
Optimized Generation of Data-path from C Codes for FPGAs

Zhi Guo Betul Buyukkurt Walid Najjar
University of California Riverside

{zguo, abuyukku, najjar}@cs.ucr.edu

Kees Vissers
Xilinx Corp.

kees.vissers@xilinx.com

Abstract
FPGAs, as computing devices, offer significant speedup

over microprocessors. Furthermore, their configurability
offers an advantage over traditional ASICs. However, they
do not yet enjoy high-level language programmability, as
microprocessors do. This has become the main obstacle for
their wider acceptance by application designers.

ROCCC is a compiler designed to generate circuits from
C source code to execute on FPGAs, more specifically on
CSoCs. It generates RTL level HDLs from frequently
executing kernels in an application. In this paper, we
describe ROCCC’s system overview and focus on its data
path generation. We compare the performance of ROCCC-
generated VHDL code with that of Xilinx IPs. The synthesis
result shows that ROCCC-generated circuit takes around
2x ~ 3x area and runs at comparable clock rate.

1. Introduction
Continued increases in integrated circuit chip capacity

have led to the recent introduction of Configurable System-
on-a-Chip (CSoC), which has one or more microprocessors
integrated with a field-programmable gate array (FPGA) as
well as memory blocks on a single chip. In these platforms
both the FPGA fabric, as well as the embedded
microprocessors are essentially programmed using
software. The earliest example is the Triscend E5 followed
by the Triscend A7 [1], the Altera Excalibur [2], and Xilinx
Virtex II Pro [3]. The capabilities of these platforms span a
wide range with the Triscend A7 at the low end and the
Xilinx Virtex II Pro 2VP125 at the high-end. These
amazing computing devices have the flexibility of software
and have been shown to achieve very large speedups,
ranging from 10x to 100x, over microprocessors for a
variety of applications including image and signal
processing [4][5][6]. Such speedups come from large-scale
parallelism made possible by high-capacity FPGAs, as well
as from customized circuit design. The main problem
standing in the way of wider acceptance of CSoC platforms
is their programmability. Application developers must have
an extensive hardware expertise, in addition to their
application area expertise, to develop efficient designs.
Presently, most CSoCs are programmed manually. The
main drawback of this approach is that it is very labor

intensive and requires large design times. Some
commercial effort in programming FPGAs have been
proposed by companies such as Synopsys [7] and Tensillica
[8]. Their focus is on moving simple loops to hardware or
on instruction-set extension.

Optimizing compilers for traditional processors have
benefited from several decades of extensive research that
has led to extremely powerful tools. Similarly, electronic
design automation (EDA) tools have also benefited from
several decades of research and development leading to
powerful tools that can translate VHDL and Verilog code,
and recently SystemC [9] code, into relatively efficient
circuits. However, little work has been done to combine
these two approaches. In other words, work is still needed
to compile a high-level language program, based on
C/C++/Java, with software level optimizations with the
intent of generating a hardware circuit. Obviously, it is
neither practical nor desirable to translate the whole
program into hardware. It is therefore imperative to provide
the programmer with tools that would help in identifying
which code segments ought to be mapped to hardware as
well as the cost and benefit tradeoffs implied.

Compiling to CSoCs and FPGAs in general is
challenging. Traditional CPUs, including VLIW, have a
fixed hardware platform. Their architectural features may
or may not be exposed to the compiler. FPGAs, on the
other hand, are completely amorphous. The task of an
FPGA compiler is to generate both the hardware (data path)
and the sequence of operations (control flow). This lack of
architectural structure, however, presents a number of
advantages. (1) The parallelism is very high and limited
only by the size of the FPGA device or by the data memory
bandwidth. (2) On-chip storage can be configured at will:
registers are created by the compiler and distributed
throughout the data path where needed, thereby increasing
data reuse and reducing re-computations or accesses to
memory. (3) Circuit customization: the data path and
sequence controller are tailored to the specific computation
being mapped to hardware. Examples include customized
data bit-width and pipelining.

The objective of the ROCCC (Riverside Optimizing
Configurable Computing Compiler) project is to design a
high-level language compiler targeting CSoC. It takes high-

level code, such as C or FORTRAN as input and generates
RTL VHDL code for the FPGA and C code for the CPU. In
this paper we describe the overall structure of the compiler
and emphasize the data path generation component. We
compare the clock speed and area of automatically
generated circuits to a number of IP codes available on the
Xilinx web site. The results show that the speed is within
10% while the area is larger by a factor of 2 to 3. The work
in [25][26] has compared generated code with hand written
VHDL. Both have shown a factor of 2 on the performance
decrease of the generated code in area and clock rate.
ROCCC is built upon the knowledge acquired from SA-C
and Streams-C. We experimentally show that the resultant
VHDL is much closer to the handwritten one.

The rest of this paper is organized as follows. The
ROCCC compiler is introduced in section 2. Related work
is discussed in section 3. Section 4 presents ROCCC
compiler RTL code generation for the controller, the buffer
and the data path. Experimental results are reported in
section 5. Section 6 concludes the paper.

2. ROCCC System Overview
Figure 1 shows the overview of the ROCCC compiler.

The profiling tool set has been described in a prior
publication [10]. It identifies the frequently executing code
kernels in a given application. ROCCC’s objective is to
compile these kernels to HDL code, which is synthesized
using commercial tools.

The ROCCC system is built using SUIF [11] and
Machine-SUIF [12] platforms. SUIF IRs (intermediate
representations) provide abundant information about loop
statements and array accesses. ROCCC performs loop level
optimizations on SUIF IRs. Loop unrolling for FPGAs
requires compile time area estimation. The work reported
in [13] shows that in less than one millisecond and within
5% accuracy compile time area estimation can be achieved.
Information to generate high-level units, such as controllers
and buffers, is also extracted from SUIF IRs.

Machine-SUIF analysis and optimization passes, such as
Control Flow Graph (CFG) library [14], Data Flow
Analysis library [15] and Static Single Assignment library

[16], are used to generate the data path.
ROCCC’s conventional optimizations include constant

folding, loop unrolling, etc. Full loop unrolling converts a
for-loop with constant bounds into a non-iterative block of
code and therefore eliminates the loop controller. In
addition to these conventional optimizations, at loop level
ROCCC performs FPGA-specific optimizations, such as
loop strip-mining, loop fusion, etc. At storage level and
circuit level, ROCCC’s optimizations are closely related
with HDL code generation and are discussed in section 4.

The restrictions on the C code that can be accepted by
the ROCCC compiler, for mapping on an FPGA fabric,
include no recursion, no usage of pointers that cannot be
statically unaliased. Function calls will either be inlined or
whenever feasible made into a lookup table.

3. Related Works
Many projects, employing various approaches, have

worked on translating high-level languages into hardware.
SystemC [20] is designed to provide roughly the same
expressive functionality of VHDL or Verilog and is
suitable to designing software-hardware synchronized
systems. Handle-C [21], as a low level hardware/software
construction language with C syntax, supports behavioral
descriptions and uses CSP-style (Communicating
Sequential Processes) communication model.

SA-C [22] is a single-assignment high-level
synthesizable language. Because of special constructs
specific to SA-C (such as window constructs) and its
functional nature, its compiler can easily exploit data reuse
for window operations. SA-C uses pre-existing
parameterized VHDL library routines to perform code
generation in a way that requires a number of control
signals between components, and thereby involves extra
clock cycles and delay. Our compiler avoids spending
clock cycles on handshaking by focusing more on the
compile-time analysis. It takes a subset of C as input and
does not involve any non-C syntax.

Streams-C [23] relies on the CSP model for
communication between processes, both hardware and
software. Streams-C can meet relatively high-density
control requirements. However, it does not support
accesses to two-dimension arrays and therefore image
processing applications, including video processing, must
be mapped manually. This makes it very awkward to
efficiently support algorithms that rely on sliding windows.
For one-dimension input data vector, such as a one-
dimension FIR filter, Streams-C programmers need to
manually write data reuse in the input C code in order to
make sure that a data value is retrieved only once from
external memory.

SPARK [24] is another C to VHDL compiler. Its
transformations include loop unrolling, common sub-
expression elimination, copy propagation, dead code
elimination, loop-invariant code motion etc. SPARK does
not support multi-dimension array accesses.

Loop

Optimization

SUIF2

Machine

SUIF

Controller

Generation

Data Path

Generation

Graph Editor

+ Annotation

CAD

tools

VHDL Code

Generator

Bit

Stream

ROCCC System

C /C++

Fortran

Java…

…

Code

P
ro

fi
li

ng

Host

Executable

General

Compiler

Estimation

! Area

! Delay

! Power

Figure 1 - ROCCC System Overview

4. The ROCCC Compiler
ROCCC targets high computational density, low control

density applications. Figure 2 shows the execution model.
An engine moves the data from off-chip to a BRAM
storage. The compiler-generated circuit accesses the arrays
in BRAM and stores the output data into another BRAM,
from which an engine retrieves data into the off-chip
memory. Inside the compiler-generated circuit, the data
path is fully pipelined. The controllers and buffers are in
charge of feeding input data and retrieving output data to
and from the data path.

4.1 Controller
and Buffers

ROCCC’s scalar
replacement
transformation
converts, for
instance, the segment
in Figure 3 (a) into
the segment in Figure
3 (b). We can see that
scalar replacement
isolates memory
access from
calculation. The
highlighted region of
code is exported in

the form of Figure 3 (c) and goes to the data path generator.
At the same time, the loop statement and memory
load/store code are used to generate the controllers and
buffers. The controllers include address generators, which
export a series of memory addresses according to the
memory access pattern, and a higher-level controller, which
controls the address generators. They are all implemented
as pre-existing parameterized FSMs (finite state machine)
in a VHDL library.

One of the major reasons that account for FPGA’s

speedup over general-purpose processor is that FPGA is
capable of providing optimized I/O interface between data
path and memory units [17]. For example, each iteration of
the for-loop in Figure 3 (a) is essentially an operator on a
window of five consecutive array elements. The window
slides on the array. Two adjacent windows have four input
data in common and only one new input data per
window/iteration. ROCCC, as a high-level synthesis
compiler, uses the knowledge of memory access pattern
from the input code, such as the code shown in Figure 3
(b), to automatically generates an intelligent buffer, called
smart buffer, based on the bus size, window size, data size
and sliding-window stride. This buffer unit is able to reuse
live input data, clean unused data and export the present
valid input data set (the 5-data window in Figure 3 (b)) to
the data path [18].

4.2 Data Path Generation
Before building the data path, a few preparation passes

are done both at the front-end and back-end. Then,
ROCCC’s back-end passes perform the analysis,
optimization and data path generation.

4.2.1 Preparation Passes
ROCCC uses Machine-SUIF virtual machine (SUIFvm)

[19] intermediate representation as the back-end IR. The
original SUIFvm assembly-like instructions, by themselves,
cannot completely cover HDLs’ hardware description
functionality. On the other side, the front-end analysis may
assist and simplify the data path generation at back-end.
Besides back-end data flow analysis, ROCCC performs
high-level data flow analysis at front-end and the analysis
information is transferred through pre-defined macros to
assists back-end hardware generation.

Figure 4 (b) shows an accumulator after applying scalar
replacement in C. The variable sum is detected as a
feedback signal. Figure 4 (c) shows the resultant segment in
C, in which macro ROCCC_load_prev() and macro
ROCCC_store2next() annotate the signal feedback.

After applying scalar replacement and front-end
dataflow analysis, the function that describes the scalar
computing, like the codes shown in Figure 3 (c) or Figure 4
(c), is fed into Machine-SUIF. ROCCC performs circuit
level optimizations and eventually generates data path on a
modified version of the Machine-SUIF virtual machine
(SUIFvm) [19] intermediate representation.

Before fed to ROCCC’s passes, the virtual machine IR
first undergoes Machine-SUIF Static Single Assignment
and Control Flow Graph transformations. At this point,
control flow graph information is visible and every virtual
register is assigned only once.

The preserved macros are converted into ROCCC-
specific opcodes. For example, ROCCC_load_prev() and
ROCCC_store2next() in Figure 4 (c) are converted into
instructions with opcode LPR (load previous) and SNX
(store next), respectively. We are working on supporting bit

co
n

tro
llers

P
ip

elin
ed

 d
ata p

ath

Block RAM

Block RAM

Off-chip
MEM

Off-chip

MEM

smart buffer

smart buffer

Figure 2 - The Execution Model

for (i=0; i<N; i=i+1) {

 C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] + 9*A[i+3] – A[i+4]; }

 (a)

for (i=0; i<17; i=i+1) {

 A0 = A[i]; A1 = A[i+1]; A2 = A[i+2];

 A3 = A[i+3]; A4 = A[i+4];

 Tmp0 = 3*A0 + 5*A1 + 7*A2 + 9*A3 - A4;

 C[i] = Tmp0; }

 (b)
void main_df(int A0,int A1,int A2,int A3,int A4,int* Tmp0)

{

 *Tmp0 = 3*A0 + 5*A1 + 7*A2 + 9*A3 - A4;

 return; }

 (c)

(a) – A 5-tap FIR in original C code
(b) – The FIR after scalar replacement
(c) – The FIR C code fed into the data path generator

Figure 3 - A 5-tap FIR in C

manipulation macros, which are the lack of high-level
languages.

4.2.2 Data Path Building
Each instruction that goes to hardware is assigned a

location in the data path. We add new fields into Machine-
SUIF IR to record the location of each arithmetic, logic or
register copying instruction’s location. For example, Figure
6 shows the data path for the C code list in Figure 5. We
maximize instruction level parallelism. All the input and
output operands are copied to the entry or exit of the data
flow, respectively. A virtual register’s definition and
reference should be adjoining in the data flow. If not, extra
register copying instructions are added to satisfy so.

The compiler first builds data path for each non-null
node in the CFG, as node 1 through node 4 shown in Figure
6. To parallelize alternative branches, the compiler adds a
new mux node between alternative branch nodes and their
common successor node, for instance, node 7 in Figure 6.
A new pipe node (node 6 in Figure 6, for instance) is added

to copy live variables from alternative branches’ parent
node to their common successor node.

In Figure 6, node 6 and 7 are called hard nodes since
they only appear in hardware and have no equivalence in
software. Nodes 1 through 4 are thereby called soft nodes.
Notice that if we only consider soft node, vr11 in node 4 is
vr11 in node 1, the same case as of vr13. Therefore, the soft
nodes, by themselves, will have the same behavior on a
CPU compared with the whole data path on a FPGA.

4.2.3 Data Path Pipeline
ROCCC automatically places

latches in a data path to pipeline it.
The latch location in a node is
decided based on the delay
estimation of instructions, which is
beyond this paper’s scope.

The latch location also satisfies
special opcodes’ requirements. For
example, SNX instruction must have
a latch to store the feedback signal to
the corresponding LPR instruction.
Figure 7 shows the data path of
Figure 4 (c).

After data path pipelining, each
pipeline stage is an instance of single iteration in the for-
loop body.

4.2.4 VHDL Code Generation
ROCCC generates one VHDL component for each CFG

node that goes to hardware. In a node, every virtual register
is single assigned and is converted into wires in hardware.
All arithmetic opcodes in SUIFvm have corresponding
functionality in IEEE 1076.3 VHDL with the exception of
division. Arithmetic, logic and copying instructions become
combinational or sequential VHDL statement according to

int sum = 0;
for (i = 0; i < 32; i++) {
sum = sum + A[i];
}
 (a)

 int sum = 0;
 for (i = 0; i < 32; i++) {
 main_Tmp0 = A[i];
 sum = sum + main_Tmp0;
 }

 (b)

int sum = 0;
void main_dp(int main_Tmp0, int* main_Tmp1) {
int main_dp_Tmp2;
main_dp_Tmp2 = ROCCC_load_prev(sum) + main_Tmp0;
ROCCC_store2next(sum, main_dp_Tmp2);

*main_Tmp1 = sum;
}
 (c)

(a) – An accumulator in original C code
(b) – The accumulator after scalar replacement
(c) – The C code fed into data path generator after

detecting feedback variable and adding preserved

macros
Figure 4 - An Accumulator in C

void if_else(int x1, int x2, int* x3, int* x4) {

 int a,c;

 c = x1 - x2; /*node 1*/

 if(c < x2)

 a = x1*x1 ; /*node 2*/

 else

 a = x1 * x2 + 3; /*node 3*/

 c = c - a;

 *x3 = c;

 *x4 = a;

 return;}
Figure 5 - An Alternative Branch in C

* The pointers are only used to indicate multiple
return values. ROCCC does not support pointers

Figure 6 - The Alternative Branch Data Path

Figure 7 - The

Accumulator Data
Path

node 4

whether the instruction needs latched or not. A LUT
instruction invokes an instantiation of a lookup table
component. If the lookup table is a pre-existing one, such
as a cos lookup table, the compiler automatically includes
the existing component. Otherwise, for example, if a user
wants to have a probability distribution function lookup
table, the compiler instantiates the lookup table as a regular
ROM IP core unit in the VHDL code. The only thing the
user needs to do is to edit a pure text initialization file,
which defines the lookup table’s content.

By adding more data type in Machine-SUIF, ROCCC
supports any signed and unsigned integer type up to 32 bit.
The compiler infers the inner signals’ bit size automatically.

5. Experimental Results
We compare the hardware performance generated from

Xilinx IP cores and ROCCC-generated VHDL code. We
use Xilinx ISE 5.1i and IP core 5.1i. All the Xilinx IP cores
and ROCCC-generated VHDL code are synthesized
targeting a Xilinx Virtex-II xc2v2000-5 FPGA.

All the benchmarks in Table 1 are picked from Xilinx
IP core except the wavelet engine. The input and output
variables of ROCCC equivalents have the same bit sizes as
that of the IP cores.

Bit_correlator counts the number of bits of an 8-bit
input data that are the same as of a constant mask. Mul_acc
is a multiplier-accumulator, whose input variables are a
pair of 12-bit data. Udiv is an 8-bit unsigned divider.
Square_root calculates a 24-bit data’s square root. Cos’s
input is 10-bit, output, 16-bit. The arbitrary LUT has the
same port size as that of cos. FIR is two 5-tap 8-bit constant
coefficient finite impulse response filters, whose bus sizes
are 16-bit. DCT is a one-dimension 8-data discrete cosine
transform. The input data size and output data size are 8-bit
and 19-bit, respectively. For Xilinx IP FIR and DCT, the
multiplications with constants are implemented using
distributed arithmetic technique, which performs
multiplication with lookup-table based schemes. Therefore,
we set the synthesis option ‘multiplier style’ as ‘LUT’ for
the ROCCC-generated DCT and FIR.

The second and the third column of Table 1 show Xilinx
IP cores’ clock rate and device utilization and the forth and
the fifth column show ROCCC’s corresponding

performance. %Clock is the percentage difference in clock
rate of ROCCC-generated VHDL compared to Xilinx IP.
%Area is the percentage difference in area of ROCCC-
generated VHDL compared to Xilinx IP. Bit-correlator,
udiv and square root consist of a number of bit
manipulations. The C input, as a high-level code, is not
good at describing bit operations and therefore is one of the
major causes of the performance difference. Xilinx
mul_acc IP has a control input signal nd (new data) whose
Boolean value true indicates the present data is valid. In C
code, we describe the equivalent behavior using if-else
statement whose condition evaluates Boolean input nd.
Thus, extra nodes and latches are added to support the
alternative branch and take extra area. We used to convert
this C code by multiplying nd with the new input data
instead of using if-else statement. Though one more
multiplier was used, the overall area and clock rate
performance was better than the one listed in Table 1.
Obviously, this is not compile level optimization. But at the
same time, it shows one of high-level synthesis’s
advantages: ease to do algorithm level optimizations. In
terms of lookup tables, ROCCC-generated VHDL code
instantiates Xilinx IP cores. Therefore, they have exactly
the same performance. In Xilinx Virtex-II, 10-bit-input-16-
bit-output cos/sin lookup table stores only half wave, which
is one of the reasons that this cos/sin lookup table utilizes
less area compared with the arbitrary ROM lookup table
with the same port size. Fir operates on an array. Basically,
a 5-data window slides on the one-dimension array.
ROCCC generates smart buffer to reuse the previous input
data. The FIR’s data path consists of multipliers,
adders/subtracters and no branch. ROCCC fits this type of
algorithms and gets comparable performance with IP cores.
Like FIR, DCT has high computational density and no
branch. The throughput of Xilinx DCT IP is one output
data per clock cycle, while ROCCC’s throughput is eight
output data per clock cycle. Therefore, though ROCCC-
generated DCT runs at a lower speed (73.5%), the overall
throughput of ROCCC-generated circuit is higher. Both
ROCCC DCT and Xilinx IP DCT explore the symmetry
within the cosine coefficients. The last row in Table 1 shows
an implementation of a two-dimension (5, 3) wavelet

Table 1: A comparison of hardware performance from Xilinx IPs and ROCCC-generated VHDL code.
(*The wavelet engine is not from the Xilinx IP, it is written in VHDL)

Example Clock (MHz) Area (slice) Clock (MHz) Area (slice) %Clock %Area

bit_correlator 212 9 144 19 0.679 2.11

mul_acc 238 18 238 59 1.00 3.28

udiv 216 144 272 495 1.26 3.44

square root 167 585 220 1199 1.32 2.05

cos 170 150 170 150 1.00 1.00

Arbitrary LUT 170 549 170 549 1.00 1.00

FIR 185 270 194 293 1.05 1.09

DCT 181 412 133 724 0.735 1.76

Wavelet* 104 1464 101 2415 0.971 1.65

Xilinx IP ROCCC

transform engine, which is the standard lossless JPEG2000
compression transform. This wavelet transform engine
includes the address generator, smart buffer and data path.
The ROCCC-generated circuit is compared with a
handwritten one.

We derive bit width only based on port size and opcodes.
More aggressive bit narrowing, performed by users or/and
the compiler, may reduce device utilization.

6. Conclusion
The reconfigurable computing paradigm is a powerful

computing model that has a lot of potential for long-
running or streaming applications that are somehow regular
in nature. The main obstacle to its use is its
programmability. Handwritten HDL code for large scale
applications is not the most desirable approach. Automatic
compiler generation of HDL code from high-level
languages is very challenging.

The ROCCC compiler generates VHDL for
reconfigurable computing from high-level languages, such
as C or Fortran. ROCCC performs loop level, storage level
and circuit level optimizations. In this paper we have
mainly presented its data path generation. At front-end, the
compiler performs high-level data flow analysis and
transfers the analysis information through preserved
macros. At back-end, the compiler explores low-level
parallelism, pipelines data path and narrows inner signals’
bit sizes. ROCCC supports lookup tables through
automatically instantiating pre-existing lookup table IPs or
ROM IPs.

We compared the performance of ROCCC-generated
VHDL code with that of Xilinx IPs. The synthesis result
shows that ROCCC-generated circuit takes around 2x ~ 3x
area and runs at comparable clock rate. ROCCC performs
better on high computational density examples than on high
control density ones.

7. References
[1] Triscend Corporation, "Triscend A7 Configurable System on

a Chip Family." http://www.triscend.com/products/a7.htm,
2004.

[2] Altera Corp. "Excalibur: System-on-a-Programmable."
http://www.altera.com, 2004.

[3] Xilinx Corp. "IBM and Xilinx Team."
http://www.xilinx.com/prs_rls/ibmpartner.htm, 2004.

[4] W. Chen, P. Kosmas, M. Leeser, C. Rappaport. An FPGA
Implementation of the Two-Dimensional Finite-Difference
Time-Domain (FDTD) Algorithm, Int. Symp. Field-
Programmable gate Arrays (FPGA), Monterrey, CA,
February 2004.

[5] J. Keane, C. Bradley, Clark, C. Ebeling. A Compiled
Accelerator for Biological Cell Signaling Simulations, Int.
Symp. Field-Programmable gate Arrays (FPGA), Monterrey,
CA, February 2004.

[6] Berkeley Design Technology, Inc.:
http://www.bdti.com/articles/info_eet0207fpga.htm#DSP-
Enhanced%20FPGAs, 2004.

[7] Synopsys, Inc. http://www.synopsys.com, 2004.

[8] Tensilica, http://www.tensilica.com, 2004.
[9] SystemC Consortium. http://www.systemc.org, 2004.
[10] D. C. Suresh, W. A. Najjar J. Villareal, G. Stitt and F. Vahid.

Profiling Tools for Hardware/Software Partitioning of
Embedded Applications. Proc. ACM Symp. On Languages,
Compilers and Tools for Embedded Systems (LCTES 2003),
San Diego, CA, June 2003.

[11] SUIF Compiler System. http://suif.stanford.edu, 2004.
[12] Machine-SUIF.

http://www.eecs.harvard.edu/hube/research/machsuif.html,
2004.

[13] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi, Fast Area
Estimation to Support Compiler Optimizations in FPGA-
based Reconfigurable Systems, IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM),
Napa, CA, April 2002.

[14] G. Holloway and M. D. Smith. Machine SUIF Control Flow
Graph Library. Division of Engineering and Applied
Sciences, Harvard University 2002.

[15] G. Holloway and A. Dimock. The Machine SUIF Bit-Vector
Data-Flow-Analysis Library. Division of Engineering and
Applied Sciences, Harvard University 2002.

[16] G. Holloway. The Machine-SUIF Static Single Assignment
Library. Division of Engineering and Applied Sciences,
Harvard University 2002.

[17] Z. Guo, W. Najjar, F. Vahid and K. Vissers. A Quantitative
Analysis of the Speedup Factors of FPGAs over Processors,
Int. Symp. Field-Programmable gate Arrays (FPGA),
Monterrey, CA, February 2004.

[18] Z. Guo, B. Buyukkurt, W. Najjar. Input Data Reuse In
Compiling Window Operations Onto Reconfigurable
Hardware, Proc. ACM Symp. On Languages, Compilers and
Tools for Embedded Systems (LCTES), Washington, DC,
June 2004.

[19] G. Holloway and M. D. Smith. Machine-SUIF SUIFvm
Library. Division of Engineering and Applied Sciences,
Harvard University 2002.

[20] SystemC Consortium. http://www.systemc.org, 2004.
[21] Handel-C Language Overview. Celoxica, Inc.

http://www.celoxica.com. 2004.
[22] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R.

Beveridge, M. Chawathe and C. Ross. From Algorithms to
Hardware - A High-Level Language Abstraction for
Reconfigurable Computing. IEEE Computer, August 2003.

[23] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski.
Stream-oriented FPGA computing in the Streams-C high
level language. In IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM), 2000.

[24] SPARK project. http://mesl.ucsd.edu/spark/, 2004.
[25] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the

Streams-C C-to-FPGA Compiler: An Applications
Perspective. Ninth ACM/SIGDA International Symposium
on Field Programmable Gate Arrays (FPGA), Monterey, CA,
2001.

[26] Z. Guo, D. C. Suresh, W. A. Najjar. Programmability and
Efficiency in Reconfigurable Computer Systems, Workshop
on Software Support for Reconfigurable Systems, held in
conjunction with the Int. Conf. Of High-Performance
Computer Architecture (HPCA), Anaheim, CA, February
2003.

