
Optimized Hybrid Parallel Lattice Boltzmann

Fluid Flow Simulations on Complex Geometries

Jonas Fietz2, Mathias J. Krause2, Christian Schulz1,
Peter Sanders1, and Vincent Heuveline2

1 Karlsruhe Institute of Technology (KIT),
Institute for Theoretical Informatics, Algorithmics II

2 Karlsruhe Institute of Technology (KIT),
Engineering Mathematics and Computing Lab (EMCL)

Abstract. Computational fluid dynamics (CFD) have become more and
more important in the last decades, accelerating research in many dif-
ferent areas for a variety of applications. In this paper, we present an
optimized hybrid parallelization strategy capable of solving large-scale
fluid flow problems on complex computational domains. The approach
relies on the combination of lattice Boltzmann methods (LBM) for the
fluid flow simulation, octree data structures for a sparse block-wise rep-
resentation and decomposition of the geometry as well as graph parti-
tioning methods optimizing load balance and communication costs. The
approach is realized in the framework of the open source library OpenLB
and evaluated for the simulation of respiration in a subpart of a human
lung. The efficiency gains are discussed by comparing the results of the
full optimized approach with those of more simpler ones realized prior.

Keywords: Computational Fluid Dynamics, Numerical Simulation, Lat-
tice Boltzmann Method, Parallelization, Graph Partitioning, High Per-
formance Computing, Human Lungs, Domain Decomposition.

1 Introduction

The importance of computational fluid dynamics (CFD) for medical applications
have risen tremendously in the past few years. For example, the function of the
human respiratory system has not yet been fully understood, and its complete
description can be considered byzantine. Due to highly intricate multi-physics
phenomena involving multi-scale features and ramified, complex geometries, it is
considered one of the Grand Challenges in scientific computing today. One day,
numerical simulation of fluid flows is hoped to enable surgeons to analyze possible
implications prior to or even during surgery. Widely automated preprocessing
as well as efficient numerical methods are both necessary conditions for enabling
real-time simulations.

In the last decades, lattice Boltzmann methods (LBM) have evolved into a
mature tool in CFD and related topics in the landscape of both commercial and
academic software. The simplicity of the core algorithms as well as the local-
ity properties resulting from the underlying kinetic approach lead to methods

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 818–829, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 819

which are very attractive in the context of parallel computing and high per-
formance computing [7,8,13]. In this context, it is of great importance to take
advantage of nowadays available hardware architectures like Graphic Process-
ing Units (GPUs), multi-core processors and especially hybrid high performance
technologies that blur the line of separation between architectures with shared
and distributed memory. A concept to use LBM dedicated for hybrid platforms
has been described before in [3]. It relies on spatial domain decomposition where
each domain represents a basic block entity which is solved on a symmetric
multi-processing (SMP) system. The regularity of the data structure of each
block allows a highly optimized implementation dedicated to the particular SMP
hardware. Load balancing is achieved by assigning the same number of equally-
sized blocks to each of the available SMP nodes. This concept has been extended
and applied for fluid flows simulation on complex geometries [5].

The goal of this work is to optimize the hybrid parallelization approach for
LBM simulations on complex geometries. The basic idea is to drop the equally-
sized block constraint thereby enabling a sparse representation of the compu-
tational domain. Therefore, two domain decomposition strategies are proposed
as well as the application of graph based load balancing techniques to the load
distribution problem for LBM. The first domain decomposition strategy is a
heuristic, which we further improve by a shrinking step. The second strategy
is a geometry aware decomposition using octrees. This results in a sparse do-
main decomposition with larger computational domains. Both of these strategies
require sophisticated load balancing. We propose a graph partitioning based ap-
proach optimizing the load and minimizing communication costs. While graph
based load balancing has been done before by [1], we propose to apply this not
on a fluid cell level but at block level. Finally, we evaluate the presented mea-
sures on a subset of the human lung, showing performance improvements for all
of them.

2 Lattice Boltzmann Fluid Flow Simulations

The here considered subclass of lattice Boltzmann methods (LBM) enable to
simulate the dynamics of incompressible Newtonian fluids which is usually de-
scribed macroscopically by an initial value problem governed by a Navier-Stokes

equation. Instead of directly computing the quantities of interests, which are the
fluid velocity u = u(t, r) and fluid pressure p = p(t, r) where r ∈ Ω ⊆ R

d and
t ∈ I = [t0, t1) ⊆ R≥0, a lattice Boltzmann (LB) numerical model simulates the
dynamics of particle distribution functions f = f(t, r,v) in a phase space Ω×R

d

with position r ∈ Ω and particle velocity v ∈ R
d. The continuous transient phase

space is replaced by a discrete space with a spacing of δr = h for the positions,
a set of q ∈ N vectors vi ∈ O(h−1) for the velocities and a spacing of δt = h2

for time. The resulting discrete phase space is called the lattice and is labeled
with the term DdQq. To reflect the discretization of the velocity space, the con-
tinuous distribution function f is replaced by a set of q distribution functions
fi (q = 0, 1, ..., q − 1), representing an average value of f in the vicinity of the

820 J. Fietz et al.

velocity vi. Detailed derivations of various LBM can be found in the literature,
e.g. in [11].The iterative process in an LB algorithm can be written in two steps
as follows, the collision step (1) and the streaming step (2):

f̃i(t, r) = fi(t, r)−
1

3ν + 1/2

(
fi(t, r)−M eq

fi
(t, r)

)
, (1)

fi(t+ h2, r + h2
vi) = f̃i(t, r) (2)

for i = 0, .., q−1.M eq
fi
(t, r) := wi

w
ρfi

(
1 + 3h2

vi · ufi
− 3

2h
2
u
2
fi
+ 9

2h
4 (vi · ufi

)2
)

is a discretized Maxwell distribution with moments ρ and u which are given ac-
cording to ρ :=

∑q−1
i=0 fi and ρu :=

∑q−1
i=0 vifi. The variable u is the discrete

fluid velocity and ρ the discrete mass density. The kinematic fluid viscosity is ν
which is assumed to be given, and the terms wi/w, vih (i = 0, 1, ..., q − 1) are
model dependent constants. The discrete fluid velocity u and the discrete mass
density ρ can be related to the solution of a macroscopic initial value problem
governed by an incompressible Navier-Stokes equation as shown by Junk and
Klar [4].

3 Domain Decomposition for Hybrid Parallelization

Fig. 1. Data structures used in OpenLB:
BlockLattices consist of Cells and
make up a SuperLattice enabling higher
level software constructs

The most time demanding steps in LB
simulations are usually the collision (1)
and the streaming (2) operations. Since
the collision step is purely local and the
streaming step only requires data of the
neighboring nodes, parallelization has
mostly been done by domain partition-
ing [7,8,13]. To take advantage of hybrid
architectures, a multi-block approach is
used [3]: the computational domain is
partitioned into sub-grids with possibly
different levels of resolution, and the in-
terface between those sub-grids is han-
dled appropriately. This leads to imple-
mentations that are both elegant and efficient since the execution on a set of
regular blocks is much faster compared to an unstructured grid representation
of the whole geometry. For complex domains a multi-block approach also yields
sparse memory consumption. Furthermore, it encourages a particularly efficient
form of data parallelism, in which an array is cut into regular pieces. This is a
good mapping to hybrid architectures.

In OpenLB, the basic data-structure is a BlockLattice representing a reg-
ular array of Cells. In each Cell, the q variables for the storage of the dis-
crete velocity distribution functions fi, (i = 0, 1, ..., q − 1) are contiguous in
memory. Required memory is allocated only once since no temporary memory
is needed in the applied algorithm. This data structure is encapsulated by a

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 821

higher level, object-oriented layer. The purpose of this layer is to handle groups
of BlockLattices, and to build higher level software constructs in a relatively
transparent way. Those constructs are called SuperLattices and include multi-
block, grid refined lattices as well as parallel lattices.

3.1 Heuristic Domain Decomposition with Shrinking Step

In this section, we describe our heuristic domain partitioning strategy. We further
improve this by shrinking each of the partitions, so that it achieves a closer fit
to the underlying geometry.

The hybrid parallelization strategy proposes to partition the data of a con-
sidered discrete position space Ωh, which is a uniform mesh with spacing h > 0,
according to their geometrical origin into n ∈ N disjoint, preferably cube-shaped
sub-lattices Ωk

h (k = 0, 1, ..., n − 1) of almost similar sizes. This becomes fea-

sible by extending Ωh to a cuboid-shaped lattice Ω̃h through the introduction
of ghost cells. Then, Ω̃h is split into m ∈ N disjoint, cuboid-shaped extended
sub-lattices Ω̃l

h (l = 0, 1, ...,m − 1) of approximately similar size and as cube-

shaped as possible. Afterwards, all extended sub-lattices Ω̃l
h which consist solely

of ghost cells are neglected. The number of the remaining extended sub-lattices
Ω̃l

h (l0, l1, ..., ln−1) defines n. Finally, for each k ∈ {0, 1, . . . , n− 1} one gets the

Ωk
h as a subspace of Ω̃lk

h by neglecting the existing ghost cells.
For the number p ∈ N of available processing units (PUs) of a considered

hybrid high performance computer, an even load balance will be assured for
complex geometries in particular if the domain Ωh is partitioned into a suffi-
ciently large number n ∈ N of sub-lattices. Then, several of the sub-lattices Ωk

h

(k = 0, 1, ..., n− 1) can be assigned to each of the available PUs. To find a good
value for n, we introduce a factor k for the amount of sub-lattices with the rela-
tion n = p× k. This factor can be adjusted for a specific problem by evaluating
run-times for a few hundred time steps to achieve better performance.

After removing all empty cuboids, we then optimize the fit of the cuboids
to the underlying geometry. To find out if a cuboid can be shrunk, we start
running through each layer in all 6 directions beginning at the respective faces
of the cube. For each layer, we check if it is completely empty and stopping the
iteration in this direction when a full cell is found. In the next step, all empty
layers are removed. This shrinking is executed for all cuboids. Note that the
same shrinking step can also be applied to the above mentioned octree domain
decomposition and works in exactly the same way. An example decomposition
can be seen in Fig. 2a.

3.2 Sparse Octree Domain Decomposition with Shrinking

A key part of load balancing is the decomposition of the complete domain in sub-
domains. Here, one has to optimize for multiple, sometimes opposing properties
of the sub-domains. As more cuboids mean more communication, cuboids should
be as large as possible. The surface of each cuboid should be minimal, as this

822 J. Fietz et al.

(a) Heuristic Decompo-
sition without additional
steps

(b) Octree Decomposition
with additional shrinking
step

(c) Stream lines and a cut
plane of velocity distribu-
tion.

determines the amount of communication for this cuboid. This usually implies a
shape as close to a ball as possible. As ball-shaped objects are not space filling,
and due to the current implementation in our library supporting only rectangular
shapes, the optimal shape is a cube.

The streaming step is executed without respect for the underlying geometry
information. Therefore, even non-fluid cells use some processing power. Because
of this, a tight fit of the domain decomposition with respect to the specific
geometry is desirable. This is where octrees come into play to adjust the size of
cubes depending on the geometry.

The general concept starts with embedding the problem domain in a cube. As
we want the boundaries to be exactly on the boundaries between the different
cells, we use a size of 2l × δr for some l ∈ N as the side length of that cube.
As described above, domain decomposition should always result in cuboids that
are neither too small nor too large. E.g. using the surrounding cube by itself
would not be very useful for load balancing, while using single cells would create
a massive overhead. So the implementation allows for limiting the smallest and
the biggest cube sizes.

Having defined the root cube now, one recursively divides the cube into smaller
cubes as long as the geometry in this part is interesting. In our case this means
that it contains empty cells at the same time as boundary or fluid cells. If this
is not the case, for example if we are completely on the inside or outside of the
geometry, we keep the cube at this size as long as it is smaller or equal to the
maximum size. Additionally, we limit the size to the low end, not splitting further
when the cubes would become smaller than the minimum size. This minimum
size can be defined as the side length of the minimum cube, a number c. The
shrinking procedure can be applied to the octree domain decomposition as well
(combination is abbreviated as ODS). An example decomposition can be seen
in Fig. 2b.

4 Load Balancing

As we explained in the introduction of Section 3, the most commonly used ap-
proach to load balancing LBM is based on an even decomposition of the computa-
tional domain. This section describes our alternative approach using techniques
from graph partitioning.

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 823

4.1 Graph Partitioning Using KaFFPa

Our parallelization strategy employs the graph partitioning framework KaFFPa
[9]. We shortly describe the graph partitioning problem. and introduce notations
used. Consider an undirected graph G = (V,E, c, ω) with edge weights ω : E →
R>0, node weights c : V → R≥0, n = |V |, and m = |E|. Given a number k ∈ N

(in our case the number of processors) the graph partitioning problem demands
to partition V into blocks of nodes V1,. . . ,Vk such that V1 ∪ · · · ∪ Vk = V and
Vi ∩ Vj = ∅ for i �= j. A balancing constraint demands that all blocks have
roughly equal size, i.e. the maximum load of a processing element is bounded.
The objective is to minimize the total cut, i.e. the sum of the weight of the edges
that run between blocks. We have tested and shown that the edge cut models the
communication very well, because the edge weights correlate linearly with the
amount of communication between two cuboids [2]. For more details on graph
partitioning with KaFFPa we refer the reader to [9].

4.2 Graph-Based Parallelization Strategy for LBM

As described in the prior sections, the LBM algorithm is divided into two parts.
The first part is the local collision and streaming for each cuboid. Afterwards,
the information is exchanged between different cuboids, i.e. transmitting the
information of the border cells for neighboring cuboids assigned to different
processors. Logically, the perfect load balancer would always achieve minimal
communication while achieving perfect load balancing, i.e. each processor would
need exactly the same time for the compute step of all its cuboids combined.
It is obvious that this can only be the case for the most trivial situations and
geometries, because as soon as there are empty cells, computing times will differ.

To map this problem to graph partitioning, we associate the work amount or
needed CPU time for each cuboid with the weight of a node for this cuboid, and
associate the needed communication between two cuboids with the edge weight
of the edge between their respective nodes in the graph. Applying the graph
partitioner to this graph will yield subsets of nodes, such that the subsets have
approximately the same sum of node weights and therefore computing time.
The edge-cut – the inter-processor communication – will be minimized. As the
problem of graph partitioning is NP-complete, this will not necessarily be the
minimal communication for this specific problem and domain decomposition,
but it will be good enough in general.

4.3 Determining Node and Edge Weights

The mapping of the problem to the graph has become clear now. But one still
needs to find the exact numbers for the amount of work to be done for each
cuboid and the amount of communication between two cuboids.

We begin with the latter. The edge weight is either the byte count or the
number of cells to be communicated. This information is often already present,
as every implementation of LBM has to find the border cells that need to be

824 J. Fietz et al.

communicated, anyway. The case is not as simple for non-symmetrical communi-
cation between different cuboids. One can either choose the maximum or the sum
of both parts as the edge weight. Since the data transfer between two cuboids is
serial in our implementation – i.e. we first transfer in one direction, then in the
opposite – we pick the sum.

Calculating the work to be done for each cuboid is not as easy, as the amount
of work for empty cells, boundary cells and normal fluid cells differs. As the
number of boundary cells is usually quite small, and as they are treated as an
extra step, this special case is ignored; they are assumed to be normal fluid cells.
Empty cell in our case are either cells in a solid area or that this cell is outside of
the fluid filled body being simulated. While the collision step is not executed for
the empty cells, the streaming still is. As it is very possible for a cuboid to consist
largely of empty cells, it is important to know how much processing time the
empty cells use when compared to the normal fluid cells. For this we introduce
a factor χ. We measured χ for several different architectures. Unfortunately, it
is not a specific constant valid even for the limited types we tested. Instead,
it varies from 1.8 to 4.5 [2] for the differing machines used in our preliminary
work. These dispartities are most likely due to the different memory and cache
hierarchies and resulting diverse memory access speeds, as the streaming part of
the LB algorithm is memory bound. To calculate the work to be done for each
cuboid, using the symbols for the work ω, for the number of fluid cells nf , and
for the number of empty, non-fluid cells ne, we get the formula ω = nf + χne.

In the end, the graph load balancer is now able to balance the work load to a
set number of processing nodes or cores and to find a solution for a certain load
imbalance with accordingly small communication overhead.

5 Experiments

The aim of this section is to illustrate the effectiveness of the presented options
considering a practical problem with an underlying complex geometry, namely
the expiration in a human lung. The geometry we use is a subset of the bronchi
of the lungs, with bifurcation of the bronchi to the third level (see Fig. 2a).
The air for the simulation is assumed to be at normal conditions (1013hPa,
20◦C), i.e. ρ = 1.225kg/m3 and its kinematic viscosity is ν = 1.4 × 10−5m2/s.
The outflow region is set at the trachea with a pressure boundary condition
with constant pressure of 1013hPa. The inflow regions are the bronchioles.
There, a velocity boundary condition is set as a Poiseuille distribution with
a maximum speed of 1m/s. The characteristical length is set to 2cm, which
is the diameter of the trachea. With a characteristical speed of 1m/s, we get
a Reynolds number of around 1400. To solve the problems numerically, we
use a D3Q19 LB model with the pressure and velocity boundary conditions
as proposed by Skordos [10]. No-slip conditions for the walls are realized as
a bounce-back boundary. For the LB simulation, we set the Mach number to
0.05 and δr to 3.91 × 10−4. We obtain the dimensions of 402 × 54 × 343 cells,
with about 1.06 million filled cells, i.e. a fill grade of approximately 14.5%.

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 825

Table 1. Comparison of bal-
ancers with 512 processors.
The best value of k is empha-
sized.

k DBLB GBLB
1 0.117 0.067
2 0.223 0.044
4 0.198 0.303

8 0.226 0.297
16 0.199 0.260
32 0.134 0.137
64 0.022 0.068

All benchmarks were run on a cluster at the Karl-
sruhe Institute of Technology. It consists of 200
Intel Xeon X5355 nodes. Each of these nodes con-
tains two quad-core Intel Xeon processors with a
clock speed of 2.667 GHz and 2x4 MB of level-
2 cache each with 16 GB of RAM.The nodes are
connected to each other via an Infiniband 4X DDR
interconnect. The Infiniband interconnect has a
latency from node to node below 2 microseconds
and a point to point bandwidth of 1300 MB/s.
Programs on the IC1 were compiled with the GCC
4.5.3 with an optimization level of O3 and using
the MPI library OpenMPI 1.5.4.

To compare the performance of LB, in most
cases one uses the measurement unit of million fluid-lattice-site updates per sec-

ond MLUP/s, e.g. [12]. This idea can be extended to the unit MLUP/ps for
million fluid-lattice-site updates per process and second [6]. The latter unit is
used in all examples. One calculates the amount of fluid cells Nc for each of the
examples. With the run-time tp for p processor cores, the number i of iterations,
the result is given as PLB := 10−6 iNc

tpp

5.1 Decomposition vs. Graph Based Load Balancing

The first comparison is between theDecomposition Based Load Balancer (DBLB)
and the new Graph Based Load Balancer (GBLB). Small values of k are not very
efficient, because they allow some processors to run empty. Therefore, only higher
values of k are shown in Fig. 2.

This benchmark shows a steep initial decline of computation speed when
scaling from one to eight computing cores. This is due to the memory bound
characteristic of the LBM algorithm and the limited amount of faster caches on
the target architecture and its shared memory buses.

While one can see that the results are not that far apart, starting in the
range of approximately 128 processors the GBLB becomes more efficient by a
margin. To show how much more efficient the load balancer performs for higher
numbers of CPUs, see Tab. 1. For 512 cores, the GBLB solution only takes about
two-thirds of the execution time of the DBLB one.

5.2 Effects of Using the Shrinking Step

The shrinking step as a step to optimize the size of the cuboids showed itself
to be the most effective strategy of all, despite its seemingly simple nature.
Performance for the test benchmark increased by over 100% in certain cases
(see Tab. 2). All test cases with shrinking were run with the graph based load

826 J. Fietz et al.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128 256 512

M
L
U
P
/
p
s

cores

Graph Based Load Balancer, k=4
Graph Based Load Balancer, k=16
Graph Based Load Balancer, k=64
Heuristic Decomp. & DBLB, k=4

Heuristic Decomp. & DBLB, k=16
Heuristic Decomp. & DBLB, k=64

Fig. 2. Comparison of the DBLB and the GBLB for certain k. For larger numbers
of cores, one can see the performance improvement of using the GBLB without any
change to the decomposition algorithm.

Table 2. Speeds in MLUP/ps for the
best variant for each processor with
DBLB compared to the shrinking step

and GBLB.

Cores DBLB Shrinking Speed-up
1 1.023 1.562 52.7%
2 0.895 1.466 63.8%
4 0.696 1.247 79.2%
8 0.385 0.786 104.2%

16 0.349 0.708 102.9%
32 0.322 0.659 104,7%
64 0.326 0.569 74.5%

128 0.303 0.587 93.7%
256 0.247 0.473 91.5%

balancer. These tests included core counts
between 1 and 256 and the factor k ∈{
20, . . . , 26

}
. An excerpt of the perfor-

mance for the best decomposition based
load balancer and the best graph based
load balancer test runs with an addi-
tional shrinking step are shown in Fig. 3.
One can see that the solution with the
shrinking step and the GBLB outperforms
the DBLB for all values of k, respec-
tively. This speed-up can be attributed
to multiple effects. Because empty cells
are excluded from the streaming step, less
streaming is required. One can get an im-
pression of the possible reduction in the
amount of empty cells from Tab. 3. As one
can deduce from these numbers, the speed-up can not solely be explained by the
smaller amount of empty cells. The graph load balancer certainly has its part
as was shown in the prior tests. But most likely several secondary effects are
at work as well. The ratio of memory accesses to CPU work shifts towards
the calculation side, as empty cells are removed, because the empty cells require
no computation and are mainly memory intensive. Hence, the memory hierarchy

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 827

Table 3. Comparison of amount of cells that are computed before and after executing
the shrinking step on a heuristically decompositioned geometry

Cuboids Before
Remove

Cuboids
Cells Before
Shrinking

Cells After
Shrinking

64 33 3 776 144 1 628 975
128 58 3 303 225 1 577 444
512 185 2 659 763 1 410 635

is put under less strain, so the caches work more effectively. Another effect is
that the communication between cuboids assigned to different nodes is reduced
as when the cuboids are shrunk, their surface area shrinks, too. Therefore, the
amount of communication needed for these cuboid is reduced as well.

5.3 Octree Domain Decomposition

Table 4. Comparing DBLB to GBLB with
heuristic decomposition (HD) and to GBLB
with octree decomposition and shrinking
step (ODS) for a randomly chosen exam-
ple subset. Performance varies depending
on the number of cuboids, but GBLB so-
lutions always achieve a speed-up.

Cores k
HD &
DBLB

HD&
GBLB

c
GBLB
& ODS

32 4 0.322 0.310 16 0.243
32 8 0.299 0.319 32 0.421

32 16 0.312 0.307 64 0.357

256 4 0.226 0.267 8 0.147
256 8 0.247 0.261 16 0.319

256 16 0.230 0.241 32 0.152

512 4 0.198 0.303 8 0.058
512 8 0.226 0.297 16 0.264

512 16 0.199 0.260 32 0.077

For smaller number of cores the oc-
tree decomposition combined with the
graph based load balancer turns out
not to improve performance signif-
icantly over the original approach.
This is due to the amount of cuboids
generated by this approach which cre-
ates inefficiencies for small numbers
of cores and small minimum cuboids.
It is only when combined with the
shrinking step that performance im-
proves significantly, although not all
across the board. This is because the
sizing of the minimum cuboid is too
coarse, as it is restricted to powers
of two. In certain cases, this might
lead to too many or to not enough
cuboids for efficient load balancing,
exactly the situation where the fac-
tor k for the heuristic decomposition
shows its strengths. Another detrimental effect can also be due to the specific
structure of the tested geometry. Because the diameter of the bronchi is small,
the middle coordinates have to align perfectly to get bigger cuboids with the
octree decomposition. Yet in certain situations, the GBLB & ODS is the fastest
solution (see Tab. 4).

828 J. Fietz et al.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 4 8 16 32 64 128 256

M
L
U
P
/
p
s

cores

Shrink, Heuristic Dec. & GBLB, k=2
Shrink, Heuristic Dec. & GBLB, k=4
Shrink, Heuristic Dec. & GBLB, k=8

Shrink, Heuristic Dec. & GBLB, k=16
Heuristic Dec. & DBLB, k=2
Heuristic Dec. & DBLB, k=8

Heuristic Dec. & DBLB, k=16

Fig. 3. Comparing the DBLB to the heuristic domain decomposition with the addi-
tional shrinking step and GBLB. One can see that performance approximately doubles
with the new shrinking and GBLB solution.

6 Conclusions

We have given a successful example for a general technique that will become more
and more important in the simulation of unstructured systems: Use partitioning
of weighted graphs to do high level load balancing of computational grids where
each node represents a regular grid that can be handled efficiently by modern
hardware.

Specifically, we examined potential optimizations for Lattice BoltzmannMeth-
ods on the example of the OpenLB implementation. We identified two areas with
potential for major improvement. First, the current load balancer, and second
the simple heuristic sparse domain decomposition. The decomposition based
load balancer only equalizes the computational complexity and limits potential
optimizations for sparse domain decomposition. Therefore, we designed and im-
plemented two alternatives which additionally allow us to improve the sparse
domain decomposition.

Of the multitude of different improvement strategies, we propose and evaluate
these: shrinking of cuboids and Octree Domain Decomposition. The graph load

balancer performs at least as well as the original load balancer for nearly all
cases, while outperforming it on most non-trivial geometries. The decomposition

based load balancer (DBLB) does not achieve the efficiency of the graph based
load balancer, but still permits to utilize some of the gains due to the domain
decomposition improvements. As for the domain decomposition strategies, the
octree allows scaling of the cuboids to the complexity of the geometry at each
point. Octree decomposition creates better fitting domain decompositions, but

Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations 829

measurements show that it sometimes results in higher overhead. Nevertheless,
the results hint at a better performance with more processors. The shrinking

strategy improves performance for the real world example from 75% up to 105%.
Further improvements are expected to be made by combining other measures and
fine-tuning settings. The achieved speed-up translates directly into time, money
and energy savings for research and industrial applications. It moves boundaries
for the problem size and geometry size even further, providing opportunities for
ever more complex simulations.

References

1. Bisson, M., Bernaschi, M., Melchionna, S., Succi, S., Kaxiras, E.: Multiscale hemo-
dynamics using GPU clusters. Communications in Computational Physics (2011)

2. Fietz, J.: Performance Optimization of Parallel Lattice Boltzmann Fluid Flow Sim-
ulations on Complex Geometries. Diplomarbeit, Karlsruhe Institute of Technology
(KIT), Department of Mathematics (December 2011)

3. Heuveline, V., Krause, M.J., Latt, J.: Towards a Hybrid Parallelization of Lattice
Boltzmann Methods. Computers & Mathematics with Applications 58, 1071–1080
(2009)

4. Junk, M., Klar, A.: Discretizations for the Incompressible Navier-Stokes Equations
Based on the Lattice Boltzmann Method. SIAM J. Sci. Comput. 22(1), 1–19 (2000)

5. Krause, M.J., Gengenbach, T., Heuveline, V.: Hybrid Parallel Simulations of Fluid
Flows in Complex Geometries: Application to the Human Lungs. In: Guarra-
cino, M.R., Vivien, F., Träff, J.L., Cannatoro, M., Danelutto, M., Hast, A., Perla,
F., Knüpfer, A., Di Martino, B., Alexander, M. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 209–216. Springer, Heidelberg (2011)

6. Krause, M.J.: Fluid Flow Simulation and Optimisation with Lattice Boltzmann
Methods on High Performance Computers: Application to the Human Respiratory
System. Karlsruhe Institute of Technology, KIT (2010)

7. Massaioli, F., Amati, G.: Achieving high performance in a LBM code using
OpenMP. Unknown

8. Pohl, T., Deserno, F., Thurey, N., Rude, U., Lammers, P., Wellein, G., Zeiser, T.:
Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on
Three Supercomputing Architectures. In: Proceedings of the ACM/IEEE SC 2004
Conference Supercomputing 2004, p. 21 (2004)

9. Sanders, P., Schulz, C.: Engineering Multilevel Graph Partitioning Algorithms. In:
19th European Symposium on Algorithms (2011)

10. Skordos, P.: Initial and boundary conditions for the Lattice Boltzmann Method.
Phys. Rev. E 48(6), 4823–4842 (1993)

11. Sukop, M.C., Thorne, D.T.: Lattice Boltzmann modeling. Springer (2006)
12. Wellein, G., Zeiser, T., Hager, G., Donath, S.: On the single processor performance

of simple lattice Boltzmann kernels. Comput. Fluids 35(8-9), 910–919 (2006)
13. Zeiser, T., Götz, J., Stürmer, M.: On performance and accuracy of lattice Boltz-

mann approaches for single phase flow in porous media: A toy became an ac-
cepted tool - how to maintain its features despite more and mor complex (physi-
cal) models and changing trends in high performance computing!?. In: Shokina, N.,
Resch, M., Shokin, Y. (eds.) Proceedings of 3rd Russian-GermanWorkshop on High
Performance Computing, Novosibirsk. Springer (July 2007)

	Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries
	Introduction
	Lattice Boltzmann Fluid Flow Simulations
	Domain Decomposition for Hybrid Parallelization
	Heuristic Domain Decomposition with Shrinking Step
	Sparse Octree Domain Decomposition with Shrinking

	Load Balancing
	Graph Partitioning Using KaFFPa
	Graph-Based Parallelization Strategy for LBM
	Determining Node and Edge Weights

	Experiments
	Decomposition vs. Graph Based Load Balancing
	Effects of Using the Shrinking Step
	Octree Domain Decomposition

	Conclusions
	References

