, the determinant of the information matrix reads

det ([]) = det([D]) =

N∏

i=1

d
i

(13)

In order to maximize it, the optimization consists in

adding, removing or modifying sensor locations from an ini-

tial set. The lines {a
i
}
⊤

of the matrix [A] will thus be af-

fected. Starting with an initial instrumentation of M sen-

sors, characterized by the information matrix [
M
], Dyk-

stra (1971) showed that the addition or deletion of a sensor

located at the position {x
i
} will modify the determinant of

the new instrumentation such that

det
(
[

M±1]
)
= det([

M
]) × (1 ± v({x

i
})) (14)

where v({x
i
}) is the variance (ignoring the multiplication

factor 
2
�

) of the predicted quantity at point {x
i
} for an in-

strumentation composed of M sensors

v({x
i
}) = {a

i
}
⊤
(
[A

M
]
⊤
[A

M
]
)−1

{a
i
} (15)

Therefore, in order to optimize the instrumentation, one will

add a sensor at the location where the variance v is maximum

(i.e., where the lack of information is the highest) or remove

the sensor where the minimum variance is reached. Kiefer

and Wolfowitz (1960) have also shown the equivalence be-

tween the maximization of the information matrix determi-

nant (D-optimality) and the minimization of the maximum

variance over the predicted quantities (G-optimality). One

may also perform an exchange between a sensor from the

initial instrumentation and another one located at positions

{x
i
} and {x

j
} respectively (Fedorov, 1972). In that case, the

determinant for the new configuration, characterized by the

information matrix [
M

′ ], reads

det
(
[

M
′ ]
)
= det([

M
]) × (1 + Δ({x

i
}, {x

j
})) (16)

with

Δ({x
i
}, {x

j
}) = v({x

j
}) − [v({x

i
})v({x

j
})

−v({x
i
}, {x

j
})

2
] − v({x

i
}) (17)

and the optimization consists in exchanging the sensor pair

associated with the maximum value of Δ. Furthermore, it is

worth noting that the use of the determinant as the optimiza-

tion criterion requires the update of the information matrix

at each modification of the instrumentation.
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3.1.2. Direction of highest uncertainty

Another possible criterion is to consider the eigenvalue

of the covariance matrix associated with the direction of

highest uncertainty (i.e., the length of the largest semi-major

axis of the uncertainty ellipsoid) and requires to minimize it.

It thus consists in maximizing the lowest eigenvalue of the

information matrix. By denoting {'} the considered direc-

tion in the parameter space, the criterion aims at maximizing

the quantity 
'

defined by


'
= {'}

⊤
[]{'} =

∑

k

!
k
f ({x

k
})

2
(18)

with

f ({x
k
}) =

∑

i

'
i
e
i
({x

k
}) (19)

for a given number of measurements
∑

k
!
k

(with !
k
≤ 1

to account for the fact that two gauges cannot overlap). In

the continuum, one can progressively remove the weight !

given to sensors located in the regions where f
2

is minimum,

update the information matrix and recompute the direction

of highest uncertainty. For a fixed direction {'}, the solution

is simply to threshold the regions where f
2

is highest.

3.2. Optimization procedures
To determine the optimal placement of M sensors over

a potential surface  of the studied structure, the above cri-

teria should be maximized. One possibility is to start with a

large population of M
tot

possible gauges and progressively

remove the least useful until the number M of desired sen-

sors is reached. One may also consider the complemen-

tary procedure, which consists in successively adding gauges

from an initial configuration. For a single direction crite-

rion, the choice is trivial since all gauges have a well-defined

figure of merit f
2
. The point where this field is maximum

should host the new gauge whereas the one where it is mini-

mum should be removed. Similarly, one may decide to move

gauges along∇∇∇(f
2
) rather than using the above quantum ver-

sion with creation/annihilation operators. For the criterion

based on the direction of highest uncertainty, the same sit-

uation as above is retrieved but the eigen direction {'} has

to be updated at each iteration. For the determinant crite-

rion, the same philosophy holds considering the variance v

associated with each gauge.

With these two processes at hand, it is possible to alter-

natively add and delete one gauge to drive the population to a

satisfactory distribution. The procedures based on this prin-

ciple are known as exchange algorithms. The first step to

use them is to choose an initial set of M gauges from a pre-

specified list of M
tot

possible ones. The sequential exchange

algorithm (Wynn, 1970; Dykstra, 1971) then switches be-

tween the addition and deletion of a gauge at each iteration

until convergence of the chosen criterion. An (M + 1)-th

gauge is first added so that the maximum increase of the

chosen criterion is achieved and the one of the new config-

uration resulting in the minimum decrease is then removed.

The operations may equivalently be performed in the reverse

order (Van Schalkwyk, 1971).

It is also possible to perform a direct exchange between

a gauge pair at each iteration, in particular when the infor-

mation matrix determinant is used as the optimization crite-

rion. The Fedorov (1972) algorithm reviews all the possible

exchange pairs between the M sensors of the initial config-

uration and the M
r
= M

tot
− M remaining candidates and

proceeds to the exchange yielding the maximum value of Δ

defined by Equation (17). The information matrix is then

updated and the process is repeated until convergence of the

optimization criterion. However, this algorithm is relatively

slow because it requires M ×M
r

comparisons at each itera-

tion to finally perform only one exchange. Cook and Nacht-

sheim (1980) proposed a modified Fedorov algorithm, faster

than the original one, within which each iteration is subdi-

vided into M steps. At a given iteration, the first gauge of

the current configuration is selected and the exchange pairs

between this specific gauge and the M
r

candidates are stud-

ied. The pair that maximizes the criterion is exchanged, the

information matrix is updated and the operation is repeated

for the M −1 remaining gauges. This algorithm thus allows

M exchanges to be performed at each iteration.

Another possibility to speed up the procedure is to ex-

change only the K least useful gauges at each iteration. This

scheme is known as the K-exchange algorithm (Galil and

Kiefer, 1980; Johnson and Nachtsheim, 1983). For K = 1

(resp. K = M), the above described sequential exchange

algorithm (resp. modified Fedorov algorithm) is retrieved.

However, the choice of the number K is not trivial and often

depends on the problem being considered (Meyer and Nacht-

sheim, 1995). An enhanced version of this scheme, namely

the KL-exchange algorithm, was also proposed by Atkin-

son and Donev (1989). The idea is to only exchange the K

least useful gauges at each iteration considering only a list

of L ≤ M
r

candidates.

All the above mentioned algorithms correspond to non-

linear optimization techniques and there is no guarantee that

the global optimum will be reached. However, the approach

is somewhat unavoidable (due to the discrete nature of the

problem and its lack of convexity) and they reveal very effec-

tive in practice. To ensure that the solution is in the neighbor-

hood of the global optimum, several initializations should be

tested to check their stability. Furthermore, one of the draw-

backs of these approaches is the dependence to the consid-

ered model, the optimization being conducted to obtain its

most accurate estimate. Therefore, a modification in the pa-

rameterization is likely to yield different optimal instrumen-

tations. DuMouchel and Jones (1994) proposed a Bayesian

modification of the previous algorithms to reduce the de-

pendence on an assumed model. The sensor placement ob-

tained with it allows the sought parameters to be calibrated at

best but also to take into account the effect of additional and

higher order parameters not included in the initial model.
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4. Identification of an inflation case

In this section, it is proposed to determine the optimal

placement of a given number of gauges to identify at best

the loading applied by a tire on an aircraft wheel during an

inflation case. First, a 2D-axisymmetric FEM of the wheel

is presented, as well as the loading parameterization. Then,

virtual tests are performed considering two different tires.

Last, the identification results obtained with standard and

optimized instrumentations are presented.

4.1. Modeling
4.1.1. Finite element model of the wheel

Owing to the nature of the loading to be determined, a

2D-axisymmetric linear FEM of an aircraft wheel has been

developed with the commercial software ANSYS
®

Mechan-

ical 16.2 (Figure 1). It only contains two wheel halves (in-

board and outboard) and the assumption is made that a per-

fect connection exists between the two parts. The tie bolts

joining the halves are thus not modeled. The material prop-

erties are those of an aluminum alloy with a linear elastic

behavior. The mesh contains 2,500 quadratic and axisym-

metric elements and 5,700 nodes. Boundaries are clamped

on bearing support surfaces, and the loadings applied to the

wheel are the nitrogen pressure and the tire-rim contact trac-

tions.

Tire-rim contact loading

Nitrogen pressure

Fixed support

Measurement area

Figure 1: 2D-axisymmetric FEM of the wheel

Strain gauges are positioned over the surface  of the

wheel (highlighted in turquoise in Figure 1) to calibrate the

loadings at the tire-rim interface. It has to be noted that the

tire-rim interface itself (highlighted in red in Figure 1) has

been deliberately excluded from this measurement area be-

cause of its delicate environment. The sensors may be dam-

aged because of shear forces encountered in the contact area

during tire-wheel assembly. The nitrogen pressure area is

not included as well due to the specific post-processing of

the measured strains required in that zone (Jansen, 1997).

Last, the assembly area is not taken into account because of

its simplification.

4.1.2. Static eigenmodes of tire-rim interface

It is chosen to identify the amplitudes of the static eigen-

modes of the tire-rim interface that are used to approximate

the loading applied to the wheel by the tire. These modes

were obtained using the methodology described by Cosseron

et al. (2019). To summarize, the stiffness matrix of the wheel

is first condensed at the tire-rim interface (i.e., Guyan reduc-

tion (Guyan, 1965)), and the resulting reduced matrix is then

diagonalized to obtain a complete set of generalized shape

functions (i.e., modes) for describing the tire-rim interface

displacement. The deformed shape of the wheel due to the

unit application of the first eight static eigenmodes of the

tire-rim interface, ordered by increasing eigenvalue, are il-

lustrated in Figures 2 and 3.

(a)

(b)

(c)

(d)

Figure 2: Deformed shape of the wheel for the first eight tire-
rim interface static eigenmodes (magnification factor ×100) –
Modes 1 (a) to 4 (d) – Displacement norm (mm)
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(a)

(b)

(c)

(d)

Figure 3: Deformed shape of the wheel for the first eight tire-
rim interface static eigenmodes (magnification factor ×100) –
Modes 5 (a) to 8 (d) – Displacement norm (mm)

The first modes display global responses. The deformed

shapes induced by modes 1 and 2 are essentially axial,

whereas they are mainly radial on the inboard (resp. out-

board) side of the wheel for mode 3 (resp. 4). For higher-

order modes, the deformation only affects a small confined

region of the rim. Furthermore, a side study showed that

low-order eigenmodes were not very sensitive to the mesh

size and were thus deemed reliable.

The eigenmode basis retains the initial number of tire-

rim interface degrees of freedom and only corresponds to

a different representation of the tire-rim loading (i.e., basis

change) with no particular assumptions. The mathematical

problem is thus strictly equivalent but easier to handle be-

cause of the diagonalization of the wheel stiffness matrix that

is condensed at the tire-rim interface. To limit the number

of loading parameters to be calibrated, a criterion based on

the elastic strain energy conservation is used to select the

dominant eigenmodes required to approximate a given static

loading and will be explained in the next section.

4.2. Virtual tests
4.2.1. Available data

Tire manufacturers usually give maps of the contact pres-

sure distribution at the tire-rim interface for different load-

ing cases to support aircraft wheel manufacturers in the de-

velopment of their products. They are obtained using finite

element analyses or experiments, yet the wheel is consid-

ered totally rigid in both cases, which is a strong assumption

for the aircraft wheel manufacturer. However, these data are

used to evaluate the structural response of the wheel before

performing validation tests and are thus very useful for the

aircraft wheel designer.

In the following, two radial tires (designated A and B)

that can be mounted on the studied wheel are investigated.

The tire-rim contact pressure distributions are given by tire

manufacturers for an inflation pressure of 14.8 bar for tire A,

and 14.7 bar for tire B. They are plotted against the curvilin-

ear abscissa along the rim profile in Figure 4.
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Figure 4: Available data for inflation case of tires A and B.
Rim profile (a). Tire-rim contact pressure distributions (b)
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By convention, the curvilinear abscissa is negative (resp.

positive) for the inner (resp. outer) wheel half, and its ori-

gin is located, for each side, at the point of the tire-rim con-

tact area nearest to the wheel center, as shown in Figure 4a.

Dashed lines are added to depict characteristic areas of the

rim profile, such as the bead seat or the flange. Despite the

fact that the inflation pressures are close, the two tires exhibit

very different distributions (Figure 4b). A balanced pressure

distribution between the bead seat and the flange is observed

for tire A, whereas the pressure is higher in the bead seat area

for tire B.

It is proposed to perform virtual tests using the tire-rim

interface loadings given by manufacturers for the two tires,

and then carry out inverse identifications of the loading pa-

rameters based on virtual strain measurements on the wheel.

Therefore, tire-rim contact pressure distributions shown in

Figure 4b are prescribed in the 2D-axisymmetric FEM of

the wheel (Figure 1), as well as the corresponding nitrogen

pressure. The deformed shapes of the wheel induced by each

tire inflation are illustrated in Figure 5.

(a)

(b)

Figure 5: Deformed shape of the wheel for inflation case of
tires A (a) and B (b) (magnification factor ×50) – Displace-
ment norm (mm)

The radial displacement in the bead seat area is higher

for tire B whereas bending of the flanges is more pronounced

for tire A. This observation is consistent with the differences

observed in the tire-rim contact pressure distributions (Fig-

ure 4b).

The strains induced by each tire inflation were post-

processed over the measurement area highlighted in Figure 1

to serve as virtual measurements for tire-rim loading iden-

tifications. It has to be noted that strains are read at each

potential gauge center and not averaged over the gauge sur-

face. Moreover, no noise is added to these raw data.

4.2.2. Selection of the loading parameters

Any loading applied to the wheel by a tire is described

using the static eigenmodes mentioned earlier. Therefore,

their amplitudes will be sought in future inverse identifica-

tions. However, the number of parameters to be identified

is crucial and should be minimized. A selection criterion

based on the elastic strain energy conservation (Cosseron

et al., 2019) is thus used to reduce the number of selected

modes to a minimum. The tire-rim contact pressure distribu-

tions of tires A and B are first converted into nodal equivalent

forces and projected onto the tire-rim interface static eigen-

mode basis. A specific script was developed to this end using

MATLAB
®
. Normal pressures are converted into cylindrical

pressures by computing the rim profile angle at each node of

the rim mesh and nodal equivalent forces in radial and axial

directions are then obtained by multiplying the correspond-

ing pressures with the elementary area associated with each

node. The elastic strain energy distribution over the modes

for each tire inflation is then computed and illustrated in Fig-

ure 6, where eigenmodes are ranked with increasing eigen-

value. Only the first 30 modes, among approximately 300,

are reported to focus on data of interest.
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Figure 6: Elastic strain energy contribution of the tire-rim
interface static eigenmodes for inflation case of tires A and B

The excited modes are globally the same for inflation

cases of the two tires and both are low-order ones. To assess

how many of them are required to effectively approximate

either of these loadings, they are ranked in descending order

of elastic strain energy contribution for each tire. The result-

ing ranking is reported in Table 1. To keep 99% of the total

elastic strain energy, 13 (resp. 11) modes are required to ap-

proximate the inflation case of tire A (resp. B). The rankings

are not exactly the same for the both tires but, among the 13

modes required for tire A, 12 are strictly identical to the first

dominant modes required for tire B. The inflation loadings

applied to the wheel by the two tires can thus be described

using a reduced common set of 12 modes (highlighted in

bold in Table 1). The choice of the truncation criterion value

(i.e., 99% of the total elastic strain energy) will be carefully

discussed in the following.
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Table 1

Dominant eigenmodes for inflation case of tires A and B

Tire Dominant eigenmode number

A 4–2–5–8–1–11–7–14–13–3–12–18–10–. . .
B 4 – 5–2–1–8–3–7–10–11–9–14–13–12–. . .

Therefore, it is reasonable to assume that any inflation

loading applied to the rim could be described with this par-

ticular set of modes. Their amplitudes will be sought in fu-

ture inverse identifications because of their potential identifi-

ability. These modes are numbered from 1 to 12 and ordered

by increasing eigenvalue in the following. The reference val-

ues of these 12 amplitudes, obtained by simple projection of

tire-rim loadings on the eigenmode basis, which are to be

retrieved, are depicted in Figure 7. Amplitudes of the first

modes are naturally higher than those of the last ones. How-

ever, they allow the two studied tires to be distinguished.
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Figure 7: Reference modal amplitudes for inflation case of tires
A and B

4.3. Results
4.3.1. Standard instrumentation

A standard instrumentation, which is commonly used

during the validation process of an aircraft wheel, is first con-

sidered to determine the inflation loadings of tires A and B.

This instrumentation is illustrated in Figure 8.
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Figure 8: Standard instrumentation

It contains 18 strain gauges, including 10 double rosettes

and 8 single gauges, for a total of M = 28 strain measure-

ments. For each gauge, the axial (resp. circumferential or

hoop) measurement direction is defined by the tangent to the

wheel in the X − Y (resp. X − Z) plane at the considered

gauge center. The virtual strain measurements at gauge lo-

cations obtained for the inflation cases of tires A and B (with

no added noise) are reported in Figure 9 and confirm their

differences in behavior.
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Figure 9: Virtual strain measurements at gauge locations for
inflation case of tires A and B. Axial (a) and hoop (b) strains

It has to be noted that the considered instrumentation has

not been designed specifically to calibrate loadings at the

tire-rim interface. The placement of the different gauges was

chosen after preliminary finite element analyses and subse-

quent location of the critical areas of the wheel, as classically

carried out in mechanical design offices. However, one may

wonder whether these measurements are sufficient to cali-

brate the 12 modal amplitudes. To this end, the matrix [A]

defined in Section 2 is first computed. Each column is ob-

tained by prescribing a unit amplitude to one of the 12 static

eigenmodes in the 2D-axisymmetric FEM of the wheel and

post-processing the induced strains at gauge locations for

each considered direction. The matrix [A] obtained for the

standard instrumentation is illustrated in Figure 10 and con-
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tains M = 28 rows and N = 12 columns.

Figure 10: Matrix [A] for the standard instrumentation

The first (resp. last) rows correspond to strains mea-

sured in the axial (resp. hoop) direction of the considered

gauges. The strain levels induced by the first modes are

lower than those of the last ones because of the mode rank-

ing by increasing eigenvalue. By considering that the uncer-

tainty of the strain measurements has a standard deviation


"
= 10 µstrain, the covariance matrix of the sought param-

eters is computed using Equation (6) even before running the

identification procedure itself (Figure 11).

Figure 11: Covariance matrix [C] for the standard instrumen-
tation

The diagonal terms of the covariance matrix, which cor-

respond to the variances of the parameter estimates when

they are independently considered (or 
k
=

√
C
kk

), show

that uncertainties are particularly high for the first five eigen-

mode amplitudes. Whatever the identification results, the

calibrated parameters will thus be unreliable. To highlight

this point, the inverse problem is solved using Equation (4)

for the two “virtual tests” and the calibrated modal ampli-

tudes are compared to the references in Figure 12. The error

bars indicate the standard deviations 
k

for each loading pa-

rameter.
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Figure 12: Comparison between the reference and calibrated
modal amplitudes for the inflation case of tires A (a) and B
(b) using a standard instrumentation

The identified modal amplitudes are very close to their

reference values. One may think that the standard instru-

mentation is thus suitable to correctly calibrate the sought

parameters. However, these results are explained by the fact

that the same model is used to build the inverse problem

and to generate the virtual strain measurements, the differ-

ences being strictly limited to the truncation of the eigen-

mode basis. This phenomenon — called the "inverse crime"

in the literature (Kaipio and Somersalo, 2005) — leads to

over-optimistic results compared to real test measurements.

It should be recalled that no noise was added to the virtual

strain measurements. Therefore, the small differences be-

tween reference and identified modal amplitudes originate

solely from the truncation of the eigenmode basis to the first

12 dominant modes. This truncation gives a parameteriza-

tion to approximate tire-rim interface loadings that, when

fed to the inverse problem, naturally produces a discrepancy

between reference and identified modal amplitudes.

However, the loading parameter uncertainties (i.e., error

bars in Figure 12) show that the results are clearly not sat-

isfactory. If the virtual strain measurements were slightly
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disturbed (e.g., adding noise of standard deviation 
"

=

10 µstrain), the calibrated modal amplitudes will be very

different and farther away from their nominal values be-

cause the problem is ill-conditioned. For the considered in-

strumentation, this observation indicates that the error due

the truncation of the eigenmode basis is less harmful than

the measurement noise uncertainty with the variance chosen

here, even though the two are strongly correlated. Further-

more, one can notice that the covariance matrix is not diago-

nal due to the presence of couplings between the parameters.

Another indicator to visualize them is the correlation matrix

[R] defined as

R
ij
=

C
ij

√
C
ii
C
jj

(20)

The diagonal terms are equal to 1 because each parameter is

perfeclty correlated to itself, whereas the off-diagonal terms

range from −1 to 1, and indicate the linear dependence (i.e.,

cross-correlation) between two parameters. The correlation

matrix obtained for the standard instrumentation is shown in

Figure 13.

Figure 13: Correlation matrix [R] for a standard instrumenta-
tion

The loading parameters are highly correlated (or anti-

correlated) and the correlations for each parameter pairs

characterize the inclination of the uncertainty ellipsoid in the

parameter space. Therefore, the parameters cannot be con-

sidered separately, and the standard deviations 
k

mentioned

earlier are no longer suitable to fully account for the uncer-

tainties. The consideration of the principal directions of the

uncertainty ellipsoid is thus necessary to take into account

the fluctuations of all the parameters (Gras et al., 2015c).

The diagonalization of the information matrix using Equa-

tion (12) gives the variance of the k-th eigenvector amplitude

�
2
k
=


2
"

D
kk

(21)

and the standard deviation �
k

characterize the “length” of the

k-th semi-major axis of the uncertainty ellipsoid. To sum-

marize, the standard instrumentation presented in Figure 8

is not appropriate for the calibration of the sought loading

parameters because of the large resulting uncertainties. In

the following, it is thus proposed to define an optimal instru-

mentation based on the optimization criteria and procedures

discussed in Section 3.

4.3.2. Optimized instrumentations

A set of 148 double strain gauges is considered to de-

fine an optimal instrumentation and to calibrate the 12 modal

amplitudes at best (Figure 14). These gauges form a total of

M
tot

= 296 possible strain measurements and cover all the

measurement area presented in Figure 1.
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Figure 14: Location of the 148 potential gauges for the cali-
bration of the loading eigenmodes

It is proposed to perform several optimizations of the in-

strumentation considering the two criteria described in Sec-

tion 3, namely, the information matrix determinant and the

direction of highest uncertainty. The results obtained for

each criterion are presented successively and several opti-

mization algorithms are assessed. In all cases, a minimum

of M = 12 strain measurements is kept to calibrate the 12

loading parameters.
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Figure 15: Determinant criterion change with the number of
iterations
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The simplest algorithm to maximize the information ma-

trix determinant, for a given number of gauges, is to start

with the M
tot

= 296 possible measurements (Figure 14) and

progressively remove the one for which the variance v de-

fined by Equation 15 is minimum. The decrease of the de-

terminant criterion is illustrated in Figure 15 as a function

of the iteration number. The computation takes only a few

seconds due to the size and linearity of the FEM.

When the algorithm is stopped to retain only M = 12

strain measurements, the instrumentation illustrated in Fig-

ure 16 is obtained. All the gauges required for the loading

recovery are located on the rim of the wheel. This result was

predictable because of the sensitivity of this area to the local

distribution of the tire-rim interface loading. However, one

can note that the gauges are uniformly distributed over the

rim. Moreover, there are only single strain gauges measur-

ing in the axial direction, except for the one at the tip of the

outer wheel half.
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Figure 16: Locations of the 12 retained strain gauges for op-
timized instrumentation #1

The covariance and correlation matrices for this new in-

strumentation are gathered in Figure 17. The uncertainties of

the sought parameters were substantially reduced in compar-

ison with the standard instrumentation (Figure 11). More-

over, most of the couplings between the parameters were re-

moved. All off-diagonal terms of the correlation matrix are

now less than or equal to 0.5.

Further, the inverse problem is solved considering that

strain measurements at optimized gauge locations are avail-

able for the two virtual inflation tests. The modal ampli-

tudes are compared to their reference values in Figure 18.

The differences are very small, and each modal amplitude

is obtained with a high degree of accuracy. The error bars

are almost invisible due to their small size. In contrast to

the standard instrumentation case, the truncation error here

is much larger than the random uncertainty. The quality of

the gauges and their placement motivate a better representa-

tion of the tire-rim loading. After considering the effect of

noise, one can thus point out the truncation order (initially

chosen to keep 99% of the total elastic strain energy) such

that it induces an error less than that of noise.

(a)

(b)

Figure 17: Covariance (a) and correlation (b) matrices for
optimized instrumentation #1
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Figure 18: Comparison between reference and calibrated
modal amplitudes for the inflation case of tires A (a) and B
(b) using the optimized instrumentation #1

The sequential exchange algorithm, which adds and

deletes a gauge at each iteration, has also been used to deter-

mine an optimal instrumentation.
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Figure 19: Locations of the 12 selected strain gauges for the
optimized instrumentation #2

However, it reveals very sensitive to the initial choice of

the M = 12 gauges required for its run. Therefore, several

optimizations were performed using different initial sets of

gauges randomly selected. A value of the information matrix

determinant greater than that obtained with the optimized in-

strumentation #1 was reached (i.e., log10(det([])) = 80.54

against 80.48, representing a 14% change of the determinant

value). The resulting instrumentation is illustrated in Fig-

ure 19 but differs only in one gauge on the outer wheel half

whose new location is immediately adjacent to its previous

position.

Last, the modified Fedorov algorithm was tested. The

latter allows direct exchange to be performed between a

gauge pair at each iteration. Whatever the chosen initial

set of gauges, the algorithm demonstrates a great robust-

ness and does not remain trapped into local minima far away

from the global minimum. The value of the information

matrix determinant was increased by 2% compared to the

optimized instrumentation #2 (i.e., log10(det([])) = 80.55

against 80.54). This value was not exceeded during all per-

formed optimization steps, and the resulting instrumentation

is shown in Figure 20. However, it is difficult to compare

the performance of the different algorithms in more detail

(e.g., computation time) because of the small size and lin-

earity of the used FEM. Moreover, it may not be representa-

tive of more complex problems, for which the entire protocol

should be revised.
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Figure 20: Locations of the 12 retained strain gauges for the
optimized instrumentation #3

Two strain gauges located on the inner wheel half have

been slightly shifted compared to instrumentation #2. More-

over, one can note that gauge locations in the bead seat area

are similar to those of the standard instrumentation (Fig-

ure 8), particularly for the inner wheel half. The covari-

ance and correlation matrices for this new instrumentation

are shown in Figure 21 and are slightly changed compared

to instrumentation #1 (Figure 17).
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(a)

(b)

Figure 21: Covariance (a) and correlation (b) matrices for
optimized instrumentation #3

The instrumentation optimization based on the informa-

tion matrix determinant maximization thus leads to the op-

timal placement of 12 strain gauges to calibrate at best the

12 loading parameters. It is now suggested to change the

optimization criterion considering the direction of highest

uncertainty and to assess the impact on the instrumentation.

The deletion procedure, for which the gauge with the

lowest value of f
2

is removed, was used. The criterion

change as a function of the iteration number is illustrated in

Figure 22. The decrease of the criterion is slow until the 160-

th iteration. Then, some staircase profiles appear and charac-

terize a rather sudden change in the direction of highest un-

certainty. The criterion reaches an extremely low value (i.e.,


'
= 3.7×10

−6
) when M = 12 gauges are kept, thereby in-

dicating that the uncertainties of the sought parameters will

be very high with the associated instrumentation. The latter

should thus not be used to perform inverse identification of

the loading parameters.
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Figure 22: Lowest information matrix eigenvalue change with
the number of iterations

An instrumentation made up of M = 17 gauges is rather

chosen to retain a reasonable value of the optimization cri-

terion (i.e., 
'
= 2.8 × 10

4
). It corresponds to the last stage

in Figure 22 and to the instrumentation shown in Figure 23.
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Figure 23: Location of the 17 strain gauges for optimization
instrumentation #4

This instrumentation is less intuitive than the previous

ones obtained with the determinant criterion. Among the 17

gauges, 11 are located on the rim in a nonuniform way, and 6

in the web area. However, the latter ones are less sensitive to

the local distribution of tire-rim interface loading than those

located in the rim area (i.e., Saint-Venant’s principle). It is

thus surprising that they are retained in the instrumentation

to identify loadings at the tire-rim interface. This result can

be explained by a direction of highest uncertainty in the pa-

rameter space very far from the usual loadings applied to the

wheel.

The covariance and correlation matrices obtained with

this instrumentation are shown in Figure 23. The uncertain-

ties are higher than before and this new instrumentation re-

tains several correlations between the loading parameters.
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(a)

(b)

Figure 24: Covariance (a) and correlation (b) matrices for
optimized instrumentation #4

However, the calibrated modal amplitudes meet the ref-

erence values and the uncertainties remain acceptable (Fig-

ure 25). The error due to the truncation of the eigenmode

basis to approximate tire-rim loadings is here again larger

than the measurement uncertainty.

At this point, one may finally wonder which of the previ-

ous optimization protocols is the best. The results obtained

for all of them are summarized in Table 2, where both the

information matrix determinant and lowest eigenvalue are

given for each optimized instrumentation.

Table 2

Optimization criteria values for each optimized instrumenta-
tion

Optimized instrumentation log
10
(det([])) log

10
(

'
)

#1 80.48 4.896
#2 80.54 4.895
#3 80.55 4.894

#4 (17 strain gauges) 72.88 4.448
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Figure 25: Comparison between reference and calibrated
modal amplitudes for the inflation case of tires A (a) and B
(b) using optimized instrumentation #4

As a reminder, the results obtained considering the in-

formation matrix determinant as the optimization criterion

show that instrumentation #1 does not provide the best so-

lution according to its own criterion, because the problem is

intrinsically nonlinear and nonconvex. However, optimized

instrumentations #2 and #3 give very similar results, without

significant deterioration of lowest eigenvalue of the informa-

tion matrix.

Each optimization algorithm is expected to lead to a “bet-

ter” solution according to its own criterion. To validate this

property, changes of the determinant and lowest eigenvalue

of the information matrix with the number of iterations for

protocols #1 and #4 (related to the respective instrumenta-

tions) are superimposed in Figure 26. The above expectation

is indeed confirmed when the optimization is based on the

maximization of the information matrix determinant (i.e., in-

strumentations #1, #2 and #3), which achieves much higher

values than when the lowest eigenvalue is considered as the

optimization criterion (i.e., instrumentation #4). Figure 26a

shows that this difference between protocols #1 and #4 ap-

pears very early along the optimization process. However,
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more surprisingly, when the lowest eigenvalue of the infor-

mation matrix is considered, as shown in Figure 26b, both

procedures #1 and #4 provide very similar performances up

to the 250-th iteration, with a slight advantage for the proce-

dure #4 focused on this specific target in the first 200 steps.

However, after about 250 iterations, protocol #4 suddenly di-

verges. This behavior can be traced to very abrupt disconti-

nuities in the direction of highest uncertainty. These changes

in the direction in which optimization is performed is re-

sponsible for the much more irregular behavior of procedure

#4 observed for both quantities of interest det([]) and 
'

.

This is to be contrasted with procedure #1 which considers

all directions simultaneously, resulting in a much smoother

behavior and hence a more robust character as well.
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Figure 26: Changes of the determinant (a) and lowest eigen-
value (b) of the information matrix with the number of itera-
tions for protocols #1 and #4

In the end, the procedure based on the lowest eigenvalue

of the information matrix as the optimization criterion thus

does not lead to a better instrumentation than those deter-

mined using the information matrix determinant (Table 2

and Figure 26). However, other optimization algorithms

were not assessed for this criterion but may have improved

the results.

5. Conclusion

The optimal sensor placement problem for tire-rim in-

terface loading identification purposes was investigated. In

conjunction with the optimal parameterization of tire-rim

loading (Cosseron et al., 2019), it was proposed to optimize

the instrumentation of an aircraft wheel to calibrate the load-

ing parameters at best. The choice was made to only deal

with strain gauge measurements, but the proposed frame-

work can be extended to other types of sensor if needed. The

aim was thus to determine the right number and location of

sensors that minimize the uncertainties on the sought param-

eters.

To this end, optimization criteria and procedures, which

were based on the information contained in the covariance

matrix of the uncertainties affecting the loading parameter

estimates, were used. In the context of tire-rim interface

loading identification, the proposed methodology appears as

a significant progress with respect to the state-of-art for two

reasons: first, the loading parameter uncertainties were ad-

dressed (and very significantly reduced) while they are sel-

dom mentioned in the literature; second, optimization pro-

cedures for the instrumentation were proposed to achieve a

satisfactory configuration of strain gauges rather than relying

on trials and errors or intuition.

Having detailed the inverse problem to solve to deter-

mine tire-rim interface loadings from experimental strain

measurements, the identification of an inflation case was

studied as a proof of concept considering a 2D-axisymmetric

FEM of the wheel and two different tires. Two optimiza-

tion criteria, namely, the determinant and the lowest eigen-

value of the information matrix, and several algorithms were

then used to obtain the best estimates of the sought param-

eters. All optimized instrumentations led to drastically re-

duced uncertainties of the loading parameters. However,

those obtained with the determinant criterion appeared to be

more suitable to the studied problem. Therefore, any infla-

tion loading applied to the wheel of a landing gear can be

correctly calibrated with this kind of instrumentation.

The extension of the present framework to 3D loading

cases (i.e., vertical and cornering) is necessary to obtain a

complete answer to the problem of tire-rim loading identifi-

cation. A similar work should thus be performed using 3D

FEMs of the wheel. Shell elements could be used to mimic

strain gauge surfaces. The post-processing of the strain ten-

sor at element integration points would enable the search of

the optimal strain gauge orientation to be automated, among

other things. The impact of the FEM nonlinearities (e.g.,

contacts) should also be assessed. Furthermore, it would be

interesting to enhance the optimization criterion to ensure

robustness against sensor failures and mispositioning. Last,

the framework may also be extended to the determination of

other quantities of interest (e.g., for sizing purposes). The

definition of an optimized gauging and the subsequent iden-

tification of tire-rim interface loadings for different condi-

tions will allow the aircraft wheel manufacturer to conduct

reliable fatigue analyses of the wheel and to predict its ser-

vice life with a high degree of accuracy.
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