
Citation: Yang, Y.; Jang, K.; Baksi, A.;

Seo, H. Optimized Implementation

and Analysis of CHAM in Quantum

Computing. Appl. Sci. 2023, 13, 5156.

https://doi.org/10.3390/

app13085156

Academic Editors: Juan A.

Gómez-Pulido and Hai Jiang

Received: 9 February 2023

Revised: 12 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Optimized Implementation and Analysis of CHAM in
Quantum Computing
Yujin Yang 1 , Kyungbae Jang 1, Anubhab Baksi 2 and Hwajeong Seo 1,*

1 Division of IT Convergence Engineering, Hansung University, Seoul 02876, Republic of Korea
2 School of Computer Science and Engineering, Nanyang Technological University,

Singapore 639798, Singapore
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: A quantum computer capable of running the Grover search algorithm, which reduces the
complexity of brute-force attacks by a square root, has the potential to undermine the security strength
of symmetric-key cryptography and hash functions. Recently, studies on quantum approaches have
proposed analyzing potential quantum attacks using the Grover search algorithm in conjunction with
optimized quantum circuit implementations for symmetric-key cryptography and hash functions.
Analyzing quantum attacks on a cipher (i.e., quantum cryptanalysis) and estimating the necessary
quantum resources are related to evaluating post-quantum security for the target cryptography
algorithms. In this paper, we revisit quantum implementations of CHAM block cipher, an ultra
lightweight cipher, with a focus on optimizing the linear operations in its key schedule. We optimized
the linear equations of CHAM as matrices by applying novel optimized decomposition techniques.
Using the improved CHAM quantum circuits, we estimate the cost of Grover’s key search and
evaluate the post-quantum security strength with further reduced costs.

Keywords: quantum computer; Grover’s algorithm; lightweight block cipher; CHAM; linear layer
optimization

1. Introduction

In the recent years, we have seen a massive interest in research and development
in quantum computing technology. There are many major players in the field, including
international conglomerates such as IBM and Google, as well as universities and national
research centers. They have been putting a lot of effort into the development of quantum
computing technology. As a result, Google’s research team, which had achieved quantum
supremacy with its superconducting processor Sycamore in 2019 [1], recently demonstrated
experimentally that errors can be reduced by increasing the number of logical qubits in their
superconducting system [2]. In addition, the USTC research team demonstrated a quantum
computational advantage with a 60-qubit superconducting quantum processor [3], and the
Xanadu’s team reported quantum computational advantages by showing that Gaussian
Boson Sampling (GBS) tasks can be performed via a programmable photonic processor,
Borealis [4]. However, the quantum computers—if they become functional—will massively
disrupt a lot of the cryptographic systems that are presently deployed in various industrial
applications. There are many facets, but in particular, the Grover’s search algorithm [5]
can be applied against any symmetric key ciphers [6] to reduce the security claim to the
square root bound of what is expected against a classical computer. In addition to the
Grover’s algorithm, there are various quantum or search optimization algorithms such as
Shor [7], Simon [8], and Particle Swarm Optimization algorithm [9,10]. Other algorithms
related to quantum computers include Classical-Quantum hybrid algorithms [11], which
are mainly applied to quantum machine learning and quantum chemistry, unlike the
quantum algorithms (i.e., Shor, Simon, and Grover) mentioned above. As such, although

Appl. Sci. 2023, 13, 5156. https://doi.org/10.3390/app13085156 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13085156
https://doi.org/10.3390/app13085156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9007-2280
https://orcid.org/0000-0002-5639-7372
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/app13085156
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13085156?type=check_update&version=4

Appl. Sci. 2023, 13, 5156 2 of 15

there are various algorithms related to quantum computers, it is common to use Grover’s
algorithm in the symmetric-key cryptosystem. While it is acknowledged that a functional
quantum computer has yet to see the light of the day, the researchers have been preemp-
tively working against this emerging threat. There has also been a standardization effort
by National Institute of Standards and Technology (NIST), a security organization run
by the US government, to classify the quantum security level with respect of Advanced
Encryption Standard (AES) for encryption and Secure Hash Algorithm (SHA) for hash [12].
In July 2022, four selected Post-Quantum Cryptography (PQC) algorithms have announced
and created a new draft standard for the corresponding algorithms currently in progress [13].
Now, in order to apply the Grover’s search algorithm, one needs to implement the cipher
in quantum logic—the search complexity varies based on the quantum cost of the cipher
implementation. Naturally, researchers have noted this, and have been working on finding
an optimized quantum implementation of symmetric key ciphers (including [14,15], etc.).
In order to reduce the quantum cost, while the previous optimization research has focused
only on reducing the number of qubits [16,17], more recent research has further been
considering reducing the overall depth and T-depth of quantum circuits [18–20]. Most
of these studies also deal with estimating the attack cost of recovering the secret key of a
symmetric key cipher via Grover’s algorithm to assess security strength.

At the same time, we have also witnessed a new design in the symmetric key ciphers,
referred to as lightweight ciphers, which are specialized to work on tightly constrained
devices [21]. Since lightweight block ciphers are essential to reduce costs with similar
performance, methods of optimizing and implementing symmetric keys in a linear layer
for more efficient use in lightweight environments have been steadily discussed. This
includes studies [22,23] that optimize methods using matrix decomposition, such as PLU
factorization and Gaussian–Jordan elimination, by applying them to symmetric keys. Thus,
applying various matrix decomposition methods to lightweight block cipher quantum
circuit implementations could greatly help circuit optimization and the final cost savings of
a key recovery attack using Grover’s algorithm.

In this paper, we optimize the quantum circuits of CHAM, one of the Korean lightweight
block ciphers, by applying two linear layer optimization techniques such as matrix de-
composition to its key-schedule. Then, we compare and evaluate the estimated costs of
Grover’s algorithm attack for the existing research [24] and each of the methods.

Contribution

Our contributions in this work are manifold and can be summarized as follows:

1. Optimization to the linear layer of the CHAM block cipher: To the best of our knowl-
edge/understanding, this type of optimization has never been applied to this cipher
before. We show how the optimization affects the quantum footprint, by comparing
the benchmarks of the naïve versus the optimized implementation.

2. Optimization of CHAM’s quantum circuit: Unlike classical computers, quantum
computers have limited resources. For this reason, it is essential to optimize the
number of qubits in optimizing quantum circuits. In addition, since the depth of a
quantum circuit is related to speed and time, not only the number of qubits, but also
the depth of the circuit is considered an important factor in optimizing the circuit. We
apply two linear layer optimization techniques to CHAM’s key schedule to reduce
common unnecessary auxiliary qubits used for round key generation in existing
structures. Moreover, we also reduce the number of CNOT gates and the depth of
the circuit using the second improvement method, and so satisfied two important
optimization factors.

3. Evaluation of post-quantum security about improved quantum circuit of CHAM: NIST
provides criteria for evaluating the post-quantum security strength of existing codes
in preparation for quantum computers. In order to evaluate the security strength,
it is necessary to implement the cipher as a quantum circuit and estimate the cost
of a Grover’s algorithm attack. We estimate the cost of a Grover’s algorithm attack

Appl. Sci. 2023, 13, 5156 3 of 15

about an improved quantum circuit of CHAM, compare it with the results of the
previous one, and then evaluate the post-quantum security strength. Additionally,
circuits are implemented for Revised CHAM, and security strength evaluations are
conducted together.

The organization of this paper is as follows. Section 2 presents the background of the
CHAM cipher, quantum computers and quantum gates, linear layer optimization tech-
niques, and the Grover’s algorithm. In Section 3, the proposed quantum implementation is
presented. In Section 4, we evaluate the proposed quantum circuit for CHAM. Section 5
estimates the cost of Grover’s algorithm for the proposed CHAM quantum circuit, and
evaluates the NIST post-quantum security level for CHAM based on the estimated cost.
Finally, Section 6 concludes this article.

2. Background
2.1. Description of CHAM

CHAM [25] is a Korean lightweight block cipher that uses a stateless-based round key
that targets low-end IoT platforms. It was announced at ICISC’17 and uses a stateless-based
round key. This cipher uses the ARX operations (Addition, Rotation, eXclusive-or) and
has advantages in a variety of resource-constrained environments. The CHAM family
includes three ciphers: CHAM-64/128, CHAM-128/128, and CHAM-128/256 (here, the
first parameter indicates the block size n, and the second parameter indicates the key size
k). In 2019, a paper that revised CHAM [26] by increasing the number of rounds was
proposed to secure a sufficient security margin for CHAM. The revised CHAM is identical
to the original CHAM except for the number of rounds. The cipher is also added to the
Cryptography libraries https://www.cryptopp.com/wiki/CHAM (accessed on 10 April
2023). In Table 1, the CHAM parameters (n, k, w, r) are shown. The branch(word)’s bit
length and the number of rounds are denoted, respectively, by w and r. The first value of r
in Table 1 represents the number of rounds in the original CHAM, while the second value
represents the number of rounds in the revised CHAM.

Table 1. CHAM’s parameters.

Cipher n k w r

CHAM-64/128 64 128 16 80, 88
CHAM-128/128 128 128 32 80, 112
CHAM-128/256 128 256 32 96, 120

The round key RK = {RK0, RK1, . . . , RK2k/w−1} used in the i-th round of the key
schedule is generated using the initial keyword Ki, where (0 ≤ i < k/w). k/w is the
key size k divided by word size w. In 64/128 and 128/256, (k, w) is (128, 16), (256, 32),
respectively, so k/w is 8, and 128/128 has (128, 32), so k/w is 4. In order to generate the
round key RK of the key schedule, the following equation is used:

RKi = Ki ⊕ (Ki ≪ 1)⊕ (Ki ≪ 8),

RK(i+k/w)⊕1 = Ki ⊕ (Ki ≪ 1)⊕ (Ki ≪ 11).
(1)

In Equation (1),≪ indicates a left-rotation operator. The expression≪ 8 performs
an operation where bits are shifted to the left by 8 bits, and the bits that fall off at the left
edge are put back on the right edge.

The n-bit block plaintext P is divided into four w-bit words and encrypted by repeating
the number of rounds corresponding to the parameters in the Table 1. In this case, the
operation is different depending on whether r is odd or even. More precisely, the overall
structure is the same, but the number of rotations varies depending on whether it is odd
or even.

https://www.cryptopp.com/wiki/CHAM

Appl. Sci. 2023, 13, 5156 4 of 15

Xi+1[j] = Xi[j + 1], (0 ≤ j ≤ 2),

Xi+1[3] = ((Xi[0]⊕ i)� ((Xi[1]≪ 1)⊕ RKi mod 2m))≪ a.
(2)

The round function is shown in Equation (2) for 0 ≤ i < r, and if i is even, a is 8;
otherwise, a is 1. In Equation (2), x� y means addition of x, y modulo 2w.

Jang et al. [24] optimized quantum circuits for the Korean lightweight block ciphers
CHAM, LEA, and HIGHT. In that paper [24], an improved quantum adder [27] is applied,
and parallel structure is used by allocating additional (ancilla) qubits in order to reduce
in terms of circuit depth. Compared to the results of a previous paper [28], which first
implemented CHAM as a quantum circuit, the performance improved by 70%. Although
optimized by changing the structure of CHAM to a parallel structure, the round key
generation part is the same as in the previous paper [28].

2.2. Quantum Gates

This section briefly mentions what is related to quantum computing and explains
the quantum gates required to implement the cryptographic operation of ciphers. In a
quantum computer environment, a quantum bit (qubit) is the unit of quantum information,
and has the property of being able to have both 0 and 1 at the same time. This property
is called quantum superposition, and it exponentially increases the computational space
of quantum computers. Gates must be used for computation, but in a quantum computer
environment, logic gates such as AND, OR, and XOR used in classical computers cannot be
used, so quantum gates are used as a means to replace logic gates.

There are many quantum gates, but a single-qubit gate and controlled gate are gener-
ally considered basic. Single-qubit gates that cause the spin to revolve around some axis [29]
include X (NOT), H, S gates, etc. Controlled gates including CNOT, Toffoli gate, etc., affect
a target qubit through one or more control qubits. Among the quantum gates, the following
four quantum gates are often used to implement quantum circuits in cryptography. The
four quantum gates are shown in Figure 1.

The X gate shown in Figure 1a is the simplest reversible flip gate among the basic
gates. The X gate performs an operation that inverts a single qubit that comes as an input.
It has the same operation as a classical bit flip and can be matched with a NOT gate among
logic gates.

The CNOT gate shown in Figure 1b stands for a Controlled-NOT gate. It inverts the
target qubit only when the state of the control qubit is |1〉. CNOT gates are often used when
performing an in-place XOR operation between two inputs.

The Toffoli gate shown in Figure 1c stands for a Controlled–Controlled–NOT gate
and is also called CCNOT. It can be seen as a CNOT gate with two control qubits, and the
target qubit can be inverted only when both control qubits are |1〉. The Toffoli gate is not a
universal quantum gate, and it can be implemented by a combination of Clifford +T gates.
Here, Clifford +T gates are a set of universal quantum gates consisting of Clifford, which
includes H gate, S gate, and CNOT gate, and a single T gate, which is non-Clifford. By
fixing this set of gates, we can estimate the number of quantum gates, circuit depth, cost,
etc. We adopt the method of decomposing Toffoli gates into 8 Clifford + 7T gates from [30].
In this case, the full depth is 8 and theT-depth is 4. The Toffoli gate has the highest quantum
cost among the four basic quantum gates of Figure 1.

The Swap Gate shown in Figure 1d exchanges the states of two qubits that come in
as inputs. Unlike the previous gates, the SWAP gate does not use quantum resources.
Except for the SWAP gate, the quantum resource cost of other gates increases in the
mentioned order.

While NAND or NOR gates are universal gates in classical computing, universal
quantum gate sets include Clifford gates (X, CNOT, H, S) +T gate, rotation gates, and
others. By using these universal quantum gate sets, it is possible to perform any quantum
operation. In this paper, we estimate the complexity of total quantum gates at the Clifford +
T level.

Appl. Sci. 2023, 13, 5156 5 of 15

x X ∼ x

(a) X (NOT) gate

x • x

y x⊕ y
(b) CNOT gate

x • x

y • y

z z⊕ (x · y)
(c) Toffoli gate

x × y

y × x

(d) Swap gate

Figure 1. Quantum gates.

2.3. Linear Layer Optimization

Linear equations can be expressed as matrices.

ax1 + bx2 = y1

cx1 + dx2 = y2
(3)

[
a b
c d

][
x1
x2

]
=

[
y1
y2

]
(4)

For example, when there are two linear equations such as Equation (3), converting
them into matrices can be expressed as Equation (4).

2.3.1. PLU Factorization

The PLU factorization allows us an easy way to implement a binary matrix. Given a
square matrix M; the algorithm funds a permutation matrix P, a lower triangular matrix
L, and an upper triangular matrix U; such that M = PLU. The matrix L has a value of 0
except for the lower triangular matrix, and on the contrary, matrix U has 0 except for the
upper triangular matrix.

M =

1 0 1 0
1 0 1 0
0 1 1 0
0 1 1 0

 = P · L ·U =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ·

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 ·

1 0 1 1
0 1 1 0
0 0 0 0
0 0 0 0

 (5)

In Equation (5), the first matrix is arbitrary square matrix M, the second one is matrix
P, the third one is matrix L, and the last one is matrix U. In our case, the PLU matrices
were obtained utilizing SageMath 9.8 https://www.sagemath.org/ (accessed on 10 April
2023), which is an open-source programming tool for multiple Python-based mathematics.
PLU factorization can be used to find the inverse of a non-singular matrix or a solution to a
row-linear equation. Applying this method to ciphers can reduce the number of XOR2s in
a general circuit and CNOT gates in a quantum circuit.

In the past, PLU factorization was used in various contexts. For instance, the 32× 32
binary matrix of AES (the MixColumn matrix) [16,20,22,31] or the implementation of an
elliptic curve [32].

2.3.2. FSE’20 (Xiang et al. [33])

The work by Xiang et al. [33] was published in the FSE’20, where the authors proposed
an in-place algorithm to optimize the implementation of binary matrices. To the best of our
finding, this is the first-of-its-kind.

Because of the in-place nature of the implementation (i.e., xi ← xi ⊕ xj), it becomes
possible to update the same qubits (thus, we do not need ancilla/garbage qubits). At
the same time, the algorithm is quite efficient, as the state-of-the-art results for in-place

https://www.sagemath.org/

Appl. Sci. 2023, 13, 5156 6 of 15

implementation of several binary matrices (including that of the 32× 32 MixColumn matrix
of AES, which takes 92 XOR2/CNOT gates) are reported in this paper.

2.4. Grover’s Algorithm (for Key Search)

Grover’s algorithm [5] is a quantum search algorithm that derives the desired an-
swer using the superposition and entanglement principles of quantum mechanics. When
the function domain size is n, using the Grover’s algorithm reduces the computational
complexity to

√
n.

The Grover’s algorithm consists of an oracle and a diffusion operator. Among these,
the oracle operator is a key component in the algorithm as it has a direct relationship
with the overall performance of the algorithm. Namely, it is essential to implement oracle
efficiently to optimize the performance of the algorithm.

1. In order to make the key of n-qubit superposition states |ψ〉, the Hadamard gates are
applied to k of n-qubit. This ensures that all states of the qubits have the same amplitude:

|ψ〉 = H⊗n|0〉⊗n =
(|0〉+ |1〉√

2

)
=

1
2n/2

2n−1

∑
k=0
|k〉 (6)

2. The attack-target cipher is implemented as a quantum circuit and arranged in oracle
f (k). Encrypting the known plaintexts of the superpositioned key produces cipher-
texts c for all key values. Afterwards, if the ciphertext matches the known ciphertext,
f (k) = 1 and (−1) f (k)|k〉|−〉, so the sign of the solution key value is reversed.

f (k) =

{
1 if Enc(key) = c

0 if Enc(key) 6= c
(7)

U f (|ψ〉|−〉) =
1

2n/2

2n−1

∑
k=0

(−1) f (k)|k〉|−〉 (8)

3. In the final step, the diffusion operator amplifies the amplitude of the negative-signed
solution key returned by the oracle. Usually, diffusion operators do not require special
skills to implement because their design is general.

3. Quantum Implementation of CHAM

In our implementation, the key-schedule of [24] is improved to optimize the quantum
circuit of CHAM. Since the calculation processes between the parameters are similar,
CHAM 64/128 will be used as an example.

3.1. Binary Matrix in Key Schedule

The round key RK matrix of CHAM is generated using Equation (1) of Section 2.1.
The i range of CHAM 64-128 is (0 ≤ i < r), so CHAM 64-128 exists from RK0 to RK15. For
RK, indices 0 to 7 use the first formula in Equation (1) and 8 to 15 use the second formula,
resulting in a total of two RK matrices. In the case of CHAM-64/128, since the word size w
is 16, the matrix obtained through the above process has a size of 16 × 16. The following is
the RK0∼7 matrix of CAHM 64-128:

Appl. Sci. 2023, 13, 5156 7 of 15

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1

(9)

The row of the matrix RK shows the result of each rotation operation when i is applied
to the key-schedule equation. For example, the second row of RK0∼7 is composed of
(1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), according to Equation (9). When Ki is in column 2, 1 in
column 1 is a value of RoL1, and 1 in column 10 is a value of ROL8. The matrices of the
remaining parameters including CHAM-64/128 are generated using sage math tool.

3.2. PLU Factorization

In order to generate RK using PLU factorization [23], P, L, and U matrices are to be
obtained, respectively, as mentioned in Section 2.3. This can also be easily obtained by using
the LU() https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2
.html#sage.matrix.matrix2.Matrix.LU (accessed on 10 April 2023) function of SageMath.

Algorithm 1 is a quantum circuit implementation of applying U, L. In each matrix,
column n represents k[n− 1]. One thing to note is that the P, L, and U matrices are constants,
which classifies Algorithm 1 as a classical-quantum implementation. The condition values
(U, L) used in the if statements in Algorithm 1 are all classical. Thus, the if statements
used in Algorithm 1 are for designing the quantum circuit (i.e., programming related), not
for internal if statements based on the measurement values of qubits within the quantum
circuit. Conceptually, the role of the if statements is similar to that of a for the loop.

In the algorithms, not all matrices consist of qubits.The U process proceeds from 1 to
16 rows of the matrix U (i.e., from top to bottom). In a row, it is meaningful because only
the upper terms of the diagonal term in the matrix U have non-zero values based on the
main diagonal line due to the characteristics of the upper triangular matrix. Therefore, if it
searches in the right direction based on the main diagonal line, and if the value is 1, the
corresponding element k[1 + i + j] is set as the control qubit and the main diagonal element
k[i] is set as the target qubit and then CNOT gates are applied.

The L process as opposed to U proceeds in the first row direction in row 16 of the
matrix L, i.e., from bottom to top. L is also meaningful only for the left value of the main
diagonal due to the characteristics of the lower triangular matrix. Similar to U, we search
the left side of the main diagonal reference, and if the value is 1, CNOT gates are applied to
the corresponding element k[w− 1− j] and the main diagonal element k[w− 1− i].

In the P process, the permutation is performed according to the matrix P. Only CNOT
gates are used for U and L processes, whereas only SWAP gates are used for P processes,
which rearrange the order. In the LU factorization, only the input matrix is different
according to the RK index (Section 2.1), but the algorithm is the same, so one operation is
used. On the other hand, in the permutation step, it is not easy to define an algorithm for
the P matrix for each RK index, so different SWAP gates are applied each time according to
the P matrix.

https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html#sage.matrix.matrix2.Matrix.LU
https://doc.sagemath.org/html/en/reference/matrices/sage/matrix/matrix2.html#sage.matrix.matrix2.Matrix.LU

Appl. Sci. 2023, 13, 5156 8 of 15

Algorithm 1 Quantum implementation of LU factorization.

Input: Word size w, w-qubit Key k0∼7, Upper triangular matrix U, Lower triangular matrix L
Output: w-qubit key k0∼7

1: // Applying U
2: for i = 0 to w− 2 do
3: for j = 0 to w− i− 2 do
4: if U[(i ∗ w) + 1 + i + j]==1 then
5: k[i]← CNOT(k[i + j + 1], k[i])
6: end if
7: end for
8: end for

9: // Applying L
10: for i = 0 to w− 2 do
11: for j = w− 1 to i + 1 step −1 do
12: if L[w ∗ (w− 1− i) + w− 1− j]==1 then
13: k[w− 1− i]← CNOT(k[w− 1− j], k[w− 1− i])
14: end if
15: end for
16: end for
17: return k0∼7

Algorithm 2 describes a quantum implementation of the CHAM-64/128 Key schedule
applying PLU factorization. In order to recycle k0∼7, a reverse operation is performed
on quantum gates included in the Transform range at Reverse (transform k0∼7). This
part is implemented using ProjectQ’s Compute() and Uncompute() commands. Transform
corresponds to Compute() and Reverse corresponds to Uncompute(). Since this paper is
about key-schedule optimization, only the location where the encryption step is performed
is mentioned as a comment, and the implementation algorithm is omitted.

Figures 2 and 3 represent quantum circuit diagrams of CHAM-64/128 key schedule
with PLU factorization for RK0∼7. These diagrams aim to illustrate the quantum operations
actually performed when Apply L, U, and permutations are executed. These circuits are
only valid for RK0∼7, and the circuit diagram differs for RK8∼15 due to the use of different
applied matrices.

k[0] k[0]
k[1] k[1]
k[2] k[2]
k[3] k[3]
k[4] k[4]
k[5] k[5]
k[6] k[6]
k[7] k[7]
k[8] • • • • • • • • k[8]
k[9] • • • • • • • • k[15]

k[10] • • • • • • • • k[9]
k[11] • • • • • • • • k[10]
k[12] • • • • • • • • k[11]
k[13] • • • • • • • • k[12]
k[14] • • • • • • •• k[13]
k[15] • • • • • • • • k[14]

Figure 2. Quantum circuit of the CHAM-64/128 key schedule with PLU factorization (Apply_U),
white circle indicates XOR operation and black dot indicates connection.

Appl. Sci. 2023, 13, 5156 9 of 15

k[0] • • k[0]
k[1] • • k[1]
k[2] • • k[2]
k[3] • • k[3]
k[4] • • k[4]
k[5] • • k[5]
k[6] • • k[6]
k[7] • • k[7]
k[8] • • • • • • k[8]
k[9] k[15]

k[10] k[9]
k[11] k[10]
k[12] k[11]
k[13] k[12]
k[14] k[13]
k[15] k[14]

Figure 3. Quantum circuit of the CHAM-64/128 key schedule with PLU factorization (Apply_L),
white circle indicates XOR operation and black dot indicates connection.

Algorithm 2 Quantum implementation of CHAM-64/128 key-schedule with PLU factorization.

Input: 16-qubit Key k0∼7, Upper triangular matrices U1,2, Lower triangular matrices L1,2
Output: Round key RK0∼15

1: Transform k0∼7:
2: for i = 0 to 7 do
3: ki ← Apply LU(ki, 16, U1, L1)
4: (ki[12], ki[11])← SWAP(ki[11], ki[12])
5: (ki[11], ki[13])← SWAP(ki[13], ki[11])
6: (ki[11], ki[10])← SWAP(ki[10], ki[11])
7: (ki[10], ki[14])← SWAP(ki[14], ki[10])
8: (ki[10], ki[9])← SWAP(ki[9], ki[10])
9: (ki[9], ki[15])← SWAP(ki[15], ki[9])

10: end for
11: return k0∼7 . RK0∼7

. After performing encryption
12: Reverse (transform k0∼7)

13: Transform k0∼7:
14: for i = 0 to 7 do
15: ki ← Apply LU(ki, 16, U2, L2)
16: (ki[13], ki[11])← SWAP(ki[11], ki[13])
17: (ki[10], ki[9])← SWAP(ki[9], ki[10])
18: (ki[8], ki[7])← SWAP(ki[7], ki[8])
19: (ki[6], ki[5])← SWAP(ki[5], ki[6])
20: end for
21: return k0∼7 . RK8∼15

. After performing encryption
22: Reverse (transform k0∼7)
23: return k0∼7

3.3. FSE’20

The second improvement method is the application of FSE’20 to the key-schedule.
The method of applying PLU factorization uses CNOT and SWAP gates, while the method
of applying FSE’20 uses only CNOT gates. The SWAP part uses a logical swap method
that can include values to Python’s list in the order you want them to. Since the process is
too complicated to use the SWAP gate, a logical swap is used to intuitively know. Since

Appl. Sci. 2023, 13, 5156 10 of 15

the logical swap method does not use quantum gates, the reverse operation is not applied
immediately. Therefore, it is necessary to make an operation that performs the opposite
process of the logical swap so that it can be put back in the original order in the list.

The generation of round keys RK0∼7 with FSE’20 is described in Algorithm 3. If the
reverse operation is performed in Algorithm 3, the reverse function can be applied to lines
1 to 14 in the same way as PLU factorization. Then, k has the original value if the same
operation of line 16 to 19 is performed one more time. The reverse operation proceeds in
the same way as the aforementioned PLU algorithm.

Algorithm 3 Quantum implementation of CHAM-64/128 Key Schedule applying FSE’20.

Input: 16-qubit Key k0∼7
Output: Round keyRK0∼7

1: Transform k0∼7:
2: for i = 0 to 7 do
3: ki[5]← CNOT16(ki[13], ki[5]), ki[2]← CNOT16(ki[10], ki[2])
4: ki[15]← CNOT16([k7], ki[15]), ki[8]← CNOT16(ki[0], ki[8])
5: ki[7]← CNOT16(ki[6], ki[7]), ki[7]← CNOT16(ki[14], ki[7])
6: ki[4]← CNOT16(ki[12], ki[4]), ki[14]← CNOT16(ki[5], ki[14])
7: ki[12]← CNOT16(ki[11], ki[12]), ki[10]← CNOT16(ki[9], ki[10])
8: ki[13]← CNOT16(ki[4], ki[13]), ki[10]← CNOT16(ki[1], ki[10])
9: ki[12]← CNOT16(ki[3], ki[12]), ki[9]← CNOT16(ki[8], ki[9])

10: ki[1]← CNOT16(ki[8], ki[1]), ki[0]← CNOT16(ki[15], ki[0])
11: ki[8]← CNOT16(ki[0], ki[8]), ki[3]← CNOT16(ki[2], ki[3])
12: ki[6]← CNOT16(ki[5], ki[6]), ki[4]← CNOT16(ki[12], ki[4])
13: ki[11]← CNOT16(ki[2], ki[11]), ki[15]← CNOT16(ki[7], ki[15])
14: ki[2]← CNOT16(ki[10], ki[2]), ki[5]← CNOT16(ki[13], ki[5])

. logical swap
15: RKi[0]← ki[0]
16: for j = 15 to 1 step -1 do
17: RKi[j− (dj/2e − 1) ∗ 2]← ki[j]
18: end for
19: end for
20: return RK0∼7

. After performing encryption
21: Reverse (transform k0∼7)
22: return k0∼7

4. Performance

In this section, we evaluate and compare the performance of proposed CHAM quan-
tum circuits by estimating the quantum resources. However, the proposed quantum circuits
cannot yet run in current quantum computers because the size of our circuits are too large.
We use ProjectQ, a quantum programming tool provided by IBM, on classical computers
to implement and simulate quantum circuits. Thus, the quantum circuits in our work
are implemented and simulated at an error-free environment (i.e., logical level). A large
number of qubits can be simulated using ProjectQ’s own library, ClassicalSimulator,
which is limited to boolean quantum gates such as X, CNOT, and Toffoli. Quantum gates
that affect the phase such as S and H gates cannot be used. ClassicalSimulator allows us
to validate the implementation by classical calculation of the output of the implemented
quantum circuit. To verify the proposed quantum circuits, the test vector provided in [25]
(Appendix A) is used for the plaintext, ciphertext, and secret key. If the output of running
our quantum circuits in ClassicalSimulator matches the ciphertext of the test-vector, we
can be confident that the circuits have been implemented correctly. To estimate the detailed
quantum resources, we use another internal library called ResourceCounter. Unlike the

Appl. Sci. 2023, 13, 5156 11 of 15

ClassicalSimulator, the ResourceCounter does not compute values that are affected by
quantum gates. It only calculates the depth of the circuit, and the number of allocated
quantum gates and qubits.

The quantum resources needed to implement CHAM quantum circuits at the NCT
(NOT(X), CNOT, and Toffoli) level are shown in Tables 2 and 3.

Table 2. Quantum resources required for previous CHAM implementation (JSKKKS’20).

Cipher #CNOT #X #Toffoli #qubits Depth

CHAM-
64/128 13,200 2320 2320 204 2615

CHAM-
128/128 28,760 4880 4880 292 5307

CHAM-
128/256 34,944 5872 5856 420 6594

Table 3. Quantum resources required for proposed CHAM implementations.

Method Cipher #CNOT #X #Toffoli #qubits Depth

PLU [23]
(this work)

CHAM-
64/128 21,360 2320 2320 195 2673

CHAM-
128/128 52,000 4880 4880 259 6431

CHAM-
128/256 62,400 5872 5856 387 6356

FSE’20 [33]
(this work)

CHAM-
64/128 13,040 2320 2320 195 2612

CHAM-
128/128 28,800 4880 4880 259 5240

CHAM-
128/256 34,560 5872 5856 387 6249

As mentioned in Section 2.2, the Toffoli gate consists of a combination of Clifford and
T gates. We decompose one Toffoli gate into 7 Tgates, 8 Clifford gates with T depth 4, full
depth 8 using the [30] method, which is widely used in related to quantum studies. Table 4
shows a comparison of the detailed quantum resources required for quantum circuits of
the previous and the proposed structure at the Clifford + T level.

Table 4. CHAM quantum resources comparison by methods applied to key-schedule in detail.

CHAM Methods #CNOT #1qCliff #T T-Depth #qubits Full Depth

64/128
Previous [24] 27,120

6960 16,240 9280
204 17,035

PLU [23] (this work) 35,280 195 17,092
FSE’20 [33] (this work) 29,960 195 17,031

128/128
Previous [24] 58,040

14,640 34,160 19,520
292 37,766

PLU [23] (this work) 81,280 259 37,878
FSE’20 [33] (this work) 58,080 259 37,768

128/256
Previous [24] 70,080

17,584 40,992 23,424
420 45,252

PLU [23] (this work) 97,536 387 45,014
FSE’20 [33] (this work) 69,696 387 44,904

Compared to the existing CHAM implementation, Jang et al. [24] used auxiliary
qubits in the key-schedule process for generating a round key. These dedicated qubits are
used solely for generating a round key and can be sufficiently saved through optimizing.
Both PLU factorization and FSE’20 eliminate the need for additional auxiliary qubits by

Appl. Sci. 2023, 13, 5156 12 of 15

implementing the key-schedule circuit in-place, resulting in a reduction in the number
of qubits.

In the case of PLU factorization, the circuit depth of parameters 64/128 and 128/128
increase, but the depth of 128/256 decreases. Since the overall change in the depth of the
circuit is insignificant, this modulation can be ignored, and it can be considered that the
number of qubits is saved while maintaining the circuit depth to some extent. However,
the number of CNOT gates increased by about 40%, which can be seen as a trade-off
with qubits.

FSE’20 overall reduce the number of qubits, CNOT gates, and full depth of the circuit.
Comparing Tables 2 and 3, FSE’20 shows improvements in qubits by 7.9%, depth by 2.2%,
and number of CNOT gates by 0.7%. When considering the maintenance of the number
of #lqCliffod, #T, and T-depth, it can be observed that the FSE’20 method significantly
conserves quantum resources. Comparing the two methods, PLU factorization shows an in-
crease in the values of the rest of the indicators except for qubits, while most of the values in
FSE’20 decrease, and shows improvement. Based on these results, FSE’20 can be considered
as the most optimal method. Since circuit depth is related to speed and time, the reduction
in circuit depth in FSE’20 suggests an improvement in the execution speed of CHAM. In
addition, considering a low-power environment with limited quantum computers and
resources, reducing the number of gates and qubits through FSE’20 increases the feasibility
of the circuit by correspondingly reducing the demand on resources. However, FSE’20 has
a limitation that it cannot be used for linear layer matrices larger than 32 × 32. For CHAM,
the matrix for the largest instances (i.e., CHAM-128/256) is 32 × 32, so we could have used
this method, but we cannot use this method for ciphers with matrices larger than this.

T-counts and T-depth are related to the Toffoli gate used in the quantum circuit of
CHAM for the adder. The adder is not used in the key-schedule step that we optimized;
therefore, all three methods have the same values for T-counts and T-depth in Table 4.
Furthermore, #lqCliff also has the same value for all three methods as only the CNOT gate
is utilized in the key-schedule phase.

5. Cost Estimate for Grover Key Search

The two components of Grover’s algorithm are the oracle, which finds a solution, and
the diffusion operator, which increases the amplitude of the solution. The diffusion operator
has a very low overhead and doesn’t require any special implementation methods. So,
the cost for the Grover’s algorithm is estimated using just the quantum resources needed
for the oracle in the majority of cases [14,16,20,22,34]. The efficiency of the implemented
quantum circuit determines the quantum resources of the oracle.

The oracle operates encryption and reverse operations sequentially. Since the CHAM
quantum circuit is applied to each operation, the cost of using the oracle once is
(Table 4 × 2) when R = dk/ne (key size/block size) is 1 except for qubits. If R is 2,
since there are 2 encryption and reverse operation pairs, there are 4 operations in total, so it
is multiplied by 4. The effectiveness of the quantum circuit determines the performance
of the Grover key search. Although it is well known that the Grover’s algorithm needs to
be iterated

√
2n times to recover the n-bit key, a detailed analysis of [35] suggests that it

is optimal to repeat the Grover’s algorithm bπ
4 ·
√

2nc times. Thus, the cost of the Grover
key search is calculated as (Table 4× 2× bπ

4 ·
√

2nc) without the number of qubits. This
means repeating Oracle by bπ

4 ·
√

2nc. Table 5 shows the quantum resources required for
Grover key search for CHAM with various methods applied. That is, the costs shown in
Table 5 represent the resources needed for a Grover’s key search attack, and this resource
requirement depends on the complexity of the oracle. The costs in Table 5 are used to
determine how secure a CHAM cipher is in a quantum computing environment.

NIST security is based on the post-quantum security strength specified by NIST, and
the Grover attack costs of AES-128, -192, and -256 are 2170, 2233, and 2298, respectively.
The lowest security level for encryption algorithms is 1 (corresponds to that of AES-128),
and the level increases as the key size increases. According to the post-quantum security

Appl. Sci. 2023, 13, 5156 13 of 15

strength criteria provided by NIST [12], 128/256 satisfies Level 3, but 64/128 and 128/128
do not exceed Level 1. NIST’s post-quantum security requirements specify that the cipher
should be similar to or higher than the Grover attack cost for AES to ensure security on
quantum computers. Accordingly, it may be considered that 64/128 and 128/128 do not
achieve an appropriate security level.

However, a document provided by NIST [12] states that the estimated costs should be
conservatively evaluated if a quantum attack with a significantly reduced attack cost later
appears. The AES attack cost estimated by NIST is cited in a 2016 paper by Grassl et al. [16],
and implementations that further optimize AES quantum circuits have been recently proposed.
A recent Grover attack cost estimation study on AES [20] shows that since Level 1 is 2157, it
can be seen that parameters with key size k =128 also satisfy the security strength.

Table 5. Comparison of cost of Grover’s key search by methods applied to key-schedule for CHAM.

CHAM Methods Total Gates Total
Depth Cost Security

[12]

64/128

PLU 1.456× 281 1.025× 276 1.462× 2157

2170

(Level 1)
FSE’20 1.226× 281 1.002× 276 1.228× 2157

PLU (revision) 1.568× 281 1.119× 276 1.755× 2157

FSE’20 (revision) 1.345× 281 1.094× 276 1.471× 2157

128/128

PLU 1.583× 281 1.233× 277 1.952× 2158

2170

(Level 1)
FSE’20 1.305× 281 1.005× 277 1.311× 2158

PLU (revision) 1.103× 282 1.716× 277 1.894× 2159

FSE’20 (revision) 1.818× 281 1.400× 277 1.273× 2159

128/256

PLU 1.895× 2146 1.219× 2141 1.155× 2288

2333

(Level 3)
FSE’20 1.562× 2146 1.198× 2141 1.871× 2287

PLU (revision) 1.179× 2147 1.511× 2141 1.781× 2288

FSE’20 (revision) 1.946× 2146 1.491× 2141 1.450× 2288

6. Conclusions

In this paper, we present optimizing quantum circuit implementations of the CHAM
ciphers. We apply linear layer optimization techniques such as PLU factorization and
FSE’20 to CHAM’s key-schedule to eliminate additional qubits, saving the number of
qubits without significantly increasing the depth of the circuit. In particular, in the case of
FSE’20, not only the number of qubits but also the number of CNOT gates and the depth of
the circuit are reduced. However, the PLU factorization method has limitations as it leads
to an increase in both the number of CNOT gates and the depth of the circuit. While the
change in depth is trivial, less than 1%, the increase in the number of CNOT gates is not
negligible, ranging from 3 to 40%. In our work, we considered this as a trade-off with qubit.
In the case of the FSE’20 method, we concluded that it is the most optimal method in terms
of reducing the number of qubits, the number of gates, and the depth. Currently, according
to Xiang et al. [33], this method has a limitation that it can only be used for linear layer
matrices of size 32 or less.

The performance of future quantum computers is not yet known accurately, and
for this reason, it is difficult to predict how secure the existing cryptography will be in
the quantum computing environment. Accordingly, NIST proposed to measure security
strength through computation resource estimation. The value provided as a security level
in this standard is the cost estimated to be incurred when attacking AES through a Grover
attack. Evaluating what level of security the ciphers has in the post-quantum environment
through this criterion and whether it can be used is a very important task as it prevents
attacks that may occur in the future. So, we estimate the quantum circuit cost required
for Grover attacks and evaluate the security level. As a result, it can be considered that
all methods satisfy the security strength by satisfying the cost presented in the recently
proposed paper on optimized quantum circuits in AES [20].

Appl. Sci. 2023, 13, 5156 14 of 15

In future studies, in addition to PLU factorization and FSE’20, we will find a way to
optimize the circuit, apply it to lightweight block ciphers such as CHAM, and compare
these and then try to find an optimal method. In addition, if the two techniques applied in
the thesis are applied to other ciphers (e.g., SPECK, SIMON, and LEA block ciphers), a new
optimization study will be able to proceed.

Author Contributions: Software, Y.Y., K.J. and A.B.; Writing—original draft, Y.Y.; Supervision, H.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was financially supported by Hansung University.

Acknowledgments: We thank Soham Roy (Indian Institute of Technology Madras, India) and Da Lin
(Hubei University, Wuhan, China) for the kind help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.; Buell, D.A.; et al.

Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [CrossRef] [PubMed]
2. Suppressing quantum errors by scaling a surface code logical qubit. Nature 2023, 614, 676–681. [CrossRef]
3. Zhu, Q.; Cao, S.; Chen, F.; Chen, M.C.; Chen, X.; Chung, T.H.; Deng, H.; Du, Y.; Fan, D.; Gong, M.; et al. Quantum computational

advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 2022, 67, 240–245. [CrossRef] [PubMed]
4. Madsen, L.S.; Laudenbach, F.; Askarani, M.F.; Rortais, F.; Vincent, T.; Bulmer, J.F.; Miatto, F.M.; Neuhaus, L.; Helt, L.G.; Collins,

M.J.; et al. Quantum computational advantage with a programmable photonic processor. Nature 2022, 606, 75–81. [CrossRef]
[PubMed]

5. Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219.

6. Delfs, H.; Knebl, H.; Delfs, H.; Knebl, H. Symmetric-key encryption. In Introduction to Cryptography: Principles and Applications;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 11–31.

7. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,
41, 303–332. [CrossRef]

8. Simon, D.R. On the power of quantum computation. SIAM J. Comput. 1997, 26, 1474–1483. [CrossRef]
9. Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 Years of Particle Swarm Optimization: Flourishing Voyage of Two

Decades. Arch. Comput. Methods Eng. 2022, 30, 1663–1725. [CrossRef]
10. Liu, G.; Chen, W.; Chen, H.; Xie, J. A quantum particle swarm optimization algorithm with teamwork evolutionary strategy.

Math. Probl. Eng. 2019, 2019, 1805198. [CrossRef]
11. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi,

A.; et al. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968.
12. NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process. 2016.

Available online: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-
final-dec-2016.pdf (accessed on 10 April 2023).

13. Alagic, G.; Apon, D.; Cooper, D.; Dang, Q.; Dang, T.; Kelsey, J.; Lichtinger, J.; Liu, Y.-K.; Miller, C.A.; Moody, D.; et al. Status Report
on the Third Round of the NIST Post-Quantum Cryptography Standardization Process; NIST Interagency/Internal Report (NISTIR);
National Institute of Standards and Technology: Gaithersburg, MD, USA, 2022.

14. Baksi, A.; Jang, K.; Song, G.; Seo, H.; Xiang, Z. Quantum Implementation and Resource Estimates for Rectangle and Knot.
Quantum Inf. Process. 2021, 20, 395. [CrossRef]

15. Jang, K.; Baksi, A.; Breier, J.; Seo, H.; Chattopadhyay, A. Quantum Implementation and Analysis of DEFAULT. Cryptology ePrint
Archive, Paper 2022/647, 2022. Available online: https://eprint.iacr.org/2022/647 (accessed on 10 April 2023).

16. Grassl, M.; Langenberg, B.; Roetteler, M.; Steinwandt, R. Applying Grover’s Algorithm to AES: Quantum Resource Estimates. In
Post-Quantum Cryptography, Proceedings of the PQCrypto 2016, Fukuoka, Japan, 24–26 February 2016; Takagi, T., Ed.; Springer: Cham,
Switzerland, 2016; pp. 29–43. [CrossRef]

17. Langenberg, B.; Pham, H.; Steinwandt, R. Reducing the cost of implementing the advanced encryption standard as a quantum
circuit. IEEE Trans. Quantum Eng. 2020, 1, 2689–1808 . [CrossRef]

18. Zhu, C.; Huang, Z. Optimizing the depth of quantum implementations of linear layers. In Proceedings of the International
Conference on Information Security and Cryptology, Istanbul, Turkey, 16–17 October 2023; pp. 129–147.

19. Huang, Z.; Sun, S. Synthesizing quantum circuits of AES with lower t-depth and less qubits. In Proceedings of the Advances in
Cryptology—ASIACRYPT 2022: 28th International Conference on the Theory and Application of Cryptology and Information
Security, Taipei, Taiwan, 5–9 December 2022; Proceedings, Part III; Springer: Berlin/Heidelberg, Germany, 2023; pp. 614–644.

20. Jang, K.; Baksi, A.; Song, G.; Kim, H.; Seo, H.; Chattopadhyay, A. Quantum Analysis of AES. Cryptology ePrint Archive, Paper
2022/683, 2022. Available online: https://eprint.iacr.org/2022/683 (accessed on 10 April 2023).

http://doi.org/10.1038/s41586-019-1666-5
http://www.ncbi.nlm.nih.gov/pubmed/31645734
http://dx.doi.org/10.1038/s41586-022-05434-1
http://dx.doi.org/10.1016/j.scib.2021.10.017
http://www.ncbi.nlm.nih.gov/pubmed/36546072
http://dx.doi.org/10.1038/s41586-022-04725-x
http://www.ncbi.nlm.nih.gov/pubmed/35650354
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1137/S0097539796298637
http://dx.doi.org/10.1007/s11831-022-09849-x
http://dx.doi.org/10.1155/2019/1805198
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://dx.doi.org/10.1007/s11128-021-03307-6
https://eprint.iacr.org/2022/647
http://dx.doi.org/10.1007/978-3-319-29360-8_3
http://dx.doi.org/10.1109/TQE.2020.2965697
https://eprint.iacr.org/2022/683

Appl. Sci. 2023, 13, 5156 15 of 15

21. Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, I.; Manifavas, C. A review of lightweight block ciphers. J. Cryptogr. Eng. 2018,
8, 141–184. [CrossRef]

22. Jaques, S.; Naehrig, M.; Roetteler, M.; Virdia, F. Implementing Grover Oracles for Quantum Key Search on AES and LowMC.
In Lecture Notes in Computer Science, Proceedings of the Advances in Cryptology—EUROCRYPT 2020—39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; Canteaut, A., Ishai, Y., Eds.;
Springer: Berlin/Heidelberg, Germany, 2020; Volume 12106, pp. 280–310. [CrossRef]

23. Van Hoof, I. Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count.
arXiv 2019, arXiv:1910.02849.

24. Jang, K.; Song, G.; Kim, H.; Kwon, H.; Kim, H.; Seo, H. Parallel quantum addition for Korean block ciphers. Quantum Inf. Process.
2022, 21, 1–25. [CrossRef]

25. Koo, B.; Roh, D.; Kim, H.; Jung, Y.; Lee, D.G.; Kwon, D. CHAM: A family of lightweight block ciphers for resource-constrained
devices. In Proceedings of the International Conference on Information Security and Cryptology, Seoul, Republic of Korea, 29
November–1 December 2017; pp. 3–25.

26. Roh, D.; Koo, B.; Jung, Y.; Jeong, I.W.; Lee, D.G.; Kwon, D.; Kim, W.H. Revised version of block cipher CHAM. In Proceedings of
the Information Security and Cryptology—ICISC 2019: 22nd International Conference, Seoul, Republic of Korea, 4–6 December
2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–19.

27. Cuccaro, S.A.; Draper, T.G.; Kutin, S.A.; Moulton, D.P. A new quantum ripple-carry addition circuit. arXiv 2004. [CrossRef]
28. Jang, K.; Choi, S.; Kwon, H.; Kim, H.; Park, J.; Seo, H. Grover on Korean block ciphers. Appl. Sci. 2020, 10, 6407. [CrossRef]
29. Jones, J. Nuclear magnetic resonance quantum computation. In Les Houches; Elsevier: Amsterdam, The Netherlands, 2004;

Volume 79, pp. 357–400.
30. Amy, M.; Maslov, D.; Mosca, M.; Roetteler, M.; Roetteler, M. A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal

Quantum Circuits. IEEE Trans. -Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 818–830. [CrossRef]
31. Zou, J.; Wei, Z.; Sun, S.; Liu, X.; Wu, W. Quantum Circuit Implementations of AES with Fewer Qubits. In Proceedings of the

Advances in Cryptology—ASIACRYPT 2020, Online Event, 7–11 December 2020; Moriai, S., Wang, H., Eds.; Springer: Cham,
Switzerland, 2020; pp. 697–726. [CrossRef]

32. Banegas, G.; Bernstein, D.J.; van Hoof, I.; Lange, T. Concrete Quantum Cryptanalysis of Binary Elliptic Curves. Cryptology ePrint
Archive, Paper2020/1296, 2020. Available online: https://eprint.iacr.org/2020/1296 (accessed on 1 April 2023).

33. Xiang, Z.; Zeng, X.; Lin, D.; Bao, Z.; Zhang, S. Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol. 2020,
2022, 120–145. [CrossRef]

34. Bijwe, S.; Chauhan, A.K.; Sanadhya, S.K. Quantum Search for Lightweight Block Ciphers: GIFT, SKINNY, SATURNIN. Cryptology
ePrint Archive, Paper 2020/1485, 2020. Available online: https://eprint.iacr.org/2020/1485 (accessed on 10 April 2023).

35. Boyer, M.; Brassard, G.; Høyer, P.; Tapp, A. Tight Bounds on Quantum Searching. Fortschritte Phys. 1998, 46, 493–505. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s13389-017-0160-y
http://dx.doi.org/10.1007/978-3-030-45724-2_10
http://dx.doi.org/10.1007/s11128-022-03714-3
http://dx.doi.org/10.48550/arXiv.quant-ph/0410184.
http://dx.doi.org/10.3390/app10186407
http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1007/978-3-030-64834-3_24
https://eprint.iacr.org/2020/1296
http://dx.doi.org/10.46586/tosc.v2020.i2.120-145
https://eprint.iacr.org/2020/1485
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P

	Introduction
	Background
	Description of CHAM
	Quantum Gates
	Linear Layer Optimization
	PLU Factorization
	FSE'20 (Xiang et al. xiang2020optimizing)

	Grover's Algorithm (for Key Search)

	Quantum Implementation of CHAM
	Binary Matrix in Key Schedule
	PLU Factorization
	FSE'20

	Performance
	Cost Estimate for Grover Key Search
	Conclusions
	References

