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Abstract

Recently, there has been an increasing demand for advanced classi-

fication capabilities embedded on wearable battery constrained devices,

such as smartphones or -watches. Achieving such functionality with a

tight power and energy budget has proven a real challenge, specifically

for large-scale Neural Network based applications. Previously, cascaded

systems have been proposed to minimize energy consumption for such

applications, either through using a single wake-up stage, or by using a

linear- or tree based cascade of consecutive classifiers that allow early

termination. In this work, we expand upon these concepts by generalizing

cascades to hierarchical cascaded processing, where a hierarchy of increas-

ingly complex classifiers, each designed and trained for a specific subtask

is used. This hierarchical approach significantly outperforms the wake-up

based approach by up to 2 orders of magnitude in energy consumption

at iso-accuracy, specifically in systems with sparse input data such as

speech recognition and visual object detection. This paper presents a

general design framework for such systems and illustrates how to optimize

them towards minimum energy consumption. The text further proposes a

roofline model for cascaded systems, derives system level trade-offs and

proves the approaches validity through a visual classification case-study.

1 Introduction

There is an increasing demand for advanced classification capabilities to be
embedded on battery constrained devices, ranging from wearables such as smart-
phones and -watches to ubiquitous Internet-of-Things (IoT) sensor nodes [1] [2].
Target applications in this field vary from advanced on-device speech- and face
recognition on mobile phones to advanced feature extraction on smart sensor

∗Equally contributing authors are listed in alphabetical order.
†This research work was partly supported by the FWO projects nr. G0B4613, G093114,

S003817N and by IWT 131361.
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Figure 1: Illustration of a general hierarchical cascaded system

nodes, which reduce the necessary bandwidth to a central IoT node. Modern
machine learning algorithms, such as Deep Neural Networks, offer the modeling
capacity to perform this kind of functionality. However, they are typically too
expensive in terms of energy consumption to be run on these wearable battery
constrained devices.

This energy bottleneck can both be solved by developing more energy-efficient
machine learning algorithms, as is for example done in the context of Deep Neural
Networks [3] [4] [5] [6], and by developing more intelligent systems that can
exploit application-level characteristics to increase energy efficiency. This paper
focuses on the latter approach: increasing system-level energy efficiency through
a hierarchical cascaded system that exploits input data statistics.

Some contemporary state-of-the-art (SotA) detection or classification systems
reduce power consumption of always-on systems by adding a wake-up stage.
This strategy is typically applied in video surveillance systems [7] and key-
word recognition [8] or voice-activation [9, 10]. Here, a first stage performs a
simple task with a low cost in stead of powering on the full more expensive
functionality constantly. This reduces the average on-time of a more expensive
classifier considerably and hence the global system’s energy consumption. These
systems typically do not expand upon this approach outside of a two-stage
hierarchy, making them sub-optimal in many cases. Other alternatives try
minimizing energy consumption and maximizing performance by building tree-
based structures that perform multi-class recognition tasks [11] [12] [13] [14], or
through building single-function cascades for binary [15] [16] [17] or multi-class
problems [11]. However, none of these explicitly exploit input data characteristics.
Furthermore, there exists no framework that can be used to optimize them
towards minimum energy consumption at a given accuracy which is useful in the
context of embedded processing on battery-constrained devices. Prior multi-class
cascades can also be optimized using the presented approach and analysed using
the presented roofline model in section 2.4, but are fundamentally different from
the cascades discussed here. Throughout the cascade, they keep the number of



output classes constant and only refine decision boundaries in later stages, used
to classify more difficult samples. In this work, decision boundaries are both
added and refined throughout the different stages of the hierarchy, depending on
the a-priori input probabilities of the input samples.

In this work, cascaded systems are generalized into a full-blown multi-level
hierarchical cascade that outperforms the wake-up approach by up to two orders
of magnitude at iso-accuracy, as it more adequately exploits data statistics. An
introduction to such a system is given in Figure 1. Here, multiple hierarchical
stages are cascaded and can potentially filter out data early. In this setup, both
the complexity of the subtask and the cost of the subtask increase further down
the hierarchical chain. Common classes such as ’silence’, ’Alexa’ or ’you’ in the
speech-recognition context are recognized early in the classification hierarchy
with inexpensive classifiers, potentially preventing the final expensive stages
from being powered on. Hence, even though later stages are more expensive,
they are not used as much due to the discriminative functionality of the earlier
stages. This proposed architecture combines the benefits of cascaded and tree-
based topologies. As in the linear cascade approach, most negative samples
are eliminated before the last stage(s), saving power in the overall system. As
in a tree-based approach, multi-class problems are supported. Yet, early mis-
detections can still be corrected in later stages. This work provides a framework
used to minimizes overall energy consumption or computational cost in these
hierarchical cascades, while simultaneously maximizing or maintaining system
level accuracy.

In building such a framework, these contributions are key:

• We generalize wake-up systems to hierarchical cascaded classi-

fiers: a sequence of increasingly complex classifiers building up to a final
multi-class classification problem.

• We propose a theoretical roofline model to gain insight in the perfor-
mance of a stage in a hierarchical system.

• We derive general trade-offs in a generic hierarchical model. Both
the impact of input-data statistics, the number of stages used and the
individual performance of stages in the hierarchy are discussed.

• We validate the hierarchical design approach in a visual recognition case
study. This system can dynamically trade energy versus quality by changing
the cascade’s hyperparameters.

The full paper is organized as follows. Section II discusses the novel hier-
archical approach proposed in this paper. Both the relevant terminology and
the final optimization problem is discussed. Section III discusses the impact
of several data- and system-level parameters on a generic hierarchal system.
Section IV applies the proposed theory to a 100 face recognition application.
Finally, section V concludes this work.



2 Hierarchical Cascaded Systems

This section introduces hierarchical cascaded systems, which are a multi-stage
generalization of wake-up based systems.

2.1 Generalizing two-stage wake-up systems

In hierarchical cascaded systems, the overall computational cost of a classification
system is minimized without sacrificing performance. This is done by building a
functional hierarchy optimized for system-level energy efficiency: separate blocks
with increasing functionality and cost are concatenated and jointly optimized.
The hierarchy is more efficient than a single stage system, if the early stages
are cheap, yet filter data adequately towards the more expensive later stages,
without making too many mistakes that can not be recovered.

The overall system is divided in N stages, as depicted in Figure 2. The end
task of the system is assumed to be a complex multi-class classification task. For
instance, 100 faces in an image recognition application. The first task typically
is a binary wake-up detector.

A typical hierarchy starts with a simple binary classification that removes
the most obvious negative samples, such as background images or acoustic noise.
If an input is classified as a positive sample, for example a meaningful image,
the next stage is activated to make a more precise classification. Only samples
that are detected as positives by the previous stage are fed to the following
stage, as is the case in a classical cascade. Throughout this text, the positive
class in this framework is called ’pass-on-class’ (poc) and in Figure 2. However,
unlike previous works, every next stage performs a more complex classification
task. With this higher complexity and performance, its cost increases in a very
non-linear way.

In order to build a hierarchical cascaded processing system, several alter-
natives at varying cost-accuracy trade-offs are built and trained for each stage
of the hierarchy. Every individual stage is trained with a dataset modeling its
specific subtask of the full-scale problem. From the system point of view, a
stage is then abstracted by its performance (confusion matrix, ROC curve, etc.)
and the whole abstracted system is then automatically optimized in order to
achieve a given accuracy or recall at minimal complexity or cost. Details on this
optimization problem are provided in section 2.5.

2.2 Hierarchical Cost, Precision and Recall

In order to automatically optimize hierarchical cascaded systems, descriptions of
the system’s total cost and recall are derived. The performance of each stage n
in Figure 2 can be described using three separate entities. A stage n is defined by
specifying its cost Cn and 2 per-class entities: recall Rn,i, pass-on-rate PORn,i.
Apart from these factors, the system’s total cost C1→N is also heavily influenced
by the statistics of the input data, described by the a-priori probabilities of
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Figure 2: Basic hierarchical classifier system with N stages and I classes ∈
[poc, 2, .., I]. The a-priori chance of each class is Pi. Each stage n has an energy
cost of Ci and is described through its pass-on-rate for every class PORi, its
recall Ri and its misclassification rate MCi,j . The final per class recall is Ri as
calculated in eq. 5.

occurrence Pi of each class (Figure 2). Based on all these terms, the overall
system Recall and Cost can be derived.

Here, recall Rn,i is the probability that an instance of a given class i is
classified correctly in stage n,

Rn,i = P (ŷn = i|y = i) (1)

which is according to its standard multi-class definition. The Pass-On-Rate
PORn,i is the probability that an instance of class i gets passed along to the
next classifier by stage n

PORn,i = P (ŷn = poc|y = i) (2)

Thus, PORn,i is the probability of an element of classi to be classified as the
’pass-on-class’ poc in the given stage. The values of Rn,i and PORn,i depend
on the used classifier in the stage and from its operating point. These are both
design choices and are hence part of the system optimization. If an input sample
is misclassified as the pass-on-class in stage n, this can still be corrected in any
of the n+ 1 : N stages. If a sample is misclassified MC as any other class in a
given stage, the next stages are not powered on and the misclassification leads
to a mistake that can not be corrected. The probability of misclassification of a
sample of class i as class j for a given stage MCn,i,j is hence defined as follows:

MCn,i,j = P (ŷn = j /∈ {poc, i}|y = i) (3)

This is further illustrated in Figure 2, where for the 3-class second stage the
confusion matrix is given as an example. Here, rows indicate the actual class



and columns indicate the predicted class. Values classified to the first column
of the confusion matrix are passed on to the next classification stage. The
confusion matrix further formally illustrates how misclassified inputs MCn,i,j ,
the recall Rn,i and the pass-on-rate PORn,i are defined for each class in this
stage. Such a confusion matrix can be generalized to any number of classes I.
Note that the rows of the matrix are normalized, such that the matrix contains
the classification probabilities of the given true classes instead of absolute counts,
simplifying the equations.

The global cost in a hierarchy is a function of several data- and system-level
characteristics. First, it is a function of the a-priori probabilities of the occurrence
of each class Pi. Second, it also depends on the designed system: the cost Cn

of each stage and the pass-on-rates PORn,i of every class in each stage. The
average cost per input is hence:

C1→N = C1 +

I∑

i=1

(Pi ×

N∑

n=2

(Cn ×

n−1∏

η=1

PORη,i)) (4)

where
∏n−1

η=1 (PORη,i) denotes the cumulative product of pass-on-rate for a class
i up until stage n−1. In other words, the latter is the fraction of input samples of
class i that are passed on to stage n. This factor multiplied with the probability
of the class to be present as an input (Pi) and summed over all possible classes
(I) is the relative number of times a stage is used per window. Multiplying this
with the relative energy cost per stage (Cn) gives the average cost per sample.

The final recall of class i of the full cascade after N stages, R1→N,i, is
independent of a-priori input statistics and can be described as:

R1→N,i =
N∑

n=1

n−1∏

η=1

(PORη,i)×Rn,i (5)

where Rn,i is the recall rate for class i in stage n. If a stage n can not classify
samples as class i, i is regarded as a subclass of the pass-on-class p. Thus,
Rn,i = 0 and PORn,i = PORn,poc. If recall for every output is considered to be
equally important, the average total recall after the first N stages is described
as:

R1→N = avgi(R1→N,i) (6)

These formulas indicate high recall can either be achieved by high pass-on-rates
or by high recall rates. If a sample is passed-on to the next stage, it can still be
correctly classified by a later stage. However, higher pass-on-rates will also lead
to a higher total cost, as this causes more activations of the later stages in the
hierarchy.

When the system’s average recall from equation 6 is optimized, the system’s
precision is also automatically maximized for every class. This is apparent
from equations (7) and (8), which link the amount of true positives tpi and
misclassifications mci,j to total recall R1→N and precision PR1→N . Maximizing



total recall and total precision for any general system both require minimizing
all final false positives or misclassifications.

R1→N =

I∑

i=1

tpi

tpi +
∑I

j 6=i mci,j
(7)

PR1→N =

I∑

i=1

tpi

tpi +
∑I

j 6=i mcj,i
(8)

Here, mci,j is the number of misclassifications, where a sample of class i is
misclassified as class j 6= i. All of this information can be easily derived from
the system’s multi-class confusion matrix. This observation is useful, as no
formula similar to equation (5) can be derived for final precision. The above
shows that by optimizing for recall in any multi-class system, a high precision is
automatically implied.

2.3 Processing Implications

Using a hierarchical cascade will have an impact on the memory requirements of
the deployed system, as well as on the average processing throughput and the
worst-case latency of the application. Instead of storing models only for the
final functional stage in a hierarchy, one model is necessary for each stage. This
increases the system’s memory-requirements, but not necessarily significantly
given that the total memory size is dominated by the size of the final, most com-
plex classifier. In the example given in section 4, a 4 stage cascade achieving 85%
total recall on face recognition, requires storing only 20% more weights than the
single stage solution. Average throughput improves in an inversely proportional
way with the system level number of operations, which is proportional to typi-
cally system costs such as energy or network complexity. Finally, the cascading
approach impacts the worst-case latency, which has consequences for real-time
applications. In this case, the worst-case latency is the summation of the latency
of all N stages. The same 4 stage cascade example, has an increased worst-case
latency of 0.2% compared to the latency of the final functional stage only, but
at a 10000× lower average cost. Training times are also impacted by moving
to cascaded systems, as the proposed optimization approach discussed in this
paper requires training at least N classifiers. We argue the average cost benefits
of a cascade, further quantified in section 4, outweighs these disadvantages.

2.4 A roofline model for Hierarchical Classifiers

In order to gain insight in the theoretical maximum performance of a classifier
in a cascade, we propose a theoretical roofline model. An interesting upper-
bound relationship between pass-on-rates and recall can be derived for any
classifier in any stage of a hierarchical system. Based on this, we propose a
roofline model for hierarchical cascades. Depending on the cost-budget of the
classifier in a stage, the relationship between pass-on-rate and recall will be



closer or further from the theoretical roofline optimum. In a classifier with a
pass-on-class, recall can be described for every class i and for a given stage n
as Rn,i = 1− PORn,i −

∑I

j 6=i MCn,i,j . This formula can be rephrased and be
used to plot a relationship between the average recall across all classes except
the pass-on-class poc, avgi 6=poc(Rn,i), against the average pass-on-rate across all
classes, avgi(PORn,i). It is hence clear that:

avgi 6=poc(Rn,i) =

1−
I

I − 1
avgi(PORn,i) +

PORn,poc

I − 1
−

I∑

n,i 6=p

I∑

j=1

MCn,i,j

I − 1

(9)

In the optimal case, there are no misclassifications. Samples are either passed-on
or are classified correctly. In this case eq. (9) can be translated into a roofline,
as given in eq. (10) and indicated in Figure 3.

avgi 6=poc(Rn,i) = 1−
I

I − 1
avgi(PORn,i) +

1

I − 1

s.t. avgi(PORn,i) ≥ 1/I

(10)

Examples of ideal roofline and real curves are given in Figure 3. These real curves
are taken from the face recognition hierarchy of section 4. The ideal roofline
curves are according to eq. 10, while the non-ideal curves are real observed curves,
that can be modeled by eq. 9. When the average POR in stage n, avgi(PORn,i),
is below 1/I, the behavior is non-ideal, as in this operating regime, samples of
the pass-on-class are misclassified. The curve reaches a cutting point at 1/I.
Here, all samples are classified correctly (they have an average recall Rn,i of 1)
and none of them are passed-on (they have a pass-on-rate equal to 0) except for
samples of the pass-on-class. At an avgi(PORn,i) larger than 1/I, the optimal
average recall Rn,i 6=poc drops, in favor of more passed on samples. This does not
lead to catastrophic failures, as any of the next stages can still lead to a correct
classification. In the ideal roofline case, the cutting point is only a function of
the number of possible classes in a given stage.

In Figure 3, the roofline curves, are compared to real performance curves
taken from the face classification case study in section 4. They are for (a) a
binary two-stage wake up classifier, (b) a 3-class stage and (c) a 10 class stage.
Notice the cutting points at 1/I in each roofline. Every full line on these graphs
is a classifier with a different complexity and cost. None of these real classifiers
is identical to the roofline model, as real classifiers introduce misclassifications.
Yet, it is clear that the roofline model offers a very good upper bound, and it
is a close match for the most expensive classifier options. Naturally, the higher
the complexity and modeling capacity of the classifier, the closer it comes to the
optimal roofline model. The deviation of the roofline is mainly due to undesirable
misclassifications, which lead to real errors that cannot be compensated for in
later stages in the hierarchy.

Every classifier will hence have an associated operating curve in the recall vs
pass-on-rate space. Its final operating point can be chosen to be any point on



Figure 3: Roofline model and real classifiers for the 2-, 3 and 10-class classification
problems of stages WU, 2 and 3 in section 4. The respective cost of every stage
in terms of necessary number of operations is given in the legend. More complex
tasks require more operations to achieve a performance close to the optimal
roofline.

this curve, by choosing a pass-on-threshold τ . This threshold is a discriminative
threshold, similar to the one used in generating binary Receiver Operating
Characteric (ROC) curves. It is the minimum confidence required for a sample
to be classified as the pass-on-class poc. If this threshold is zero, all input samples
are passed on and the avgi(PORn,i) will be 1. If the threshold is close to one
almost no samples will be passed on in favor of more potential mis- or correct
classifications. This threshold value hence determines the operating point of the
classifier and can be chosen by the designer, or it can be automatically optimized.
In the ideal roofline model, there are no misclassifications. Hence, the threshold
directly trades recall for pass-on-rate.

Note that one bad model in the hierarchy does not necessarily destroy the
system level recall, as the stage can operate in a point where it has a high pass-on
rate. However, a system with high pass-on-rates does lead to a higher total cost,
as more inputs are passed on to the more expensive later stages in the hierarchy.
This leads to many degrees of freedom for every stage in the hierarchy, enabling
to optimize cost for a given target recall, or vice versa. Optimally choosing all
these characteristics per stage is a complex optimization problem that is solved
throughout the rest of this paper.



2.5 Optimized Hierarchical Cascaded Sensing

Knowing that a maximal recall automatically maximizes precision and based
on the previous discussion of general hierarchical sensing systems, a final two-
objective optimization problem is defined as follows:

min
τ ,C

C1→N (τ ,C,P )

max
τ

R1→N (C, τ )
(11)

Here C, P and τ are vectors representing stage level costs, a priori class
probabilities and discriminating thresholds. R1→N (C, τ ) and PORn,i(Cn, τn)
are all determined by the discriminative thresholds τ and the performances of
the classifiers (with cost Cn) that can also be chosen. The thresholds τ , C and
the number of stages in the hierarchy N are hence the system’s only optimization
variables, P is known a-priori. The optimization variables, or hyperparameters,
are summarized in table 1.

In section 3 this optimization problem is first solved for a general synthetic
system, in search for general trends and the influence of all relevant parameters.
Section 4 is a case study on hierarchical 100-class face recognition.

3 General proof of concept

In order to prove the proposed hierarchical cascaded processing concept, a generic
framework is built. More specifically, for a general system, the impact of input-
data statistics and system level specifications on the optimal hierarchy depth
and architecture is investigated. This section hence optimizes problem (11),
using estimated hierarchical POR-R curves in order to derive general trends and
hierarchy design recommendations. In section 4, the theory is validated on a
face recognition case study.

3.1 System description

The used generic system model mimics a cascade of hierarchical classifiers
building up to a full 256-class classification system. The cascade is composed
of N configurable stages. In each stage, an optimizer will choose an optimal
classifier and its operating point. More specifically, in every stage, multiple
classifiers are modeled with a POR-R trade-off curves such as in the roofline
model. The exact operating point is actually determined by the discriminating

Table 1: Overview of optimization parameters
Parameter Comments

Cn Every cost is associated with a specific classifier in a stage
τn Determines operating point R and POR for a given classifier
N Number of total stages in the hierarchical cascade



threshold. The roofline itself is only a theoretical optimum and will hence have
an infinite energy cost. In this example, additional non-optimal curves are added
that have a lower energy cost, similar to the real curves observed in Figure 3.

The test-setup is a hierarchy that can contain a maximal of N = 8 stages,
where every stage n classifies 2n classes, one of which is a pass-on class. The
question to be answered is how many stages the optimal hierarchy contains,
and the optimal POR-R trade-off setting for each individual stage. For this
setup, 256 different combination of stages are possible in the hierarchy, being
all possible architectures with 1 to 8 stages. The final END stage is fixed as the
256-class classification stage, but the quality of the required classifier in this
stage is also flexible.

In order to build a reasonable test case, several assumptions are made.
First, costs increase exponentially from stage 1 to 8 according to eq (12) as the
complexity of the classification tasks also increases exponentially.

Cn = 10log2(I)−1 (12)

Second, within a single stage, a classifier has an exponentially higher cost if
its performance is closer to the theoretical roofline optimum.

This R-POR-C design space is analytically modeled in this example, in
order to find a suitable optimum by a steepest descent optimizer. The modeled
classifier-to-classifier relative costs are illustrated for stage 1 and N = 8 in
Figure 4 in the avgi 6=poc(Rn,i 6=poc)/avgi(PORn,i) space, which plot the R-POR
trade-off curves for classifiers of different cost. The costs given here take the stage-
to-stage cost from eq. 12 into account. Figure 4a shows the avgi 6=poc(Rn,i 6=poc)
vs avgi(PORn,i), while Figure 4b shows PORpoc = Rpoc vs avgi(PORn,i) for
a binary classifier as a function of cost. The same is shown in Figure 4c and
Figure 4d for the 256-class final stage. Notice none of these stages are ideal: the
final average recall is below 1, even for classifiers with a very high cost.

Throughout the rest of this section, three recall-performance cases are dis-
cussed. More specifically the section looks into a high-, medium- and low-recall
case, with system level recalls of 95% (high recall), 85% (medium recall) and
75% (low recall) relative to the theoretical maximum recall of the final END stage.

3.2 Input statistics

To estimate the impact of input data statistics, 4 different cases are looked at.
A first case is where all input classes are uniformly distributed, meaning that
they are equally likely to occur. Other cases are either with medium, highly

or extremely skewed input statistics. The non-normalized Probability density
functions (PDF) for these different cases are illustrated in Figure 5. Here, some
specific classes ’C’ occur much more frequently than others. An example of such
a class ’C’ can be ’noise’, ’silence’ or a common word in speech recognition, or
’background’ or ’owner’ in image recognition.



(a) Stage 1 (b) Stage 1

(c) Final stage (d) Final stage

Figure 4: (a)(b) plot avgi 6=poc(R1,i 6=u) and R1,u versus avgi(POR1,i) for the first
2-class stage at different costs. (c)(d) show the same for the 256-class final stage.
The legend indicates relative classifier costs.

Figure 5: Non-normalized Probability-Density-Functions (PDF) for 4 different
cases. A uniform case where all classes are equally likely to appear and a medium,
highly and extremely skewed distribution where some classes are more likely to
appear than others.



3.3 Experiments

This subsection investigates the influence of recall targets and input statistics
on the design of an optimal, minimum energy hierarchy. First, optimal cascades
are designed for each of these cases. Second, the section provides insights in the
design of the individual cascading blocks.

3.3.1 Optimal number of stages

Depending on target recall and input statistics, the optimal number of stages
in a cascaded hierarchy will change. In order to investigate this, all possible
combinations of hierarchies in the N = 8 setup for a 256-class classification
problem are optimized for different system targets. More specifically, for every
combination of total recall target, input data statistics assumption, and number
of stages in the hierarchy, a complete classification cascade is optimized using
the steepest descent optimizer. This optimizer selects for every stage in the
hierarchy the optimal R-POR-energy setting, towards minimum system energy.
The resulting energy cost of all chain optimizations are shown in Figure 6. Here,
the system-level energy cost is plotted in function of the selected number of
stages in the hierarchy for different target recall and data statistics assumptions.
This shows that for systems with uniformly distributed input data, shallow
hierarchies are optimal. If the input distribution is skewed more, cost can be
reduced by going to deeper hierarchies, filtering out more samples early on. Costs
can vary up to 6 orders of magnitude depending on input statistics and 2 orders
of magnitude depending on the target recall. The optimal hierarchy architecture
varies from 3 to 8 stages. This is further summarized in Table 2, which shows
the selected stages in the optimal architecture with minimal cost. For example,
in a system with uniform input distribution and a high recall target, only the
last four stages are used, even though they are the most expensive. This is
because because most samples can only get a correct final classification at the
later stages. Thus, early stages with a limited subset of the final output classes
are primarily overhead in the case of uniform inputs. However, for skewed input
distributions, early stages classify most samples early at a lower costs. This gain
outbalances the overhead for the few samples that need to be passed on.

Table 2 also shows the optimal cascade architecture if the hierarchy is
constrained to only two stages: a first (wake-up) stage and the final stage.
The same trends appear here: systems with high skew and low recall targets
can use cheaper wake-up stages, with less output classes. A deep hierarchical
cascade is up to 3 orders of magnitude more efficient than a two-stage (wake-up)
architecture with the same system level performance, as is also illustrated in
Figure 6.

3.3.2 Optimal stage metrics in a hierarchy

To gain insight in how to optimize each individual stage in the hierarchy, the
settings of all optimally chosen classifier stages in a specific 6-stage medium
recall - medium skew hierarchy are plotted in Figure 7. The figure shows the
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(c) High Skew (d) Extreme Skew

Figure 6: Optimal number of stages in the hierarchy as a function of the relative
target recall. The input statistics are varied from Fig. (a) to (d) according to
the distributions given in Fig. 5.
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Table 2: (x) Stages used in an optimal hierarchy for the 256-class problem. (o)
Optimal stage choice if only a wake-up + end stage are allowed.

Rec Distr.
S=1 2 3 4 5 6 7 END

I=2 4 8 16 32 65 128 256

High

Uni. x x x(o) x(o)
Med. x x x x(o) x x(o)
High x x(o) x x x x x x(o)
Ex. x(o) x x x x x(o)

Med

Uni. x x(o) x x(o)
Med. x x x(o) x x x(o)
High x x(o) x x x x x x(o)
Ex. x(o) x x x x x x x(o)

Low

Uni. x x(o) x x(o)

Med. x x(o) x x x x(o)
High x x(o) x x x x x x(o)
Ex. x(o) x x x x x x x(o)

relative cost (1 being the maximum) and avgi(PORn,i) of the stages, together
with their avgi 6=poc(Rn,i 6=poc) (1 being the theoretical optimum) and PORn,poc

with these settings, as well as the roofline cutoff point 1/I. Stage 1 and 2 are
unused in this hierarchy as indicated in Table 2. All operating points are taken
at an avgi(PORn,i) higher than the cut-off point 1/I. This is required for a
high pass-on-rate PORn,poc, which is necessary to achieve a good final recall, as
these pass-on-rates cumulatively multiply along the stages (equation 5). Only in
the final stage 8, which doesn’t have the possibility to let later stages deal with
samples, the system sacrifices PORn,poc for a higher recall avgi(Rn,i). Other
optimal hierarchies show similar characteristics across the whole search space.

3.4 Conclusion

A general hierarchical system classifying 256 output classes was investigated
using the developed roofline models and hierarchy optimization framework. This
section discussed the influence of the performance goals and of skewed data
statistics. With uniformly distributed input data, 4 stages are optimal in our
generic model. For increasingly skewed distributions, such as speech or image
data, a minimum-cost system will be deeper. This is because easily recognized
classes such as ’noise’ or ’background’ in that context, can be dismissed early in
the hierarchy at a low cost using a simple classifier. All of the tested settings using
this model require a hierarchy of more than 2-stages. The more conventional
wake-up system is hence never optimal.



4 Case study: hierarchical, CNN-based face recog-

nition

4.1 A face recognition Hierarchy

To illustrate the power of the developed methodology in a real system, we apply
it on an actual hierarchical face recognition system using Convolutional Neural
Networks (CNN). In the most naive approach, such a system would scan small
windows on different scales of a larger input image. Neural Network based large
scale face recognition is very costly (1-2 mJ / 250x250 window) [18], especially
in high resolution images that require a lot of windows to be processed. As
input data is generally statistically skewed, it makes sense to build a processing
hierarchy to exploit this and reduce the per mean sample cost of the overall
system. To illustrate this, regard the pyramid-scale/sliding-window approach on
30fps Full-HD images (1920x1080 pixels) with a window size of 256, a stride of 4
and a scale factor of 2. In 30fps real-time this approach requires more than 3M
window evaluations per second (100k per frame), almost all of which should be
classified as backgrounds. At 1mJ/window evaluation, this consumes 3kW’s of
power, which is obviously infeasible on a wearable, battery constrained device.
As distinguishing faces from backgrounds is a much simpler task that can be
performed at ≈1uJ / subsampled 32x32 window [19], such a detector can be used
as a wake-up stage for the more complex and costly face recognizer. Only if the
face-detector detects a face, the more costly subsequent face recognizers are used.
If not, the system goes on to the next window, reducing the average cost per
window considerably depending on the input data’s statistics. While it is clear
that a hierarchical system can bring significant benefits for this face recognition
system, it is not clear how many stages should be used in the hierarchy. If there is
still statistical skewness between different face classes, e.g. the owner of a device
appearing much more frequently than other faces, intermediate stages could be
added to exploit this skewness in an effort to further decrease the activation
rate of the costly final stage. On top of that, the R-POR-energy settings of
each stage should be tuned optimally for minimal system energy consumption.
To study this, Figure 8 illustrates the generalization of this wake-up approach
to a hierarchical N-stage system that can ultimately distinguish between 100
faces. A window is passed on to the next stage of the hierarchy, only if it
is classified as the ’pass-on-class’. In all other cases, i.e. when the image is
classified as a ’background’, the ’owner’ or another specific ’facei’ the window
is considered to be classified. Again here, as the tasks in stage n < END are
cheaper than the ultimate task END and the distribution is skewed, cost can be
reduced significantly. In this case-study, the general framework developed in
section 2 is used to optimize the full hierarchy towards minimal average cost per
sample, while maintaining overall face recognition accuracy. This analysis proves
expanding the typical two stage wake-up system to a multi-stage hierarchical
cascade reduces cost considerably. Optimal operating points for every stage are
also derived.
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Figure 8: Illustration of the tested hierarchical face recognition example. Back-
grounds and owners are much more likely to appear than specific faces, but also
easier to detect with cheaper classifiers.

In order to analyze this specific case, the 100 face recognition system is split
into a maximum of N=4 stages (face detection WU - owner detection S2 - 10
faces S3 - 100 faces END ), where the last stage END is the full 100 face recognizer.
For each of those stages, 15 CNN-based parametrized models are trained with
varying complexity: the subsampled dimensions of the input image, the number
of layers per network (the network depth) and the number of filters per layer (the
network width). Larger networks operating on larger input images, generally
achieve higher recall and precision on the input data set, albeit at a higher cost
which is regarded as computing complexity in this case. The general architecture
and parameters of these networks are given in Table 3, similar to the parameters
used in [6]. In these networks, the input dimensions, the total number of layers
(total depth) and the width of those layers are varied. The smallest network
takes a subsampled 32 × 32 RGB input and classifies it using a 4-layer CNN
with 4 filters per layer. The largest network takes a 128× 128 RGB input and
classifies it using a 7-layer network with up to 1024 filters per layer. All networks
are trained on a 100-face subset of the VGG FACE-2 data set [20]. We use batch
normalization and random data augmentation (shear, channel shifts, width shifts,
height shifts, zoom and horizontal flips) to prevent overfitting.

Table 3: Parametrized network topology used for all N stages in hierarchical
face recognition. All intermediate activations are LeakyRelu, the dense-layer
uses a softmax activation function.

Block (W,H) Dim. Kernel Stride # Layers Width

In. Layer 32 - 64 -128 3 - 5 - 7 1 - 2 - 4 1 4-256
Block A 32 3 1 1 4-256
MaxPool 32 2 1 1 -
Block B 16 3 1 1-2 4-512
MaxPool 16 2 1 1 -
Block C 8 3 1 1-3 4-1024
MaxPool 8 2 1 1 -
Dense 16× widthC - - 1 -



4.2 Hierarchical Cost, Precision and Recall

Each individual trained Convolutional Neural Network model has a specific recall
and pass-on-rate for each of its output classes, together with an associated cost.
All these terms are defined as in section 2.

According to the framework discussed in 2, we minimize full system cost,
eq. (4), while maximizing total system recall as in eq. (6). As explained in
subsection 2.2, precision will be automatically optimized as well.

As shown by eq. (5), the full recall per class Ri depends on recall in every stage
Rn,i and the cumulative product of PORn,i in the previous stages. Note that
theoretically the values of neither PORn,i and Rn,i can be taken independently
of the previous stages, as they influence the images that are offered to subsequent
stages. Difficult images will be passed on more often than easy images, as
they will be easily classified by one of the cheap first stages. However, in this
optimization we assume the POR and R of every stage to be independent of
the previous stages in order to have an analytical closed formula. We then later
experimentally verify if the results under these assumption are correct, which
is true in this test-case. Hence, the shown values for PORn,i and Rn,i in this
section are based on a representative test-set in the full hierarchy and not only
based on the performance of the individual stages.

The performance of some individual classifiers in the different stages can be
visualized using the proposed Roofline curves, as discussed in section 2.4 and
illustrated in Figure 3. Here, the performance of the classifying stage, embedded
in the hierarchy, is given in the POR-vs-Recall space. It can e.g. be seen that,
for the 3rd stage, the best classifier (blue) requires 69k× more operations than
the cheapest depicted classifier, but at a performance that is much closer to the
ideal roofline.

In order to estimate total cost, realistic a-priori input statistics have to be
derived for all classes. Here, it is assumed that the system under investigation is
used in the ESAT/MICAS - KU Leuven office in a surveillance context. In this
office, on average 100 persons pass through the corridor every hour. Each of those
people is in view of the system for 5 seconds. The a priori probabilities for each
sub-group in this scenario are taken as [1 14.000.000 100 10 1]/(14.000.112) =
[’pass-on-class’ (F), background’ (BG), ’owner’ (O), ’face2-10’, ’face11-100’]. This
is representative if the system investigates FHD images at 30fps with window-
sizes of 256, a stride of 16 and a pyramid-scale factor of 2. When processing
these windows, they are down sampled to one of the supported window sizes
given in table 3: either 32× 32, 64× 64 or 128× 128 RGB.

4.3 An optimized face recognition hierarchy

Once all relations between the overall cost C1→N , pass-on-rates PORn,i and
global recall Ri are found, the hierarchy can be optimized towards minimum
cost (in terms of average amount of operations per sample) and maximum
overall recall. The variables in this optimization problem are the chosen classifier
and the ’pass-on-class’ detection thresholds at each stage, as these two factors



0

0.5

1

R
e
c
a
ll

System

END

10
-10

10
-8

10
-6

10
-4

Efficiency [Samples/Op]

0

0.5

1

P
re

c
is

io
n

System

END

(a) Recall and Precision versus Efficiency.

100

105

1010

C
o
m

p
le

x
it
y
 [
O

p
s
]

WU

S2

S3

END

P
O

R
 W

U BG

F

P
O

R
 S

2 BG

F

O

P
O

R
 S

3 BG

F

O

Mean F2...F10

0 20 40 60 80 100

System index

S
y
s
te

m
 r
e
c
a
ll

BG

F

O

Mean F2...F10

Mean F11...F100

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

(b) Complexity, POR and System Recall for every system in the
optimization.

Figure 9: A comparison of hierarchical 100-face recognition using different stages
in the Recall vs Efficiency [Frames/op] space. The upper right corner is optimal.



determine Rn,i and PORn,i. A particle swarm multi-objective optimizer is used
to numerically solve this discrete optimization problem. Figure 9 shows the
results of this optimization for a 4-stage face recognition pipeline.

Figure 9a shows all pareto-optimal possible systems in the efficiency-vs-
recall and efficiency-vs-precision design space. Here, efficiency is described as
[Sample/op] or the number of samples that can be classified per MAC-operation.
For the same recall, the 4-stage system obviously requires orders of magnitude
less operations than a system existing out of the END stage only. For example,
its efficiency at an average recall of 80% is 10.000 times higher than in the
single stage case. Figure 9a also experimentally verifies that optimizing for high
average recall also automatically optimizes for high average precision, a claim
made in section 2. If recall is high and close to its maximum, precision is also
maximized. Precision and recall are high in the 4-stage system over a wide range
of efficiencies, while they are only high at a very low efficiency in the 1-stage
system.

The characteristics for every pareto optimal architecture in Fiure 9a are
illustrated in Figure 9b. Figure 9b shows the optimal chosen classifiers, the
pass-on-rate for every class at every stage (PORn,i) and the final recall per class,
averaged per subgroup with equal a-priori probability for readability. The figure
clearly indicates that systems with higher recall also require more expensive
building blocks. Even at high recall, the complexity of the wake-up stage is 3
orders of magnitude lower than the complexity of the END stage, which explains
most of the gains of the multi-stage system. All used classifiers operate near the
roofline.

We expand this analysis by performing the same optimization on shallower
hierarchies, from 1 stage, to the maximum of 4 stages. Figure 10 illustrates
the performance of these different hierarchical architectures in the efficiency-vs-
recall space for the full 100 face recognition functionality. An architecture is
optimal if it achieves the highest recall at a given efficiency in terms of processed
samples per operation (Samples/op). Obviously, using only the END stage is very
inefficient. Also the more typical 2-stage hierarchy with a wake-up stag proves
to be sub-optimal for this test-case, requiring 1-to-2 order of magnitude more
operations at similar recall than the optimal 4-stage case. The performance gains
achieved by going to deeper hierarchies with more than 4 stages are arguably
minimal, especially if the maximum latency is taken into account. Figure 10b
shows a zoomed-in version of the same graph, illustrating how the number of
stages becomes less important close to the maximum achievable recall. This
maximum recall is essentially limited by the best performance of the best possible
classifier in the final stage.

Figure 9a and 10 also show the quality-vs-energy trade-off can be dynamically
changed in a hierarchy, by changing the threshold that determine POR and
Recall of every stage.
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5 Conclusion

This work generalizes wake-up systems to multi-stage hierarchical cascaded
systems that have a lower system level cost and are better adapted to skewed data
with non-uniform probability distributions. This work offers 4 key contributions.
(1) We generalize wake-up systems to multi-stage hierarchical cascades. (2)
We propose a design framework that can be used to simultaneously optimize
performance and minimize costs in these systems and introduce a theoretical
roofline model used to gain insight in the performance of the individual stages in
the hierarchy. (3) We derive trends in the design of a hierarchical cascade through
analyzing a general example. It is shown that, while hierarchical cascades do
not bring significant benefits for uniform input data statistics, systems with
skewed input data statistics, such as speech and object detection tasks, benefit
from deeper cascades. If an intermediate stage is used, its optimal operating
point is close to the theoretical roofline. Stages with bad recall and pass-on-rate
performance are never beneficial. (4) We prove the approach works by designing
a 4-stage 100 face-recognition application. An optimal operating point exists,
where 4 orders of magnitude in cost-efficiency can be gained compared to the
single-stage classifier and 2 orders of magnitude compared to the traditional
2-stage wake-up based system. The proposed framework and roofline model are
generally applicable on many sensory data applications. We hope this framework
can contribute in moving this field from ad-hoc designs, towards automated
system-optimizations.

6 Acknowledgment

This work has been supported by the FWO SBO project OmniDrone under
agreement S003817N, and the EU ERC project Re-SENSE under agreement
ERC-2016-STG-715037.

References

[1] A. van Dam, “Beyond wimp,” IEEE Computer Graphics and Applications,
vol. 20, no. 1, pp. 50–51, Jan 2000.

[2] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.
Campbell, “A survey of mobile phone sensing,” Comm. Mag., vol. 48, no. 9,
pp. 140–150, Sep. 2010.

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[4] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing accuracy-
efficiency trade-offs by selective execution,” arXiv preprint arXiv:1701.00299,
2017.



[5] G. Huang, D. Che, T. Li, F. Wu, L. van der Maaten, and K. Weinberger,
“Multi-scale dense networks for resource efficient image classification,” In-
ternational Conference on Learning Representations (ICLR), 2018.

[6] B. Moons, K. Goetschalckx, N. Van Berckelaer, and M. Verhelst, “Minimum
energy quantized neural networks,” Asilomar Conference on Signals, Systems
and Computers, 2017.

[7] J. Yuan, H. Y. Chan, S. W. Fung, and B. Liu, “An activity-triggered 95.3
db dr −75.6 db thd cmos imaging sensor with digital calibration,” IEEE
journal of solid-state circuits, vol. 44, no. 10, pp. 2834–2843, 2009.

[8] M. Sun, D. Snyder, Y. Gao, V. Nagaraja, M. Rodehorst, N. S. Panchapage-
san, S. Matsoukas, and S. Vitaladevuni, “Compressed time delay neural
network for small-footprint keyword spotting,” Proc. Interspeech 2017, pp.
3607–3611, 2017.

[9] K. Badami, S. Lauwereins, W. Meert, and M. Verhelst, “Context-aware
hierarchical information-sensing in a 6µw 90nm cmos voice activity detector,”
in International Solid-State Circuits Conference (ISSCC), 2015, pp. 1–3.

[10] M. Price, J. Glass, and A. P. Chandrakasan, “A scalable speech recognizer
with deep-neural-network acoustic models and voice-activated power gating,”
in International Solid-State Circuits Conference (ISSCC), 2017, pp. 244–245.

[11] S. Venkataramani, A. Raghunathan, J. Liu, and M. Shoaib, “Scalable-effort
classifiers for energy-efficient machine learning,” in Proceedings of the 52Nd
Annual Design Automation Conference, ser. DAC ’15. ACM, 2015, pp.
67:1–67:6.

[12] M. Li, W. Bijker, and A. Stein, “Use of binary partition tree and energy
minimization for object-based classification of urban land cover,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 102, pp. 48–61, 2015.

[13] Z. E. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle,
“Classifier cascades and trees for minimizing feature evaluation cost.” Journal
of Machine Learning Research, vol. 15, no. 1, pp. 2113–2144, 2014.

[14] Z. Ghahramani, M. I. Jordan, and R. P. Adams, “Tree-structured stick
breaking for hierarchical data,” in Advances in neural information processing
systems, 2010, pp. 19–27.

[15] P. Viola and M. Jones, “rapid object detection using a boosted cascade of
simple features,” in Proc. of Conference on Computer Vision and Pattern
Recognition, 2001, pp. 511–518.

[16] M. Saberian and N. Vasconcelos, “Boosting algorithms for detector cascade
learning,” Journal of Machine Learning Research, vol. 15, pp. 2569–2605,
2014.



[17] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning
for energy-efficient and enhanced pattern recognition,” arXiv preprint
arXiv:1509.08971, 2015.

[18] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envision: A 0.26-
to-10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable
convolutional neural network processor in 28nm fdsoi,” in International
Solid-State Circuits Conference (ISSCC), 2017, pp. 246–247.

[19] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An always-
on 3.8 µj/86% cifar-10 mixed-signal binary cnn processor with all memory
on chip in 28nm cmos,” in International Solid-State Circuits Conference
(ISSCC), 2018, pp. 222–224.

[20] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman, “Vggface2:
A dataset for recognising faces across pose and age,” arXiv preprint
arXiv:1710.08092, 2017.




