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Abstract 
FPGAs, as computing devices, offer significant speedup 

over microprocessors. Furthermore, their configurability 
offers an advantage over traditional ASICs. However, they 
do not yet enjoy high-level language programmability, as 
microprocessors do. This has become the main obstacle for 
their wider acceptance by application designers. 

ROCCC is a compiler designed to generate circuits from 
C source code to execute on FPGAs, more specifically on 
CSoCs. It generates RTL level HDLs from frequently 
executing kernels in an application. In this paper, we 
describe ROCCC’s system overview and focus on its data 
path generation. We compare the performance of ROCCC-
generated VHDL code with that of Xilinx IPs. The synthesis 
result shows that ROCCC-generated circuit takes around 
2x ~ 3x area and runs at comparable clock rate. 

1. Introduction 
Continued increases in integrated circuit chip capacity 

have led to the recent introduction of Configurable System-
on-a-Chip (CSoC), which has one or more microprocessors 
integrated with a field-programmable gate array (FPGA) as 
well as memory blocks on a single chip. In these platforms 
both the FPGA fabric, as well as the embedded 
microprocessors are essentially programmed using 
software. The earliest example is the Triscend E5 followed 
by the Triscend A7 [1], the Altera Excalibur [2], and Xilinx 
Virtex II Pro [3]. The capabilities of these platforms span a 
wide range with the Triscend A7 at the low end and the 
Xilinx Virtex II Pro 2VP125 at the high-end. These 
amazing computing devices have the flexibility of software 
and have been shown to achieve very large speedups, 
ranging from 10x to 100x, over microprocessors for a 
variety of applications including image and signal 
processing [4][5][6]. Such speedups come from large-scale 
parallelism made possible by high-capacity FPGAs, as well 
as from customized circuit design. The main problem 
standing in the way of wider acceptance of CSoC platforms 
is their programmability. Application developers must have 
an extensive hardware expertise, in addition to their 
application area expertise, to develop efficient designs. 
Presently, most CSoCs are programmed manually. The 
main drawback of this approach is that it is very labor 

intensive and requires large design times. Some 
commercial effort in programming FPGAs have been 
proposed by companies such as Synopsys [7] and Tensillica 
[8]. Their focus is on moving simple loops to hardware or 
on instruction-set extension.   

Optimizing compilers for traditional processors have 
benefited from several decades of extensive research that 
has led to extremely powerful tools. Similarly, electronic 
design automation (EDA) tools have also benefited from 
several decades of research and development leading to 
powerful tools that can translate VHDL and Verilog code, 
and recently SystemC [9] code, into relatively efficient 
circuits. However, little work has been done to combine 
these two approaches. In other words, work is still needed 
to compile a high-level language program, based on 
C/C++/Java, with software level optimizations with the 
intent of generating a hardware circuit. Obviously, it is 
neither practical nor desirable to translate the whole 
program into hardware. It is therefore imperative to provide 
the programmer with tools that would help in identifying 
which code segments ought to be mapped to hardware as 
well as the cost and benefit tradeoffs implied.  

Compiling to CSoCs and FPGAs in general is 
challenging. Traditional CPUs, including VLIW, have a 
fixed hardware platform. Their architectural features may 
or may not be exposed to the compiler. FPGAs, on the 
other hand, are completely amorphous. The task of an 
FPGA compiler is to generate both the hardware (data path) 
and the sequence of operations (control flow). This lack of 
architectural structure, however, presents a number of 
advantages. (1) The parallelism is very high and limited 
only by the size of the FPGA device or by the data memory 
bandwidth. (2) On-chip storage can be configured at will: 
registers are created by the compiler and distributed 
throughout the data path where needed, thereby increasing 
data reuse and reducing re-computations or accesses to 
memory. (3) Circuit customization: the data path and 
sequence controller are tailored to the specific computation 
being mapped to hardware. Examples include customized 
data bit-width and pipelining. 

The objective of the ROCCC (Riverside Optimizing 
Configurable Computing Compiler) project is to design a 
high-level language compiler targeting CSoC. It takes high-



level code, such as C or FORTRAN as input and generates 
RTL VHDL code for the FPGA and C code for the CPU. In 
this paper we describe the overall structure of the compiler 
and emphasize the data path generation component. We 
compare the clock speed and area of automatically 
generated circuits to a number of IP codes available on the 
Xilinx web site. The results show that the speed is within 
10% while the area is larger by a factor of 2 to 3. The work 
in [25][26] has compared generated code with hand written 
VHDL. Both have shown a factor of 2 on the performance 
decrease of the generated code in area and clock rate. 
ROCCC is built upon the knowledge acquired from SA-C 
and Streams-C. We experimentally show that the resultant 
VHDL is much closer to the handwritten one. 

The rest of this paper is organized as follows. The 
ROCCC compiler is introduced in section 2. Related work 
is discussed in section 3. Section 4 presents ROCCC 
compiler RTL code generation for the controller, the buffer 
and the data path. Experimental results are reported in 
section 5. Section 6 concludes the paper. 

2. ROCCC System Overview 
Figure 1 shows the overview of the ROCCC compiler. 

The profiling tool set has been described in a prior 
publication [10]. It identifies the frequently executing code 
kernels in a given application. ROCCC’s objective is to 
compile these kernels to HDL code, which is synthesized 
using commercial tools. 

The ROCCC system is built using SUIF [11] and 
Machine-SUIF [12] platforms. SUIF IRs (intermediate 
representations) provide abundant information about loop 
statements and array accesses. ROCCC performs loop level 
optimizations on SUIF IRs. Loop unrolling for FPGAs 
requires compile time area estimation. The work reported 
in [13] shows that in less than one millisecond and within 
5% accuracy compile time area estimation can be achieved. 
Information to generate high-level units, such as controllers 
and buffers, is also extracted from SUIF IRs. 

Machine-SUIF analysis and optimization passes, such as 
Control Flow Graph (CFG) library [14], Data Flow 
Analysis library [15] and Static Single Assignment library 

[16], are used to generate the data path.  
ROCCC’s conventional optimizations include constant 

folding, loop unrolling, etc. Full loop unrolling converts a 
for-loop with constant bounds into a non-iterative block of 
code and therefore eliminates the loop controller. In 
addition to these conventional optimizations, at loop level 
ROCCC performs FPGA-specific optimizations, such as 
loop strip-mining, loop fusion, etc. At storage level and 
circuit level, ROCCC’s optimizations are closely related 
with HDL code generation and are discussed in section 4. 

The restrictions on the C code that can be accepted by 
the ROCCC compiler, for mapping on an FPGA fabric, 
include no recursion, no usage of pointers that cannot be 
statically unaliased. Function calls will either be inlined or 
whenever feasible made into a lookup table. 

3. Related Works 
Many projects, employing various approaches, have 

worked on translating high-level languages into hardware. 
SystemC [20] is designed to provide roughly the same 
expressive functionality of VHDL or Verilog and is 
suitable to designing software-hardware synchronized 
systems. Handle-C [21], as a low level hardware/software 
construction language with C syntax, supports behavioral 
descriptions and uses CSP-style (Communicating 
Sequential Processes) communication model. 

SA-C [22] is a single-assignment high-level 
synthesizable language. Because of special constructs 
specific to SA-C (such as window constructs) and its 
functional nature, its compiler can easily exploit data reuse 
for window operations. SA-C uses pre-existing 
parameterized VHDL library routines to perform code 
generation in a way that requires a number of control 
signals between components, and thereby involves extra 
clock cycles and delay. Our compiler avoids spending 
clock cycles on handshaking by focusing more on the 
compile-time analysis. It takes a subset of C as input and 
does not involve any non-C syntax. 

Streams-C [23] relies on the CSP model for 
communication between processes, both hardware and 
software. Streams-C can meet relatively high-density 
control requirements. However, it does not support 
accesses to two-dimension arrays and therefore image 
processing applications, including video processing, must 
be mapped manually. This makes it very awkward to 
efficiently support algorithms that rely on sliding windows. 
For one-dimension input data vector, such as a one-
dimension FIR filter, Streams-C programmers need to 
manually write data reuse in the input C code in order to 
make sure that a data value is retrieved only once from 
external memory.  

SPARK [24] is another C to VHDL compiler. Its 
transformations include loop unrolling, common sub-
expression elimination, copy propagation, dead code 
elimination, loop-invariant code motion etc. SPARK does 
not support multi-dimension array accesses. 
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Figure 1 - ROCCC System Overview 



4. The ROCCC Compiler 
ROCCC targets high computational density, low control 

density applications. Figure 2 shows the execution model. 
An engine moves the data from off-chip to a BRAM 
storage. The compiler-generated circuit accesses the arrays 
in BRAM and stores the output data into another BRAM, 
from which an engine retrieves data into the off-chip 
memory. Inside the compiler-generated circuit, the data 
path is fully pipelined. The controllers and buffers are in 
charge of feeding input data and retrieving output data to 
and from the data path. 

4.1 Controller 
and Buffers  

ROCCC’s scalar 
replacement 
transformation 
converts, for 
instance, the segment 
in Figure 3 (a) into 
the segment in Figure 
3 (b). We can see that 
scalar replacement 
isolates memory 
access from 
calculation. The 
highlighted region of 
code is exported in 

the form of Figure 3 (c) and goes to the data path generator. 
At the same time, the loop statement and memory 
load/store code are used to generate the controllers and 
buffers. The controllers include address generators, which 
export a series of memory addresses according to the 
memory access pattern, and a higher-level controller, which 
controls the address generators. They are all implemented 
as pre-existing parameterized FSMs (finite state machine) 
in a VHDL library.  

One of the major reasons that account for FPGA’s 

speedup over general-purpose processor is that FPGA is 
capable of providing optimized I/O interface between data 
path and memory units [17]. For example, each iteration of 
the for-loop in Figure 3 (a) is essentially an operator on a 
window of five consecutive array elements. The window 
slides on the array. Two adjacent windows have four input 
data in common and only one new input data per 
window/iteration. ROCCC, as a high-level synthesis 
compiler, uses the knowledge of memory access pattern 
from the input code, such as the code shown in Figure 3 
(b), to automatically generates an intelligent buffer, called 
smart buffer, based on the bus size, window size, data size 
and sliding-window stride. This buffer unit is able to reuse 
live input data, clean unused data and export the present 
valid input data set (the 5-data window in Figure 3 (b)) to 
the data path [18].  

4.2 Data Path Generation 
Before building the data path, a few preparation passes 

are done both at the front-end and back-end. Then, 
ROCCC’s back-end passes perform the analysis, 
optimization and data path generation.  

4.2.1 Preparation Passes 
ROCCC uses Machine-SUIF virtual machine (SUIFvm) 

[19] intermediate representation as the back-end IR. The 
original SUIFvm assembly-like instructions, by themselves, 
cannot completely cover HDLs’ hardware description 
functionality. On the other side, the front-end analysis may 
assist and simplify the data path generation at back-end. 
Besides back-end data flow analysis, ROCCC performs 
high-level data flow analysis at front-end and the analysis 
information is transferred through pre-defined macros to 
assists back-end hardware generation. 

Figure 4 (b) shows an accumulator after applying scalar 
replacement in C. The variable sum is detected as a 
feedback signal. Figure 4 (c) shows the resultant segment in 
C, in which macro ROCCC_load_prev() and macro 
ROCCC_store2next() annotate the signal feedback. 

After applying scalar replacement and front-end 
dataflow analysis, the function that describes the scalar 
computing, like the codes shown in Figure 3 (c) or Figure 4 
(c), is fed into Machine-SUIF. ROCCC performs circuit 
level optimizations and eventually generates data path on a 
modified version of the Machine-SUIF virtual machine 
(SUIFvm) [19] intermediate representation.  

Before fed to ROCCC’s passes, the virtual machine IR 
first undergoes Machine-SUIF Static Single Assignment 
and Control Flow Graph transformations. At this point, 
control flow graph information is visible and every virtual 
register is assigned only once.  

The preserved macros are converted into ROCCC-
specific opcodes. For example, ROCCC_load_prev() and 
ROCCC_store2next() in Figure 4 (c) are converted into 
instructions with opcode LPR (load previous) and SNX 
(store next), respectively. We are working on supporting bit 
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Figure 2 - The Execution Model 

for (i=0; i<N; i=i+1) { 

 C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] + 9*A[i+3] – A[i+4];  } 

                                      (a) 

for (i=0; i<17; i=i+1) { 

   A0 = A[i];       A1 = A[i+1];   A2 = A[i+2];    

   A3 = A[i+3];   A4 = A[i+4]; 

   Tmp0 = 3*A0 + 5*A1 + 7*A2 + 9*A3 - A4; 

   C[i] = Tmp0;  } 

                                      (b) 
void main_df(int A0,int A1,int A2,int A3,int A4,int* Tmp0) 

{ 

  *Tmp0 = 3*A0 + 5*A1 + 7*A2 + 9*A3 - A4; 

  return;  } 

                                      (c) 
 

 
(a) – A 5-tap FIR in original C code 
(b) – The FIR after scalar replacement 
(c) – The FIR C code fed into the data path generator 

 
 

Figure 3 - A 5-tap FIR in C 



manipulation macros, which are the lack of high-level 
languages.   

4.2.2 Data Path Building 
Each instruction that goes to hardware is assigned a 

location in the data path.  We add new fields into Machine-
SUIF IR to record the location of each arithmetic, logic or 
register copying instruction’s location. For example, Figure 
6 shows the data path for the C code list in Figure 5. We 
maximize instruction level parallelism. All the input and 
output operands are copied to the entry or exit of the data 
flow, respectively. A virtual register’s definition and 
reference should be adjoining in the data flow. If not, extra 
register copying instructions are added to satisfy so. 

The compiler first builds data path for each non-null 
node in the CFG, as node 1 through node 4 shown in Figure 
6. To parallelize alternative branches, the compiler adds a 
new mux node between alternative branch nodes and their 
common successor node, for instance, node 7 in Figure 6. 
A new pipe node (node 6 in Figure 6, for instance) is added 

to copy live variables from alternative branches’ parent 
node to their common successor node. 

In Figure 6, node 6 and 7 are called hard nodes since 
they only appear in hardware and have no equivalence in 
software. Nodes 1 through 4 are thereby called soft nodes. 
Notice that if we only consider soft node, vr11 in node 4 is 
vr11 in node 1, the same case as of vr13. Therefore, the soft 
nodes, by themselves, will have the same behavior on a 
CPU compared with the whole data path on a FPGA. 

4.2.3 Data Path Pipeline 
ROCCC automatically places 

latches in a data path to pipeline it. 
The latch location in a node is 
decided based on the delay 
estimation of instructions, which is 
beyond this paper’s scope. 

The latch location also satisfies 
special opcodes’ requirements. For 
example, SNX instruction must have 
a latch to store the feedback signal to 
the corresponding LPR instruction. 
Figure 7 shows the data path of 
Figure 4 (c). 

After data path pipelining, each 
pipeline stage is an instance of single iteration in the for-
loop body. 

4.2.4 VHDL Code Generation 
ROCCC generates one VHDL component for each CFG 

node that goes to hardware. In a node, every virtual register 
is single assigned and is converted into wires in hardware. 
All arithmetic opcodes in SUIFvm have corresponding 
functionality in IEEE 1076.3 VHDL with the exception of 
division. Arithmetic, logic and copying instructions become 
combinational or sequential VHDL statement according to 

int sum = 0; 
for ( i = 0; i < 32; i++) { 
sum = sum + A[i]; 
} 
         (a) 

            int sum = 0; 
            for ( i = 0; i < 32; i++) { 
            main_Tmp0 = A[i]; 
            sum = sum + main_Tmp0; 
            } 

                        (b) 
 

int sum = 0; 
void main_dp(int main_Tmp0, int* main_Tmp1) { 
int main_dp_Tmp2; 
main_dp_Tmp2 = ROCCC_load_prev(sum)  + main_Tmp0; 
ROCCC_store2next(sum, main_dp_Tmp2); 

*main_Tmp1 = sum; 
} 
                                             (c)  

(a) – An accumulator in original C code 
(b) – The accumulator after scalar replacement 
(c) – The C code fed into data path generator after 

detecting feedback variable and adding preserved 

macros  
Figure 4 - An Accumulator in C 

void if_else(int x1, int x2, int* x3, int* x4) { 

    int a,c; 

    c = x1 - x2; /*node 1*/ 

    if(c < x2)  

         a = x1*x1 ; /*node 2*/ 

    else  

         a = x1 * x2 + 3; /*node 3*/ 

    c = c - a; 

    *x3 = c; 

    *x4 = a; 

    return;}  
Figure 5 - An Alternative Branch in C 

* The pointers are only used to indicate multiple 
return values. ROCCC does not support pointers 

  
Figure 6 - The Alternative Branch Data Path 

  
Figure 7 - The 

Accumulator Data 
Path 

node 4 



whether the instruction needs latched or not. A LUT 
instruction invokes an instantiation of a lookup table 
component. If the lookup table is a pre-existing one, such 
as a cos lookup table, the compiler automatically includes 
the existing component. Otherwise, for example, if a user 
wants to have a probability distribution function lookup 
table, the compiler instantiates the lookup table as a regular 
ROM IP core unit in the VHDL code. The only thing the 
user needs to do is to edit a pure text initialization file, 
which defines the lookup table’s content. 

By adding more data type in Machine-SUIF, ROCCC 
supports any signed and unsigned integer type up to 32 bit. 
The compiler infers the inner signals’ bit size automatically. 

5. Experimental Results 
We compare the hardware performance generated from 

Xilinx IP cores and ROCCC-generated VHDL code. We 
use Xilinx ISE 5.1i and IP core 5.1i. All the Xilinx IP cores 
and ROCCC-generated VHDL code are synthesized 
targeting a Xilinx Virtex-II xc2v2000-5 FPGA. 

All the benchmarks in Table 1 are picked from Xilinx 
IP core except the wavelet engine. The input and output 
variables of ROCCC equivalents have the same bit sizes as 
that of the IP cores.  

Bit_correlator counts the number of bits of an 8-bit 
input data that are the same as of a constant mask. Mul_acc 
is a multiplier-accumulator, whose input variables are a 
pair of 12-bit data. Udiv is an 8-bit unsigned divider. 
Square_root calculates a 24-bit data’s square root. Cos’s 
input is 10-bit, output, 16-bit. The arbitrary LUT has the 
same port size as that of cos. FIR is two 5-tap 8-bit constant 
coefficient finite impulse response filters, whose bus sizes 
are 16-bit. DCT is a one-dimension 8-data discrete cosine 
transform. The input data size and output data size are 8-bit 
and 19-bit, respectively. For Xilinx IP FIR and DCT, the 
multiplications with constants are implemented using 
distributed arithmetic technique, which performs 
multiplication with lookup-table based schemes. Therefore, 
we set the synthesis option ‘multiplier style’ as ‘LUT’ for 
the ROCCC-generated DCT and FIR.  

The second and the third column of Table 1 show Xilinx 
IP cores’ clock rate and device utilization and the forth and 
the fifth column show ROCCC’s corresponding 

performance.  %Clock is the percentage difference in clock 
rate of ROCCC-generated VHDL compared to Xilinx IP. 
%Area is the percentage difference in area of ROCCC-
generated VHDL compared to Xilinx IP. Bit-correlator, 
udiv and square root consist of a number of bit 
manipulations. The C input, as a high-level code, is not 
good at describing bit operations and therefore is one of the 
major causes of the performance difference. Xilinx 
mul_acc IP has a control input signal nd (new data) whose 
Boolean value true indicates the present data is valid. In C 
code, we describe the equivalent behavior using if-else 
statement whose condition evaluates Boolean input nd. 
Thus, extra nodes and latches are added to support the 
alternative branch and take extra area. We used to convert 
this C code by multiplying nd with the new input data 
instead of using if-else statement. Though one more 
multiplier was used, the overall area and clock rate 
performance was better than the one listed in Table 1. 
Obviously, this is not compile level optimization. But at the 
same time, it shows one of high-level synthesis’s 
advantages: ease to do algorithm level optimizations. In 
terms of lookup tables, ROCCC-generated VHDL code 
instantiates Xilinx IP cores. Therefore, they have exactly 
the same performance.  In Xilinx Virtex-II, 10-bit-input-16-
bit-output cos/sin lookup table stores only half wave, which 
is one of the reasons that this cos/sin lookup table utilizes 
less area compared with the arbitrary ROM lookup table 
with the same port size. Fir operates on an array. Basically, 
a 5-data window slides on the one-dimension array. 
ROCCC generates smart buffer to reuse the previous input 
data. The FIR’s data path consists of multipliers, 
adders/subtracters and no branch. ROCCC fits this type of 
algorithms and gets comparable performance with IP cores. 
Like FIR, DCT has high computational density and no 
branch. The throughput of Xilinx DCT IP is one output 
data per clock cycle, while ROCCC’s throughput is eight 
output data per clock cycle. Therefore, though ROCCC-
generated DCT runs at a lower speed (73.5%), the overall 
throughput of ROCCC-generated circuit is higher. Both 
ROCCC DCT and Xilinx IP DCT explore the symmetry 
within the cosine coefficients. The last row in Table 1 shows 
an implementation of a two-dimension (5, 3) wavelet 

Table 1: A comparison of hardware performance from Xilinx IPs and ROCCC-generated VHDL code.  
(*The wavelet engine is not from the Xilinx IP, it is written in VHDL) 

Example Clock (MHz) Area (slice) Clock (MHz) Area (slice) %Clock %Area

bit_correlator 212 9 144 19 0.679 2.11

mul_acc 238 18 238 59 1.00 3.28

udiv 216 144 272 495 1.26 3.44

square root 167 585 220 1199 1.32 2.05

cos 170 150 170 150 1.00 1.00

Arbitrary LUT 170 549 170 549 1.00 1.00

FIR 185 270 194 293 1.05 1.09

DCT 181 412 133 724 0.735 1.76

Wavelet* 104 1464 101 2415 0.971 1.65

Xilinx IP ROCCC

 



transform engine, which is the standard lossless JPEG2000 
compression transform. This wavelet transform engine 
includes the address generator, smart buffer and data path. 
The ROCCC-generated circuit is compared with a 
handwritten one.  

We derive bit width only based on port size and opcodes. 
More aggressive bit narrowing, performed by users or/and 
the compiler, may reduce device utilization.  

6. Conclusion 
The reconfigurable computing paradigm is a powerful 

computing model that has a lot of potential for long-
running or streaming applications that are somehow regular 
in nature. The main obstacle to its use is its 
programmability. Handwritten HDL code for large scale 
applications is not the most desirable approach. Automatic 
compiler generation of HDL code from high-level 
languages is very challenging.  

The ROCCC compiler generates VHDL for 
reconfigurable computing from high-level languages, such 
as C or Fortran. ROCCC performs loop level, storage level 
and circuit level optimizations. In this paper we have 
mainly presented its data path generation. At front-end, the 
compiler performs high-level data flow analysis and 
transfers the analysis information through preserved 
macros. At back-end, the compiler explores low-level 
parallelism, pipelines data path and narrows inner signals’ 
bit sizes. ROCCC supports lookup tables through 
automatically instantiating pre-existing lookup table IPs or 
ROM IPs.  

We compared the performance of ROCCC-generated 
VHDL code with that of Xilinx IPs. The synthesis result 
shows that ROCCC-generated circuit takes around 2x ~ 3x 
area and runs at comparable clock rate. ROCCC performs 
better on high computational density examples than on high 
control density ones. 

7. References 
[1] Triscend Corporation, "Triscend A7 Configurable System on 

a Chip Family." http://www.triscend.com/products/a7.htm, 
2004. 

[2] Altera Corp. "Excalibur: System-on-a-Programmable." 
http://www.altera.com, 2004. 

[3] Xilinx Corp. "IBM and Xilinx Team."  
http://www.xilinx.com/prs_rls/ibmpartner.htm, 2004. 

[4] W. Chen, P. Kosmas, M. Leeser, C. Rappaport. An FPGA 
Implementation of the Two-Dimensional Finite-Difference 
Time-Domain (FDTD) Algorithm, Int. Symp. Field-
Programmable gate Arrays (FPGA), Monterrey, CA, 
February 2004. 

[5] J. Keane, C. Bradley, Clark, C. Ebeling. A Compiled 
Accelerator for Biological Cell Signaling Simulations, Int. 
Symp. Field-Programmable gate Arrays (FPGA), Monterrey, 
CA, February 2004. 

[6] Berkeley Design Technology, Inc.: 
http://www.bdti.com/articles/info_eet0207fpga.htm#DSP-
Enhanced%20FPGAs, 2004. 

[7] Synopsys, Inc. http://www.synopsys.com, 2004. 

[8] Tensilica, http://www.tensilica.com, 2004. 
[9] SystemC Consortium. http://www.systemc.org, 2004. 
[10] D. C. Suresh, W. A. Najjar J. Villareal, G. Stitt and F. Vahid. 

Profiling Tools for Hardware/Software Partitioning of 
Embedded Applications. Proc. ACM Symp. On Languages, 
Compilers and Tools for Embedded Systems (LCTES 2003), 
San Diego, CA, June 2003. 

[11] SUIF Compiler System. http://suif.stanford.edu, 2004. 
[12] Machine-SUIF. 

http://www.eecs.harvard.edu/hube/research/machsuif.html, 
2004. 

[13] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi, Fast Area 
Estimation to Support Compiler Optimizations in FPGA-
based Reconfigurable Systems, IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), 
Napa, CA, April 2002. 

[14] G. Holloway and M. D. Smith. Machine SUIF Control Flow 
Graph Library. Division of Engineering and Applied 
Sciences, Harvard University 2002. 

[15] G. Holloway and A. Dimock. The Machine SUIF Bit-Vector 
Data-Flow-Analysis Library. Division of Engineering and 
Applied Sciences, Harvard University 2002. 

[16] G. Holloway. The Machine-SUIF Static Single Assignment 
Library. Division of Engineering and Applied Sciences, 
Harvard University 2002. 

[17] Z. Guo, W. Najjar, F. Vahid and K. Vissers.    A Quantitative 
Analysis of the Speedup Factors of FPGAs over Processors, 
Int. Symp. Field-Programmable gate Arrays (FPGA), 
Monterrey, CA, February 2004.  

[18] Z. Guo, B. Buyukkurt, W. Najjar. Input Data Reuse In 
Compiling Window Operations Onto Reconfigurable 
Hardware, Proc. ACM Symp. On Languages, Compilers and 
Tools for Embedded Systems (LCTES), Washington, DC, 
June 2004. 

[19] G. Holloway and M. D. Smith. Machine-SUIF SUIFvm 
Library. Division of Engineering and Applied Sciences, 
Harvard University 2002. 

[20] SystemC Consortium. http://www.systemc.org, 2004. 
[21] Handel-C Language Overview. Celoxica, Inc. 

http://www.celoxica.com. 2004. 
[22] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R. 

Beveridge, M. Chawathe and C. Ross. From Algorithms to 
Hardware - A High-Level Language Abstraction for 
Reconfigurable Computing. IEEE Computer, August 2003. 

[23] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski. 
Stream-oriented FPGA computing in the Streams-C high 
level language. In IEEE Symp. on FPGAs for Custom 
Computing Machines (FCCM), 2000. 

[24] SPARK project. http://mesl.ucsd.edu/spark/, 2004. 
[25] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the 

Streams-C C-to-FPGA Compiler: An Applications 
Perspective. Ninth ACM/SIGDA International Symposium 
on Field Programmable Gate Arrays (FPGA), Monterey, CA, 
2001. 

[26] Z. Guo, D. C. Suresh, W. A. Najjar.  Programmability and 
Efficiency in Reconfigurable Computer Systems, Workshop 
on Software Support for Reconfigurable Systems, held in 
conjunction with the Int. Conf. Of High-Performance 
Computer Architecture (HPCA), Anaheim, CA, February 
2003. 


